
BIFURCATION TO SPIRAL WAVES IN REACTION-DIFFUSIONSYSTEMSARND SCHEEL�Abstract. For a large class of reaction-di�usion systems on the plane, we show rigorously thatm-armed spiral waves bifurcate from a homogeneous equilibrium when the latter undergoes a Hopfbifurcation. In particular, we construct a �nite-dimensional manifold which contains the set of smallrotating waves close to the homogeneous equilibrium. Examining the 
ow on this center-manifoldin a very general example, we �nd di�erent types of spiral waves, distinguished by their speed ofrotation and their asymptotic shape at large distances of the tip. The relation to the special class of�-! systems and the validity of these systems as an approximation is discussed.Key words. Spiral waves, Center-Manifolds, Ginzburg-Landau Equations, �-! SystemsAMS subject classi�cations. 35B32, 58F39, 35K57, 35J601. Introduction . We study reaction-di�usion systemsUt = D4U + F (�; U ); U (x; t) 2 RN; � 2 Rp(1.1)on the plane x 2 R2. The N -dimensional vector U typically describes a set of chemicalconcentrations and temperature, depending on time t 2 R and the space variable x.The parameter � is a p-dimensional control parameter which shall allow us to createinstabilities of spatially homogeneous equilibria. We shall be interested in rotatingwave solutions U (t; x) = U (0; Rctx); c 6= 0, where R' is the rotation in R2 aroundthe origin by the angle ' 2 R=2�Z. Our analysis show that this class of solutionsappears naturally via some type of Hopf bifurcation. Moreover the spatial structureresembles n-armed spiral waves.Experimentally this type of spatio-temporal pattern has been observed frequentlyin chemical, biological, physiological and physical experiments (e.g. the Belousov-Zhabotinsky reaction, the catalysis on platinum surfaces, electro-chemical waves inthe cortex of the brain, signaling patterns of the slime mold and the Rayleigh-B�enardconvection). Nevertheless a rigorous treatment of existence and creation is still notavailable | for various reasons.Spiral waves are typically observed in spatially extended oscillatory processes.Near Hopf bifurcation points the dynamics of these processes is approximated byGinzburg-Landau equations or �-!-systems [1, 10]. This has been shown using formalasymptotic methods; see [1] for example. Recently a rigorous proof of the approxi-mation property of Ginzburg-Landau equations has been given by Schneider; see [21].The important property of the approximating equations is a decoupling of Fouriermodes which was exploited by several authors in order to construct spiral wave so-lutions [1, 5, 7, 11], though the methods are still formal or do not cover the typicalnonlinearities appearing close to bifurcation points.� Institut f�ur Mathematik I, Freie Universit�at Berlin, Arnimallee 2-6, 14195 Berlin, Germany,Email: scheel@math.fu-berlin.de, Phone: (49) 30 838 75406, Fax: (49) 30 838 754091



2 A. ScheelOf course a treatment of Hopf bifurcation using classical bifurcation methodswith symmetry is not possible because neither center-manifolds exist nor Lyapunov-Schmidt reduction can be applied, due to presence of continuous spectrum. Anotherexplanation is provided by the fact that the symmetry of the reaction-di�usion equa-tion, the Euclidean symmetry, does not have bounded �nite dimensional representa-tions; see [12] for an approach to Ginzburg-Landau equations exploiting symmetry.In spatially extended systems including only one unbounded spatial variable, typ-ically cylindrical domains, the continuous spectrum can be avoided by restricting tosteady state solutions and considering the unbounded spatial variable as a new timedirection. This approach was introduced by Kirchg�assner [9] and applied to various in-teresting problems in mechanics, 
uid dynamics and physics; see for example [13, 17].Unfortunately, considering systems with several unbounded directions, this methodbecomes less successful; see however [14].We adopt the idea of spatial dynamics, now considering the radial direction inpolar coordinates as a new time variable, in order to describe the spatial structureof rotating waves by a surprisingly �nite-dimensional, non-autonomous ODE on acenter-manifold. In particular any small bounded solution to this ODE correspondsto a rotating wave of the original reaction-di�usion system. This approach allows usto describe systematically the creation of rotating waves from homogeneous equilibriaof reaction-di�usion systems.The paper is organized as follows. In the next section we �x the abstract functionalanalytic setting in which we formulate a center-manifold reduction theorem. Thistheorem, our main result, is stated in x 3 and proved in the subsequent two sections.The key to the proof are exponential dichotomies which are proved to exist in ourfunctional analytic framework in x 4. In x 6 we comment on a localization of our maintheorem using cut-o� procedures and we brie
y discuss regularity of solutions in x 7.The last important abstract result is stated in x 8, where we formulate and prove theexistence of a larger manifold, containing solutions which might be singular at theorigin. This manifold is tangent to a subspace which is independent of time � (aliasthe distance to the origin in R2) and therefore allows to derive explicit bifurcationequations. We conclude by applying our results to a model