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Abstract

We show that spikes are unstable in a class of scalar reaction-diffusion equations coupled
to a general conservation law. Our class includes the Keller-Segel model for chemotaxis,
phase-field models and models for chemical reactions in closed chemical reactors.1

1 Introduction

Localized self-organized structures are among the most elementary yet striking phenomena
caused by nonlinearity in spatially extended dynamical systems. While such localized structures
can be observed in a variety of experimental scenarios, the mathematical problem of proving
existence and stability is often quite difficult. Many if not most existence proofs are based
in various ways on the fact that a simple scalar reaction diffusion system possesses localized
solutions, which we refer to as spikes. The simplest example is the scalar equation

vt = vxx − v + v2, t ≥ 0, x ∈ R,

which possesses the stationary solution v∗(x) = 3
2sech2(x2 ).

It was recognized early, however, that spikes, as well as more general, non-monotone solutions
are always unstable in scalar reaction-diffusion systems [5].

Our focus here is on an extension of such scalar equations by a conservation law,{
ut = [a(u, v)ux + b(u, v)vx]x,
vt = vxx + f(u, v),

t ≥ 0, x ∈ R, (1.1)

with functions a, b, and f of class C3(R2,R). In order to ensure well-posedness on appropriate
function spaces, we also assume that a(u, v) ≥ a0 > 0 for all (u, v) ∈ R2. We note that the
equation for u is a conservation law, that is,

∫
u(t, x) is independent of time under suitable

decay (or boundary) conditions.

The general form of (1.1) incorporates several model problems from chemistry, biology, and ma-
terial science. We briefly explain here how models for phase separation, precipitation, chemo-
taxis, and cell polarization can be rewritten in the form (1.1).
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A simple chemical conversion reaction A ←→ B in a closed reactor can often be described by
a reaction-diffusion system for the concentrations u1 = [A] and u2 = [B],{

u1,t = d1u1,xx − g(u1, u2),
u2,t = d2u2,xx + g(u1, u2),

t ≥ 0, x ∈ R. (1.2)

Here, g is the combined reaction rate of the conversion A←→ B, and dj are diffusion rates. The
simple change of variables u = u1 +u2, v = u2 and a rescaling of x then immediately transforms
(1.2) into (1.1), with constant functions a and b. Such conversion reactions have also been
used to model precipitation kinetics [2, 7, 14] that are responsible for the formation of spikes
in Liesegang patterns. Here, kinetics g often exhibit a bistable characteristic, for which we give
an example in Section 6. Models of this form also arise in biological contexts, for instance in
modeling the polarization of motile eukaryotic cells in response to external signals [11].

Seemingly different models arise in the theory of thermodynamic phase transitions. Consider
for instance the phase-field system{

τϕt = dϕϕxx + 1
2(ϕ− ϕ3) + 2w,

wt + 1
2 lϕt = dwwxx,

t ≥ 0, x ∈ R, (1.3)

where w denotes temperature and the phase function ϕ acts as an order parameter, so that
ϕ = −1 corresponds to the solid phase and ϕ = 1 to the liquid phase. The constant dw
characterizes heat flux, the constant dϕ accounts for finite interfacial energy, and l is the latent
heat; see [1]. Again, a simple transformation, u = w + l

2ϕ, v = ϕ, and a rescaling of space
and time, converts the phase-field system (1.3) into the conservation law form (1.1). A quite
common, related model for phase separation is the Cahn-Hilliard equation

wt = −(wxx + w − w3)xx, t ≥ 0, x ∈ R,

which in fact shares many common features with our class of models (1.1), even if it cannot be
cast in the exact same form. We comment briefly on the applicability of our methods to this
equation in Section 6.

Slightly more general functions a and b arise in chemotaxis models, where u measures the con-
centration of a cell population, and v the concentration of a chemical produced by the bacteria.
Motility of bacteria may depend on concentrations, and direction of motion on gradients of the
chemical. The chemotactic behavior is typically encoded in a function b(u, v) = −uk(u, v), with
chemotactic sensitivity k > 0. The function f in (1.1) models concentration-dependent produc-
tion and degradation of the chemical v. The simplest case, a ≡ 1, k ≡ χ, and f(u, v) = u − v
is the classical Keller-Segel model [13]; see [8] for an overview and [9] for specific examples of
spike formation.

Spikes can be found theoretically in all the models mentioned above. They have also been
observed both numerically and experimentally; see for instance [2, 7, 13, 14]. Also, while
experiments are set in finite domains, it is common that the domain size is large compared
to characteristic length scales of patterns, so that the influence of boundary conditions often
seems negligible.
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In order to see why spikes are ubiquitous in all those models, one solves the steady-state
equation first for u, and then for v. The equation in (1.1) for u can be integrated once and
then transformed into a differential equation for u in terms of the independent variable v,

du
dv

= − b(u, v)
a(u, v)

. (1.4)

One then proceeds and substitutes the solution u = Φ(v) into the equation for v and finds

vxx + f(Φ(v), v) = 0. (1.5)

Under suitable conditions on f and Φ, this equation will possess homoclinic solutions v(x) =
v(−x)→ v∞ as x→∞, which yield spikes for the full system via u(x) = Φ(v(x)).

We are interested in spikes that are asymptotic to solutions that are stable for the pure kinetics,
that is, (u∞, v∞) is a stable equilibrium to{

u′ = 0
v′ = f(u, v),

which is ensured by the open assumption that fv(u∞, v∞) < 0.

Our main result asserts that spike solutions to any of the above models are always unstable
when considered as solutions on the unbounded real axis, x ∈ R. As a corollary, we obtain that
any given spike is unstable when considered on a sufficiently large domain with, say, Neumann
boundary conditions.

More precisely, we have the following result.

Theorem 1.1. Suppose (1.1) possesses a spike solution (u∗, v∗), that is,

|(u∗ − u∞, v∗ − v∞)(x)| ≤ Ce−η|x|, (u∗, v∗) 6≡ (u∞, v∞),

for some constants u∞, v∞, and C, η > 0. Moreover, assume that fv(u∞, v∞) 6= 0.

Then (u∗, v∗) is unstable as an equilibrium to (1.1), considered as an evolution equation on the
space of bounded uniformly continuous functions BUC(R,R2).

Remark 1.2. We comment on some variations of this main result.

(i) Our result immediately gives instability of spikes in the Keller-Segel model and bistable
precipitation models.

(ii) We will outline in the discussion how this result yields instability of spikes in sufficiently
large but bounded domains.

(iii) The actual result is sharper, as we will see from the proof. It guarantees the existence of a
real positive eigenvalue to the linearization, provided that the background state (u∞, v∞)
is linearly stable in an appropriate sense. As a consequence, perturbations of spikes
typically grow exponentially.
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(iv) Instability results also hold in most other common functions spaces, such as Lp- or Lpunif -
spaces.

Our approach is as follows. First we linearize the system (1.1) along the spike (u∗, v∗). Next,
we compute the essential spectrum of the linearized operator L, using a compact perturbation
argument similar to the approach given in [6]. In the case when the essential spectrum is stable,
we trace the point spectrum of L by using a homotopy to an easier system. The homotopy is
constructed such that at the end of the homotopy interval the system has exactly one positive
eigenvalue. Furthermore, we show that the eigenvalues of L stay away from 0 and that a parity
index is constant during the homotopy. One major difficulty of the proof is that 0 ∈ σess(L). To
bypass this problem we show that L is a Fredholm operator with negative index on exponentially
weighted spaces, which allows us to use the Lyapunov-Schmidt reduction method to solve the
eigenvalue problem for L. An alternate method to track point spectrum near the edge of the
essential spectrum, where L ceases to be Fredholm of index 0, would use the Evans function
and the Gap Lemma, see e.g., [3, 12]. Our approach is in some sense more direct but less
geometric.

The paper is organized as follows. We prove the existence of a smooth family of spikes and
derive a hyperbolicity condition in Section 2. Section 3 formulates a spectral instability result
and shows how this implies our main result. We then characterize parameter values for which
the essential spectrum is stable in Section 4. The core of our argument is contained in Section
5, where we construct homotopies and trace the point spectrum. We conclude with a few more
explicit examples, Section 6, and a brief discussion, Section 7.

Notations: We collect some notation that we will use throughout this paper. For an operator
T on a Hilbert space X we use T ∗, dom(T ), kerT , imT , σ(T ), ρ(T ) and T|Y to denote the
adjoint, domain, kernel, range, spectrum, resolvent set and the restriction of T on a subspace
Y of X. If g : R2 → R is a smooth function, e.g., a, b, f or one of its partial derivatives, we
denote by g∗ := g(u∗, v∗) and g∞ := g(u∞, v∞).

Acknowledgement. The authors gratefully acknowledges support by the National Science
Foundation under grant NSF-DMS-0806614.

2 Families of spikes

In this section, we show that the assumption on existence of an exponentially localized spike
actually implies the existence of a family of spikes. We therefore consider the steady-state
equation {

[a(u, v)ux + b(u, v)vx]x = 0
vxx + f(u, v) = 0.

(2.1)

First note that the spike is a bounded solution, so that we may without loss of generality assume
that the function b(u, v) is bounded, possibly modifying b for large values of u and v. In the
sequel, we therefore always assume that b is bounded.

Next, notice that the convergence of u∗ and v∗ for x → ±∞ implies that u∗x and v∗x converge
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to zero. To see this, note that the second equation in (2.1) implies that v∗xx is bounded, which
together with Taylor’s formula implies that v∗x converges to zero. Next, we integrate the first
equation in (2.1) and find a(u, v)ux + b(u, v)vx = m for some m ∈ R. Since u∗, v∗, v∗x converge
as x→ ±∞, we conclude that ux converges and the limit must vanish since u∗ is bounded. As
a consequence, we find that a spike necessarily satisfies the ODE (1.4),

du
dv

= − b(u, v)
a(u, v)

, u(v0) = u0.

Since b is bounded and a bounded away from zero, this ODE possesses a global, smooth solution
taking initial conditions u0 at v = v0 to the solution at v,

u(v) = Φ(v, v0;u0), Φ(v0, v0;u0) = u0. (2.2)

For our particular spike (u∗, v∗), we can normalize at infinity, which gives

u∗ = Φ(v∗, v∞;u∞) =: ϕ0(v∗).

We may now substitute the relation ϕ0 between u and v into the second-order equation for v,
which gives the second-order differential equation for v∗,

vxx +H(v) = 0, H(v) := f(ϕ0(v), v). (2.3)

Note that from this ODE alone we can conclude that the spike is an even function, u∗(x) =
u∗(−x), v∗(x) = v∗(−x), after possibly shifting in x.

Exponential convergence of v∗(x) for x → ±∞ implies that H ′(v∞) < 0. We refer to this
condition, implied by exponential convergence of the spike, later on as

ODE-Hyperbolicity:

H ′(v∞) = f∞v −
b∞

a∞
f∞u < 0. (2.4)

The next lemma guarantees the existence of a smooth family of spikes.

Lemma 2.1. Under the assumptions of Theorem 1.1, there is ε > 0 and a family of spikes
(u∗(·, µ), v∗(·, µ)) for µ ∈ (−ε, ε), such that

(i) the asymptotic values (u∞(µ), v∞(µ)) are smooth functions and 0 6= ∂µ(u∞(µ), v∞(µ));
moreover, if f∞v 6= 0 then ∂µu

∞(0) 6= 0;

(ii) the spikes (u∗(·, µ)−u∞(µ), v∗(·, µ)− v∞(µ)) are given as smooth maps from (−ε, ε) into
H2

even(R,R2); moreover, (u∗(·, 0), v∗(·, 0)) = (u∗(·), v∗(·)).

Proof. Since (u∗, v∗) is a spike in (1.1) we have v∗xx+f(u∗, v∗) = 0, which implies f(u∞, v∞) =
0. We first construct the family (u∞(µ), v∞(µ)) and in a second step construct spikes which
actually asymptote to these values. From ODE-Hyperbolicity, (2.4), it follows that f∞u 6= 0 or
f∞v 6= 0. We may therefore solve f(u, v) = 0 locally near u∞, v∞ and denote the solution by
(u∞(µ), v∞(µ)), µ ∈ (−ε, ε), and we may assume that

∂µ(u∞(0), v∞(0)) = (−f∞v , f∞u ). (2.5)
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We next define
Φµ : R→ R, Φµ(v) = Φ(v, v∞(µ);u∞(µ))

and
H̃ : R× (−ε, ε)→ R, H̃(v, µ) = f(Φµ(v), v).

With these definitions, clearly H̃(v∞(µ), µ) = 0, and spikes are solutions to

vxx + H̃(v, µ) = 0, (2.6)

with u = Φµ(v). Again, by ODE-Hyperbolicity (2.4), H̃v(v∞, 0) = H ′(v∞) < 0. In particular,
v∞(µ) is the locally unique equilibrium to (2.6), and v∞ is hyperbolic.

From here, one can obtain a smooth family of spikes using simple phase plane analysis for
(2.6). Here, we give a short argument using the Implicit Function Theorem. We view (2.6) as
an equation for w = v − v∞(µ), which gives a nonlinear operator equation

G(w, µ) = wxx + H̃(w(·) + v∞(µ), µ) = 0, (2.7)

where the nonlinearity vanishes at the origin so that G : H2
even(R) × (−ε, ε) → L2

even(R) is a
smooth map. Using the definition of H and the fact that (u∗, v∗) is a spike in (1.1), one readily
verifies G(v∗ − v∞, 0) = v∗xx +H(v∗) = 0. The linearization of G in this solution is

G =
(
Gw(v∗ − v∞, 0)

)
w = wxx + H̃v(v∗(·), 0)w.

Next, we will show that Gw(v∗−v∞) is invertible. We may consider G naturally as an operator
from H2(R) into L2(R). Since v∗(x)→ v∞ for |x| → ∞, the operator G is a relatively compact
perturbation of G∞ = ∂2

x +H ′(v∞). By ODE-Hyperbolicity (2.4), we have H ′(v∞) < 0 so that
G∞ is invertible and G is Fredholm with index 0. Note that v∗x belongs to the kernel and is odd.
By ODE-uniqueness (up to scalar multiples) of bounded solutions at x = +∞, the kernel is at
most one-dimensional, and therefore G is invertible on H2

even(R). Using the Implicit Function
Theorem, we therefore find a local smooth solution w(·, µ) ∈ H2

even(R). One readily concludes
that w(x;µ)→ 0 for x→∞, which gives the asymptotics of the spike solution v = w + v∞ as
claimed.

3 Linear and nonlinear instability

In this section, we make precise the basic ingredient to our instability result, which is a linear
instability result. Consider therefore the formal linearization of (1.1) along the spike (u∗, v∗)

d
dt

(
u

v

)
= L

(
u

v

)
, (3.1)

where

L =

[
∂x(a∗∂x + a∗uu

∗
x + b∗uv

∗
x) ∂x(b∗∂x + a∗vu

∗
x + b∗vv

∗
x)

f∗u ∂2
x + f∗v

]
. (3.2)
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We recall that here ” ∗ ” next to any of the the functions a, b, f and their partial derivatives
represents the composition of the respective function with the spike (u∗, v∗).

We can view the differential expression L as a densely defined, closed operator on BUC(R,C2)
with domain BUC2(R,C2), the functions with two bounded, uniformly continuous derivatives.
In this case it actually is the linearization of the evolution to (1.1) at the equilibrium (u∗, v∗).

It will however be convenient to also consider L as an operator on L2(R,C2) with domain
H2(R,C2), and on certain weighted L2-spaces. Since L is a lower-order perturbation of a
diffusion operator, it generates an analytic semigroup with maximal regularity properties as
described in [15], say.

Proposition 3.1. Under the assumptions of Theorem 1.1, the semigroup generated by L is
unstable on BUC(R,C2). More precisely, the spectral radius of the semigroup in BUC(R,C2)
is larger than one,

r(eLt) > 1.

We will prove Proposition 3.1 in the next sections. Let us now briefly explain how Proposition
3.1 implies Theorem 1.1. We use a result of Henry [6, Thm 5.1.5], which states that an
equilibrium to a discrete-time dynamical system in a Banach space is unstable if the spectral
radius of the time-one map is larger than one. Well-posedness of the evolution equation [15]
implies that the derivative of the time-one map at the equilibrium is given by eL, which by
Proposition 3.1 possesses a spectral radius larger than one. This proves Theorem 1.1.

4 Essential spectrum

In this section, we show that the essential spectrum of the linearization is unstable if the
asymptotic equilibrium is unstable, fv(u∞, v∞) > 0. We also characterize the essential spectrum
when fv(u∞, v∞) < 0.

We define the limiting operator L∞ through

L∞ =

[
a∞∂2

x b∞∂2
x

f∞u ∂2
x + f∞v

]
. (4.1)

Again, L∞ can be considered on various function spaces, or merely as a differential expression,
slightly abusing notation.

For a given choice of function space, we say λ is in the essential spectrum σess(L) if L−λ is not
Fredholm index zero. We refer to the complement of the essential spectrum in the spectrum as
the point spectrum σpoint(L) .

Proposition 4.1. The essential spectra of the operators L and L∞ coincide, and are equal for
the choices of function space X = L2(R,C2) and X = BUC(R,C2). Moreover, point spectrum
of L and multiplicities are independent of the choice of function space, X = L2(R,C2) and
X = BUC(R,C2).
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Proof. Arguments similar to the ones given in [6, §5, Appendix] show that essential spectra
are independent of the function spaces considered here. Also, eigenfunctions and generalized
eigenfunctions to eigenvalues in the point spectrum decay exponentially at ±∞, so that point
spectrum and multiplicities are independent of the function space. We need to show that
essential spectra of L and L∞ coincide. We therefore first notice that

L̃∞ =

[
a∗∂2

x b∗∂2
x

f∞u ∂2
x + f∞v

]
,

is a compact perturbation of L, so that essential spectra of L̃∞ and L coincide. In order to see
that the x-dependence in the highest-order derivatives does not alter the essential spectrum,
we factor the eigenvalue problem as follows. Define

D∞ =

[
a∞ b∞

0 1

]
, D(x) =

[
a∗(x) b∗(x)

0 1

]
, N∞ =

[
0 0
f∞u f∞v

]
.

We can then factor the eigenvalue operator

L̃∞ − λ = D(x)D−1
∞
(
D∞∂

2
x +D∞D(x)−1(N∞ − λ)

)
.

Since D(x) is invertible, Fredholm properties of L̃∞ − λ and D∞∂
2
x + D∞D(x)−1(N∞ − λ)

coincide. The latter is readily seen to be a compact perturbation of L∞ − λ, which shows that
essential spectra of L∞ and L coincide.

Now, the essential spectrum of the operator L can be computed readily via Fourier transform
on L2(R,C2):

Lemma 4.2. The essential spectrum of L is given by

σess(L) =
{
λ±(ξ) : ξ ∈ R

}
, where λ±(ξ) =

tr(ξ)±
√

tr(ξ)2 − 4det(ξ)
2

,

with
tr(ξ) = −(a∞ + 1)ξ2 + f∞v , det(ξ) = a∞ξ4 + (f∞u b

∞ − f∞v a∞)ξ2.

Proof. Taking Fourier transform, we see that L∞ is similar to the operator of multiplication
by the matrix-valued function defined by L̂∞(ξ) = −D∞ξ2 +N∞, proving the lemma.

Remark 4.3. The lemma has some immediate consequences on stability of the essential spec-
trum.

(i) Note that 0 ∈ σess(L) since det(0) = 0.

(ii) From ODE-Hyperbolicity (2.4), we conclude that det (ξ) ≥ 0. Therefore, sup Re σess(L) ≤
0 if and only if tr(ξ) ≤ 0 for all ξ, which amounts to f∞v ≤ 0.

Lemma 4.4. Under the assumptions of Theorem 1.1, we have that tr(0) = f∞v 6= 0.
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(i) The essential spectral radius of eL is larger than 1 if f∞v > 0.

(ii) The essential spectral radius of eL is 1 if f∞v < 0. In fact, the semigroup generated by
L∞ on L2(R,C2) is bounded in this case.

Proof. For spectral considerations, it is enough to consider L∞ on L2(R,C2) by Proposition
4.1. Lemma 4.2 and the spectral mapping for analytic semigroups then readily implies the
statements on spectral radii. Boundedness of the semigroup in L2(R,C2) readily follows from
the representation of the semigroup in Fourier space.

Remark 4.5. When f∞v = 0, we have a Jordan block at ξ = 0 in Fourier space, so that
spatially homogeneous profiles grow linearly in time under the linear evolution. This shows
linear instability in BUC(R,C2), and, using the Fourier multiplication representation, also in
L2(R,R2), in the marginal case f∞v = 0. Note that this linear instability need not imply
nonlinear instability, as the example ut = 0, vt = u − v3 readily confirms. Figure 1 shows
spectra when det(ξ) ≥ 0, for f∞v < 0 and f∞v > 0.

Figure 1: Schematic plots of the graphs of λ± in a neighborhood of ξ = 0 are shown when
(a) f∞v < 0 and (b) f∞v > 0.

5 Tracing the point spectrum

In the previous section, we concluded that there is essential spectrum with positive real part
whenever f∞v > 0. In order to prove Proposition 4.1, it therefore is sufficient (and necessary)
to show that there exists an eigenvalue in the point spectrum with positive real part whenever
f∞v < 0, which will be the main result in this section.

The proof proceeds in several steps. We first construct a homotopy to a lower-triangular
system, Section 5.1. During the homotopy, we control the existence of the nonlinear spike, and
the structure of essential spectra. The next steps are to calculate the point spectrum at the
end of the homotopy, Section 5.2, spectral properties at λ = 0, Section 5.3 – 5.4, asymptotics
of eigenfunctions at λ ∼ 0, Section 5.5, and finally calculate eigenvalues for λ ∼ 0, Section 5.6.
We conclude with the proof of Proposition 4.1 in Section 5.7.
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5.1 Homotopy

Our main goal in this subsection is to construct a homotopy to a ”simpler” system, for which
we can easily compute the point spectrum, without modifying the structure of the spikes and
without changing the stability of σess(L) . We introduce the homotopy parameter τ ∈ [0, 1]
and consider the system{

ut = [aτ (u, v)ux + bτ (u, v)vx]x
vt = vxx + f̃(u, v, τ),

t ≥ 0, x ∈ R. (5.1)

The functions aτ , bτ : R2 → R and f̃ : R2 × [0, 1]→ R are defined by

aτ (u, v) = (1− τ)a(u, v) + τ, bτ (u, v) = (1− τ)b(u, v),

f̃(u, v, τ) = f(u, v)− f(ϕτ (v), v) + f(ϕ0(v), v),

where ϕτ is the solution of the Cauchy problem

du

dv
= − bτ (u, v)

aτ (u, v)
, u(v∞) = u∞. (5.2)

Remark 5.1. We collect a few properties of this particular homotopy.

(i) The homotopy originates at our equation (1.1), f̃(u, v, 0) = f(u, v);

(ii) If we define u∗τ := ϕτ (v∗) and v∗τ := v∗ then (u∗τ , v
∗
τ ) is a spike for (5.1);

(iii) The background states for the system (5.1), limx→±∞ u
∗
τ (x) = u∞ and limx→±∞ v

∗
τ (x) =

v∞, do not depend on τ .

The linearization of (5.1) along the spike (u∗τ , v
∗
τ ) on X × X, where X is a function space, is

given by
d
dt

(
u

v

)
= Lτ

(
u

v

)
, (5.3)

where Lτ is defined by replacing a, b and f in the definition (3.2) of L by aτ , bτ and f̃(·, ·, τ),
respectively.

Lemma 5.2. If f∞v < 0 the essential spectrum of Lτ is stable.

Proof. From Lemma 4.4 it follows that it suffices to show that f̃∞v < 0. We calculate

f̃v(u, v, τ) = fv(u, v)− fu(ϕτ (v), v)ϕ′τ (v)− fv(ϕτ (v), v)

+ fu(ϕ0(v), v)ϕ′0(v) + fv(ϕ0(v), v).

Using Remark 5.1(iii), we obtain

f̃∞v = f∞v + f∞u

( b∞τ
a∞τ
− b∞

a∞

)
= f∞v −

b∞

a∞
f∞u

τ

τ + (1− τ)a∞
:= p(τ).

Since p is a monotone function on [0, 1] and p(0) = f∞v < 0 and p(1) = f∞v − b∞

a∞ f
∞
u < 0, by

ODE-Hyperbolicity, (2.4), we conclude that f̃∞v < 0, proving the lemma.
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5.2 Instability at τ = 1

At the end of the homotopy, the system possesses a lower triangular structure and we can
readily infer instability.

Lemma 5.3. If f∞v < 0, then the spikes in the system (5.1) with τ = 1 are unstable. Moreover,
L1 has precisely one positive eigenvalue.

Proof. We note that if τ = 1 the operator L1 has lower triangular block structure

L1 =

[
∂2
x 0
∗ K

]
,

where K = ∂2
x + H ′1(v∗) and H1(v) = f̃(ϕ1(v), v, 1). Therefore, the spectrum of L1 is the

union of the spectra of ∂2
x and K. We now proceed as in the proof of Lemma 2.1. Since K is

Sturm-Liouville, its first eigenfunction is positive. Since v∗x belongs to the kernel of K and has
precisely one sign change, we infer that K, and hence L, has precisely one unstable eigenvalue.

The remainder of the proof aims at conserving this unstable real eigenvalue. We will therefore
study in detail properties of the operators Lτ − λ at and near λ = 0 in order to prevent the
unstable eigenvalue from crossing the origin. In the sequel, when we study the operator Lτ ,
we simply write L for ease of notation, since operators do not change qualitatively during the
homotopy.

5.3 The kernel of L

From our assumptions on a, b, f , one can see that the kernel of L (and of Lτ for all τ) consists of
smooth functions for all functions spaces in consideration here. In fact, functions in the kernel
solve the system of ODEs

a∗ux + (a∗uu
∗
x + b∗uv

∗
x)u+ b∗vx + (a∗vu

∗
x + b∗vv

∗
x)v = 0; (5.4)

vxx + f∗uu+ f∗v v = 0. (5.5)

If we require boundedness of u and v, we can solve the first equation (5.4) explicitly.

Lemma 5.4. If u, v ∈ BUC(R) satisfy equation (5.4) then u = α(∂µu∗|µ=0 + b∗

a∗∂µv
∗
|µ=0)− b∗

a∗ v,
for some constant α ∈ C. Here, (u∗(·, µ), v∗(·, µ)) refers to the family of spikes as constructed
in Lemma 2.1.

Proof. One readily verifies that for any fixed v, a solution to equation (5.4) is given by
u = − b∗

a∗ v. Of course, this relation can also be obtained by linearizing the nonlinear flow
solution (2.2) of (1.4) with respect to v.

Since (5.4) can be considered as an inhomogeneous linear equation

a∗ux + (a∗uu
∗
x + b∗uv

∗
x)u = −(b∗vx + a∗vu

∗
xv + b∗vv

∗
xv),
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the general solution of (5.4) has the form

u = αz − b∗

a∗
v,

for some constant α ∈ C, where z is a solution of the equation

a∗zx + (a∗uu
∗
x + b∗uv

∗
x)z = 0.

Using the fact that (u∗(·, µ), v∗(·, µ)) is a family of spikes we obtain that

a(u∗(x, µ), v∗(x, µ))u∗x(x, µ) + b(u∗(x, µ), v∗(x, µ))v∗x(x, µ) = 0.

Differentiating this equation with respect to µ and then setting µ = 0, we find the general
solution z = ∂µu

∗
|µ=0 + b∗

a∗∂µv
∗
|µ=0, which proves the lemma.

Lemma 5.5. A pair (u, v) belongs to the kernel of L in BUC(R,C2) if and only if for some
α, β ∈ C,

u = α∂µu
∗
|µ=0 + βu∗x v = α∂µv

∗
|µ=0 + βv∗x. (5.6)

Proof. From Lemma 5.4 we know that u = α(∂µu∗|µ=0 + b∗

a∗∂µv
∗
|µ=0)− b∗

a∗ v, for some constant
α ∈ C. Substituting this expression into equation (5.5) we obtain that a function v from the
kernel of L in BUC satisfies the following equation

vxx + (f∗v − f∗u
b∗

a∗
)v = −α(f∗u∂µu

∗
|µ=0 +

b∗

a∗
∂µv

∗
|µ=0). (5.7)

Once again using the fact that (u∗(·, µ), v∗(·, µ)) is a family of spikes, that v∗(·, µ) satisfies the
equation

v∗xx(x, µ) + f(u∗(x, µ), v∗(x, µ)) = 0.

Differentiating with respect to µ in this equation and setting µ = 0, we infer that α∂µv∗|µ=0 is
a particular solution of equation (5.7). Hence, the general solution of equation (5.7) is of the
form v = α∂µv

∗
|µ=0 + ṽ, where ṽ is a solution of the equation

ṽxx + (f∗v − f∗u
b∗

a∗
)ṽ = 0. (5.8)

Since equation (5.8) is the variational equation of vxx + H(v) = 0, with H(v) = f(ϕ0(v), v),
defined in (2.3), we infer that ṽ = βv∗x for some constant β ∈ C.

Corollary 5.6. We have that

(i) kerL = Span {(∂µu∗|µ=0, ∂µv
∗
|µ=0)T}, in BUCeven;

(ii) kerL = Span {(u∗x, v∗x)T}, in BUCodd.

That is, the kernel is one-dimensional in spaces of even and odd functions. Moreover, the kernel
in BUCeven is spanned by a function which converges to ∂µ(u∞(0), v∞(0))T. By Lemma 2.1,
this limit does not vanish under the assumptions of Theorem 1.1.
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5.4 The Fredholm properties of L on weighted spaces

In this section we prove that L (and Lτ ) is Fredholm on exponentially weighted spaces. There-
fore, define the space L2

η(R,C2) via the weighted L2-norm

‖u‖2η =
∫

R
|u(x)eη|x||2dx,

for η ∈ R, and its even and odd subspaces L2
η,even(R,C2) and L2

η,odd(R,C2). More generally, we
can define the weighted L2-spaces L2(R,C2, ωdx) with weight function ω(x) and norm

‖u‖2ω =
∫

R
|u(x)|2ω(x)dx.

The following lemma shows that L is Fredholm on L2
η(R,C2), η > 0 small.

Lemma 5.7. There exists η∗ > 0 such that for all η ∈ (0, η∗), L is Fredholm on L2
η(R,C2) with

index ind(L) = −2.

Proof. The strategy of the proof is as follows. We first show that L on the weighted space
is conjugate to an operator on L2 without weights. We then rewrite this operator as a first-
order differential operator on L2(R,C4). The Fredholm index of this first-order operator can
be computed from Morse indices of its limiting matrices, using a result of Palmer [16, 17].

We start by introducing a smoothed weight function ψ ∈ C∞(R), which satisfies ψ(x) =
e−η|x| for all x ∈ R with |x| ≥ 1 and inf |x|≤1 ψ(x) > 0. We then find that L2

η(R,C2) =
L2(R,C2, [ψ(x)]−2dx) with equivalent norms ‖ · ‖L2

η
and ‖ · ‖L2

ψ−2
.

Next, define the isomorphism Uψ : L2(R,C2) → L2
η(R,C) by Uψw = ψw. One readily verifies

that Uψ is a bounded, invertible operator with bounded inverse. In consequence, the operator
L is Fredholm on L2

η(R,C2) if and only if Lψ = U−1
ψ LUψ is Fredholm on L2(R,C2) and their

indices coincide.

Now, recall that we can write L = D(x)∂2
x+M(x)∂x+N(x), where the matrix-valued functions

D, M and N are continuous, D(x) is invertible for all x ∈ R and D(x)→ D∞, M(x)→ 0 and
N(x)→ N∞, for |x| → ∞. Here,

D∞ =

[
a∞ b∞

0 1

]
and N∞ =

[
0 0
f∞u f∞v

]
.

It follows that

Lψ = D(x)
(
∂x +

ψ′(x)
ψ(x)

)2
+M(x)

(
∂x +

ψ′(x)
ψ(x)

)
+N(x).

Next, we define the matrix-valued functions A,Aψ : R→ C4×4 by

A(x) =

[
02 I2

−D(x)−1N(x) −D(x)−1M(x)

]

Aψ(x) =

[
02 I2

−D(x)−1N(x)− ψ′(x)
ψ(x) D(x)−1M(x)− ψ′′(x)

ψ(x) −D(x)−1M(x) + 2ψ
′(x)
ψ(x)

]
,
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where 02 =

[
0 0
0 0

]
and I2 =

[
1 0
0 1

]
. From [19, Thm. A1] it follows that Lψ is Fredholm on

L2(R,C2) if and only if Tψ = ∂x − Aψ(x) is Fredholm on L2(R,C4) and their indices coincide.
Let Jψ : R→ C4×4 be the matrix-valued function defined by

Jψ(x) =

[
I2

(
1− ψ′(x)

ψ(x)

)
I2

02 I2

]
.

Since Jψ is continuous on R and detJψ(x) = 1 for all x ∈ R, the operator of multiplication by
Jψ is bounded, invertible with bounded inverse on L2(R,C4). Using this transformation, one
can see that Tψ is conjugate to T̃ψ = ∂x + ψ′(x)

ψ(x) I4 − A(x). Hence, L is Fredholm on L2
η(R,C2)

if and only if T̃ψ is Fredholm on L2(R,C4).

We now investigate the limiting behavior of the coefficients of T̃ψ. First note that

A(x) −−−−→
|x|→∞

A∞, where A∞ =

[
02 I2

−D−1
∞ N∞ 02

]
.

Palmer’s classical result ([16, 17]) states that the operator T̃ψ is Fredholm if and only if A±,η :=
limx→±∞ (A(x)− ψ′(x)

ψ(x) I4) are hyperbolic, and its Fredholm index is given by the difference of
the Morse indices,

ind(T̃ψ) = i(A−,η)− i(A+η).

In our case, the eigenvalues of A∞ are ±
√

b∞

a∞ f
∞
u − f∞v with multiplicity 1 and 0 with multiplic-

ity 2. Since limx→±∞
ψ′(x)
ψ(x) = ∓η we obtain that A±,η = A∞±ηI4. Taking η∗ = 1

2

√
b∞

a∞ f
∞
u − f∞v

we have that A±,η are hyperbolic, and the dimension of the unstable subspaces are the Morse
indices i(A−,η) = 1 and i(A+η) = 3. This shows that T̃ψ is Fredholm with index ind(T̃ψ) = −2,
and proves the lemma.

Lemma 5.8. For all η ∈ (0, η∗) the operator L is Fredholm with index −1 on L2
η,even/odd(R,C2).

Proof. Define the operators Le/o as the restriction of L on H2
η,even/odd(R,C2). Since L leaves

invariant the space of even or odd functions, we have

ind(Le) + ind(Lo) = ind(L) = −2. (5.9)

Next, we denote by

Zη,odd = {z ∈ H2
η,odd(R,C2) : z′(0) = 0} and LZ = L|Zη,odd

.

One readily verifies that Zη,odd is a closed subspace and codim(Zη,odd) = 2. Thus, ind(LZ) =
ind(Lo)− 2. Define the operators P : L2

η,odd(R,C2)→ L2
η,even(R,C2) by (Pw)(x) = w(|x|) and

PZ : Zη,odd → H2
η,even(R,C2) by (PZz)(x) = z(|x|). We note that P is bounded, invertible,

with bounded inverse and

kerPZ = {0} and imPZ = {w ∈ H2
η,even(R,C2) : w(0) = 0}
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Thus, P and PZ are Fredholm and ind(P) = 0 and ind(PZ) = −2. Using the fact that the
matrix-valued functions D(·) and N(·) are even and M(·) is odd, we infer LePZ = PLZ . It
follows that

ind(Lo) = ind(LZ) + 2 = ind(PLZ) + 2 = ind(LePZ) + 2

= ind(Le) + ind(PZ) + 2 = ind(Le).

Using (5.9), the lemma follows shortly.

We next briefly consider the adjoint L∗ of L. We compute the adjoint with respect to the
non-weighted L2-scalar product, so that L∗ is a closed operator on L2

−η(R,C2), given through

L∗ =

[
(a∗∂x − a∗uu∗x − b∗uv∗x)∂x f∗u
(b∗∂x − a∗vu∗x − b∗vv∗x)∂x ∂2

x + f∗v

]
. (5.10)

Lemma 5.9. For all η ∈ (0, η∗), kerL∗ in L2
−η,even(R,C2) is spanned by (1, 0)T.

Proof. From Corollary 5.6, the kernel of L in BUCeven is one-dimensional, and limits of
nontrivial functions in the kernel at x = ±∞ do not vanish. Therefore, the kernel of L in
L2
η,even(R,C2) is trivial. Since ind(L) = −1 in L2

η,even(R,C2) we infer from standard Fredholm
theory that ind(L∗) = 1. Also, the cokernel of L∗ is trivial since the kernel of L is trivial. As
a consequence, dim kerL∗ = 1 in L2

−η,even(R,C). The explicit expression (5.10) clearly admits
the trivial kernel (1, 0)T, which concludes the proof of the lemma.

5.5 Asymptotics of eigenfunctions

Next, we consider the eigenvalue problem associated with the operator L∞,{
a∞uxx + b∞vxx = λu

vxx + f∞u u+ f∞v v = λv.
(5.11)

We will see in the next section that exponential decay behavior of solutions to (5.11) correctly
predicts exponential decay behavior of possible eigenfunctions of L. In the sequel, we determine
those asymptotic decay rates for (5.11). We therefore define the linear dispersion relation

Λ(λ, ν) =

[
a∞ν2 − λ b∞ν2

f∞u ν2 + f∞v − λ

]
and d(λ, ν) = det Λ(λ, ν).

Lemma 5.10. The solutions to (5.11) for λ in a complex neighborhood of the origin can be
characterized as follows.

(i) In case Re λ > 0, there are two roots of the equation d(λ, ν) = 0 with Re νj > 0, j = 1, 2.
The solutions bounded at ±∞, respectively, are of the form

(u(x), v(x))T = C1e
∓ν1x + C2e

∓ν2x.

Here, Cj, j = 1, 2 are vectors in the kernel of Λ(λ, ν) and νj, j = 1, 2 are the roots of the
equation d(λ, ν) = 0 with Re νj > 0, j = 1, 2.
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(ii) Setting λ = γ2, the νj, j = 1, 2, can be considered as analytic functions of γ with expansion

ν1(γ) =

√
f∞v

a∞f∞v − b∞f∞u
γ +O(γ2) ν2(γ) =

√
−H ′(v∞) +O(γ2),

where H was defined in (2.3), and H ′ < 0 is guaranteed by (2.4). Moreover, the constant
C1 can be chosen as an analytic function C1 = α(γ) with expansion

α(γ) = (−f∞v , f∞u )T + O(γ)

such that the function defined by α(γ)e±ν1(γ)x satisfies (5.11).

Proof. Solutions are clearly given by linear combinations of exponentials, and possibly
algebraic factors, in case of double roots. Note that ν = ik ∈ iR does not solve d(λ, ν) = 0
for Reλ > 0, since otherwise the essential spectrum would be unstable. Moreover, reflection
symmetry, ν 7→ −ν, or the fact that Λ depends on ν2, only, shows that expansions at ±∞ are
equivalent as stated. We will next compute the expansions for ν in terms of γ =

√
λ, which

will also show that the roots νj are distinct and hence show that solutions are actually linear
combinations of exponentials, only.

The equation d(0, ν) = 0 has 0 as a double root and ±
√
−H ′(v∞) as simple roots. Expanding

the simple roots in γ2 readily gives the expansions ν2. In order to derive an expansion for ν1,
we expand d(γ2, ν) in γ2, to arrive at the analytic equation

ν2(a∞f∞v − b∞f∞u ) = f∞v γ
2 +O(|γ4|+ |ν|4).

Newton’s polygon readily gives the two unique solution branches ±ν1(γ).

Next, we substitute ν1(γ) into the equation for eigenvectors near γ = 0. Substituting the ansatz
(−f∞v , f∞u )T +α2(γ), we find an equations for α2(γ) that we can easily solve to find the unique
(up to scalar multiples) analytic eigenvector α(γ).

5.6 The eigenvalue problem near 0 in L2
η,even(R,C2)

We are now ready to address the eigenvalue problem for the linearization L near λ = 0 using
Lyapunov-Schmidt reduction. The following proposition states that the eigenvalue problem can
be reduced to finding the roots of a single scalar function. Moreover, we are able to calculate
the expansion of this scalar function near λ = 0 in terms of the asymptotic states.

Proposition 5.11. Under the assumptions of Proposition 4.1, there exists δ > 0 and an
analytic function E : D(0, δ)→ C, such that for any γ > 0,

γ2 ∈ σpoint(L) if and only if E(γ) = 0. (5.12)

Moreover, we have the expansion

E(γ) = −2
√
f∞v (a∞f∞v − b∞f∞u )γ +O(γ2), (5.13)

and E′(0) 6= 0.

Proof. The proof is broken up into six steps.
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Step 1: The ansatz. We are interested in solutions to(
L − γ2

)(u
v

)
= 0, (5.14)

for γ ∼ 0. We use the ansatz

(u, v)T = w + βα(γ)
(
χ+e

−ν1(γ)· + χ−e
ν1(γ)·

)
, (5.15)

where w ∈ L2
η,even(R,C2), β ∈ C, α(·) and ν1(·) are defined in Lemma 5.10. Here χ+(x) =

1−ρ(x)
2 , where ρ ∈ C∞(R) is a smooth even function satisfying ρ(x) = −1 for all x ≤ −1,

ρ(x) = 1 for all x ≥ 1 and χ−(x) = 1 − χ+(x). Clearly, a function (u, v)T of the form (5.15)
that solves the eigenvalue equation (5.14) for γ > 0 belongs to the kernel of L. We will see in
Step 6 that any eigenfunction is actually of the form (5.15).

Summarizing, the ansatz allows us to consider the eigenvalue problem in the smaller space
L2
η,even(R,C2), only, instead of L2

even(R,C2), at the expense of adding a free parameter β.

At γ = λ = 0, there is a unique solution (up to scalar multiples) of the form (5.15), which solves
(5.14), which is the kernel spanned by the tangent to the family of spikes, ∂µ(u∗(·, µ), v∗(·, µ))T

at µ = 0. Indeed, all solutions of the form (5.15) at γ = 0 are bounded, and, by Corollary
5.6, the kernel on spaces of bounded functions is one-dimensional and spanned by this tangent
vector to the family of spikes. Since spikes are exponentially localized, we find that

w0 :=(∂µu∗|µ=0 − ∂µu
∞(0), ∂µv∗|µ=0 − ∂µv

∞(0))T

=(∂µu∗|µ=0, ∂µv
∗
|µ=0)T − α(0) ∈ L2

η(R,C2), (5.16)

where α(γ) was defined in Lemma 5.10.

Step 2: Setup of the bifurcation problem. We choose η > 0 small enough, but fixed, so
that L is Fredholm on L2

η,even(R,C2) by Lemma 5.8. Using Lemma 5.9, we have that kerL∗ =
Span{(1, 0)T} on L2

−η,even(R,C2), where again L∗ refers to the L2 adjoint. In particular,

imL =
{

(u, v)T ∈ L2
η,even(R,C2) :

∫
R
u(x)dx = 0

}
.

It follows that equation (5.14) with ansatz (5.15) is equivalent to the following system,{
F (w, β, γ) = 0〈(
L − γ2

)(
w + βα(γ)h(γ)

)
, (1, 0)T

〉
L2

= 0.
(5.17)

Here,
h(γ) = χ+e

−ν1(γ)· + χ−e
ν1(γ)·, (5.18)

the function F : H2
η,even(R,C2)× C2 → imL is defined by

F (w, β, γ) = P0

(
L − γ2

)(
w + βα(γ)h(γ)

)
and P0 is the orthogonal projection in L2

η,even(R,C2) onto imL. Summarizing, we view (5.17)
as an equation F(w, β, γ) = 0 for the variables (w, β, γ) ∈ H2

η,even(R,C2) × C2, with values
F ∈ imL × C.
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Step 3: Analyticity of F . We first show that the map F0 : γ →
(
L − γ2

)
(α(γ)h(γ)) ∈

L2
η(R,C2) is analytic in B(0, δ) ⊂ C for some δ > 0. Let ψ ∈ C∞(R) be a smooth, even function

satisfying ψ(x) = 1 for all x ∈ [−1, 1] and ψ(x) = 0 for all x ∈ R with |x| ≥ 2. We claim that(
L∞ − γ2

)
(α(γ)h(γ)) = χ[−1,1]

(
L∞ − γ2

)
(α(γ)ψh(γ)) , (5.19)

where χ[−1,1] is the characteristic function of the interval [−1, 1]. Since the function defined by
α(γ)e±ν1(γ)x satisfies (5.11) and ψ′(x) = ψ′′(x) = 0 for all x ∈ [−1, 1] we have(

L∞ − γ2
)

(α(γ)h(γ)) (x) = 0 for all x ∈ (−∞,−1] ∪ [1,∞). (5.20)

Also, since L∞ is a pointwise differential operator,

χ[−1,1]L∞(ψu) = χ[−1,1]L∞u for all u ∈ H2
loc(R,C2).

which together with (5.20) proves (5.19) and implies that(
L − γ2

)
(α(γ)h(γ)) = (L − L∞) (α(γ)h(γ)) + χ[−1,1]

(
L∞ − γ2

)
(α(γ)ψh(γ)) . (5.21)

Since L − L∞ is a second order differential operator whose matrix-valued coefficients decay
exponentially at ±∞, we have that L−L∞ is bounded from H2

−η,even(R,C2) to L2
η,even(R,C2).

Moreover, since ψ ∈ C∞(R) has compact support the operator of multiplication by ψ is bounded
from H2

−η,even(R) to H2
η,even(R). We will show below that h : B(0, δ) ⊂ C → H2

−η,even(R) is
analytic. Then, using that α is analytic, and using (5.21), we conclude that F0 is analytic.

We define h±(γ)(x) := e±ν1(γ)x so that we can express h(γ) and its first- and second-order
derivatives with respect to x as linear combinations of products of χ(k)

± , ν1(γ)j and h±(γ),
k, j = 0, 1, 2. To show analyticity of h(γ) ∈ H2

−η(R), it is therefore enough to show that
h± : B(0, δ) ⊂ C → L2

−η(R) are analytic. Since ν1 is analytic and ν1(0) = 0, we can choose
δ > 0 small enough so that

|(h±(γ))(x)| ≤ e(η/2)|x| for all x ∈ R, γ ∈ B(0, δ). (5.22)

This estimate implies that h±(γ) ∈ L2
−η(R) for all γ ∈ B(0, δ). It also implies, together with

Lebesgue’s Dominated Convergence Theorem, that h± is continuous. We next show that h±
is weekly analytic, that is, the function defined by hv±(γ) := 〈hv±(γ), v〉L2 is analytic for all
v ∈ L2

η(R). This then implies that h± is actually analytic. To show this last step, we integrate
hv± on the boundary of a rectangle R ⊂ B(0, δ) using Fubini’s Theorem. Since e±ν1(γ)x is
analytic in γ for all x ∈ R we have∮

∂R
hv±(γ)dγ =

∫
R

(∮
∂R

(
e±ν1(γ)x

)
dγ

)
v(x)dx = 0.

This concludes the proof of analyticity of F0. It also shows that the map F is well defined as a
map into L2

η(R,C2). Moreover, since F is bounded linear in w and β, and analytic in γ by the
above, we have analyticity of F as claimed.
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Step 4: Linearization and reduction. Equation (5.16) implies that F (w0, 1, 0) = 0. We
therefore have a trivial solution and can attempt to use the Implicit Function Theorem to find
solutions nearby. Note that the linearization of the first equation in (5.17) in w is

Fw(w0, 1, 0) = P0L.

Lemmas 5.8 and 5.9 imply that L is Fredholm of index -1 with trivial kernel, and P0 projects
onto its range, so that the linearization in w is boundedly invertible. Using the Implicit Function
Theorem, we may therefore solve locally, and find a unique smooth solution

w∗ : Bδ(1)×Bδ(0) ⊂ C2 → H2
η (R,C2), w∗(1, 0) = w0,

so that locally
F (w, β, γ) = 0⇐⇒ w = w∗(β, γ).

Here Bδ(z0) ⊂ C is the open ball in C, centered at z0 of radius δ. From this local uniqueness
we conclude that w∗(β, γ) = βw∗(1, γ) for all (β, γ) ∈ B(1, δ)×B(0, δ), so that we may restrict
to β = 1 in the sequel. By continuity of the solution, w∗(1, γ) + α(γ)h(γ) 6= 0 for small γ.

Substituting w∗ into the second equation of (5.17) completes the Lyapunov-Schmidt reduction
and gives us a bifurcation equation E(γ) = 0, where E : Bδ(0) ⊂ C→ C is defined as

E(γ) =
〈(
L − γ2

)(
w∗(1, γ) + α(γ)h(γ)

)
, (1, 0)T

〉
L2
. (5.23)

Since w∗ and the map F0 : γ →
(
L − γ2

)
(α(γ)h(γ)) are analytic functions we conclude that E

is analytic.

Summarizing, for γ > 0, γ2 belongs to the point spectrum of L if and only if the reduced
bifurcation problem E(γ) = 0 possesses a solution. This proves the first statement of the
proposition.

Step 5: Computing E′(0). Since w∗(1, γ) ∈ H2
η,even(R,C2), from (5.23) we note

E(γ) =
〈
L
(
α(γ)h(γ)

)
, (1, 0)T

〉
L2

+O(γ2).

Expanding (5.18) in γ and using the fact that χ+ + χ− = 1 we obtain(
h(γ)

)
(x) = 1− ν ′1(0)γx

(
χ+(x)− χ−(x)

)
+O(γ2)(

h(γ)
)′(x) = −ν ′1(0)γ

(
χ+(x)− χ−(x)

)
− ν ′1(0)γx

(
χ′+(x)− χ′−(x)

)
+O(γ2).

Let l1 = a∗uu
∗
x + b∗uv

∗
x, l2 = a∗vu

∗
x + b∗vv

∗
x and let k1(·, γ) be the first component of L

(
α(γ)h(γ)

)
.

We now compute k1(x, γ), expanding in γ. We first use the zeroth order expansion of α(γ)
from Lemma 5.10, and then the expansion of h obtained above, in the first row of L defined in
(3.2), to obtain

k1(x, γ) = ∂x

[
(f∞u b

∗(x)− f∞v a∗(x) +O(γ))
(
h(γ)

)′
(x)
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+ (f∞u l2(x)− f∞v l1(x) +O(γ))
(
h(γ)

)
(x)

]

= ∂x

[
(f∞v a

∗(x)− f∞u b∗(x))ν ′1(0)γ
(
χ+(x)− χ−(x)

)
+ Θ(x, γ) +O(γ2)

]
.

Here, Θ(x, γ) is a finite sum whose terms contain one of the functions l1(x), l2(x) and x
(
χ′+(x)−

χ′−(x)
)
. Therefore, we have Θ(x, γ) → 0 as |x| → ∞. Taking the scalar product with the

constant (1, 0)T gives the desired expansion for E,

E(γ) =
∫

R
k1(x, γ)dx = 2(a∞f∞v − b∞f∞u )ν ′1(0)γ +O(γ2).

Using the expansion for ν ′1(0) from Lemma 5.10, we immediately arrive at (5.13).

Step 6: Invertibility for E(γ) 6= 0. We conclude the proof by showing that eigenfunctions
are necessarily of the form described in the ansatz (5.15). Equivalently, we can show that L−λ
is invertible for Reλ > 0 whenever E(γ) 6= 0. We therefore need to solve

(
L − γ2

)(u
v

)
=

(
r1
r2

)
, (5.24)

for right-hand sides r1, r2 ∈ L2(R,C2). Note that L − γ2 is Fredholm of index 0 since γ2 is
not in the essential spectrum for Reλ > 0. It is therefore sufficient to solve this equation for
right-hand sides rj in a dense subset of L2(R,C2), which we chose to be L2

η(R,C2). We look for
solutions to this equation in the form of our ansatz (5.15), which for Reλ > 0 clearly provides
us with L2-functions. We end up with the equation{

F (w, β, γ) = P0(r1, r2)T〈(
L − γ2

)(
w + βα(γ)h(γ)

)
, (1, 0)T

〉
L2

=
〈

1, r1
〉
L2
.

(5.25)

This is a linear equation in w and β, and the joint linearization is Fredholm of index zero,
by Step 4. We can therefore conclude that we can solve this equation with bounded inverse
provided that there is no kernel, which amounts precisely to the condition E(γ) 6= 0. This
proves the proposition.

Remark 5.12. Proposition 5.11 is valid for all τ ∈ [0, 1], and the function E is smoothly de-
pending on τ . This can be readily seen from the smoothness of eigenfunctions and eigenvectors
of the asymptotic problem and smoothness of the reduction procedure.

5.7 Proof of Proposition 4.1

We are now ready to put together the ingredients for the proof of Proposition 4.1. Propo-
sition 5.11 implies that for any τ ∈ [0, 1], there exists δτ > 0 and an analytic function
Eτ : Bδτ (0) ⊂ C → C that detects the eigenvalues of Lτ according to (5.12). Since the
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derivative of Eτ does not vanish at the origin, Proposition 5.11, we conclude that δτ > 0 can
be chosen small enough so that Eτ (γ) 6= 0 for any γ ∈ Bδτ (0). Thus, Lτ has no eigenvalues in
(0, δτ ). By Remark 5.12, E is smooth in τ , which implies that we can find 0 < δ∗ < δτ for all
τ ∈ [0, 1]. In addition, equation (3.1) is well-posed for all τ , which implies sup Re σ(Lτ ) <∞.
Thus, the number of real unstable eigenvalues of L is finite,

N(τ) = #{λ(τ) ∈ σpoint(Lτ ) : λ(τ) > 0} <∞,

for all τ ∈ [0, 1]. We can therefore define a parity index as follows,

ip(τ) = (−1)N(τ). (5.26)

Since Lτ has no eigenvalues in (0, δ∗) or in (1/δ∗,∞), for δ∗ sufficiently small, eigenvalues can
leave the positive semi-axis only in pairs by becoming complex; see also Figure 2. Hence, the
parity index is constant during the homotopy. Finally, Lemma 5.3 shows that ip(1) = −1.
Therefore ip(0) = −1 and we can conclude that L has at least one positive eigenvalue. This
proves Proposition 4.1 and thereby concludes the proof of Theorem 1.1.

Point spectrum
Essential spectrum

Figure 2: A schematic plot of eigenvalue movement during the homotopy: eigenvalues can-
not cross the upper and right boundary of the rectangle (brown in color), so
ip(τ) ≡ −1 and the unstable dimension only changes through Hopf bifurcations.
Essential spectrum σess(Lτ ) is the located on the negative real axis (red in color
plot), point spectrum σpoint(Lτ ) are bullets in the unstable complex plane (blue
in color).

6 Examples

Examples of spikes in systems of the type (1.1) are plentiful. In soms cases spike solutions are
explicitly given. Consider for example the simplest prototype of a chemical conversion reaction
of the type (1.2) is {

pt = pxx − g(p, q),
qt = dqxx + g(p, q),

t ≥ 0, x ∈ R. (6.1)
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with g(p, q) = −p− q+ p2 and where d is small. Adding the two equation, one finds p+ dq = µ

is constant in x for equilibria, so that

pxx +
µ+ (d− 1)p

d
− p2 = 0.

This family possesses the explicit family of spike solutions

p∗(x) =
d− 1

2d
+ ζ(µ)

(
1− 3sech2

(
x

√
ζ(µ)

2

))
,

q∗(x) =
µ

d
− d− 1

2d2
− ζ(µ)

d

(
1− 3sech2

(
x

√
ζ(µ)

2

))
,

where

ζ(µ) =

√
(d− 1)2 + 4µd

2d
.

Note that ζ(·) is an analytic function in a neighborhood of 0. More realistic examples for
conversion reactions contain threshold kinetics

g(p, q) = δq(1− q)(q − α) + p or g(p, q) = δq(1− q)(q − α− p
α

) + κ,

where α is a threshold in the bistable q-kinetics. Again, one readily finds spikes after adding
both equations. In the first case, writing u = p+ dq and ϕ = q, one obtains a scaled version of
the phase-field model (1.3). Both models have also been successfully used to model precipitation
kinetics as observed in Liesegang patterns [4].

Phase-field models (1.3) contain the Cahn-Hilliard equation

ut = −∂xx(∂xxu+ u− u3), t ≥ 0, x ∈ R,

as a formal limit for infinite latent heat, l→∞. In fact, our arguments can be used to establish
instability of spikes for the Cahn-Hilliard equation using a homotopy through the phase-field
system. More precisely, consider the family of equations(

τ 0
1− τ τ

)(
ut
vt

)
=

(
∂2
x 1
0 ∂2

x

)(
u

v

)
+

(
u− u3

0

)
t ≥ 0, x ∈ R. (6.2)

For τ = 0, we find the Cahn-Hilliard equation, and for τ = 1, we find the Allen-Cahn equation
coupled with source term from a decoupled heat equation. For τ ∈ (0, 1), we have a scaled
version of the phase field system. Equilibria are clearly independent of τ and one finds families of
spikes. Since those are unstable at τ = 1 with precisely one unstable eigenvalue, one is tempted
to conclude instability for all values of τ . This can indeed be made rigorous by employing the
very same techniques used in the present paper. One checks that the essential spectrum of the
linearization at a spike remains in the closed left half plane Reλ ≤ 0 for all values of τ , provided
this is true at τ = 0. In fact, the essential spectrum is always stable, equal to (−∞, 0], for this
class of models provided a spike exists. One also readily verifies that E′(0) 6= 0 for all τ , which
shows that the parity is negative for all τ and proves instability. We note that instability of
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spikes on unbounded domains was proved in [10]. We are not aware of an explicit reference for
instability of spikes in phase field models.

Lastly, we mention the Keller-Segel model,{
ut = [ux − χuvx]x,
vt = vxx + u− v,

t ≥ 0, x ∈ R, (6.3)

One solves for u = µeχv and then solves

0 = vxx + µeχv − v,

which possesses spikes for µ < (eχ)−1.

7 Discussion

Our results show that spikes are always unstable with respect to an even, localized eigenfunction
to a positive real eigenvalue. We do not know when this eigenfunction possesses more structure,
such as a sign in the v-component beyond τ = 1.

On the other hand, one often does observe spikes in experiments and numerical simulations.
There are two aspects to this apparent discrepancy between theory and observation.

First, unstable eigenvalues can be very small. This happens in particular when spikes are
formed by pairs of layers that interact weakly. Examples of such type are readily constructed
in the bistable models (6.2), with steady-state equation uxx + u − u3 + v = 0, with v ≡ µ

constant. For µ ∼ 0, spikes form long plateaus, and the unstable eigenvalue converges to zero
as µ→ 0.

Secondly, our instability results are valid only for infinite domains. Imposing Neumann bound-
ary conditions at x = ±L, for instance, will change the spectrum. Convergence results for the
point and essential spectrum [18] show that the spectrum converges as a set for L→∞. More-
over, the convergence of point eigenvalues is exponential in L, so that for only moderate sizes
of the domain, our results give instability of spikes. The caveat here is that this instability is
not uniform in the family of spikes, so that spikes of large amplitude (as in chemotaxis models)
or large width (as in phase field models) may well be stable in finite domains of large size.

Finally, we point out a few open questions, some of which are subject of future work.

We expect that our instability results carry over to higher space dimensions. Again, the exis-
tence problem is well studied and spikes are radially symmetric. At the end of our homotopy,
τ = 1, spikes are unstable in the space of radially symmetric functions and one expects this
instability to persist during the homotopy.

Our arguments also apply to layers, that is solutions (u∗, v∗) that converge to different limits
(u±, v±) as x → ±∞. In the scalar case, and at the end of the homotopy, these are stable
solutions to the PDE. Our method then readily gives that the number of unstable eigenvalues
for such layers is even, ip = 1. Inspecting the argument in Section 5.7, one sees that layers
can destabilize during the homotopy only when Hopf bifurcation occurs. This can often be
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excluded when Lyapunov functions are known to exist, such as for the Keller-Segel model or
the phase-field system. We do not know if Hopf bifurcations from layers can occur in our more
general class of conservation laws coupled to a reaction-diffusion equation.
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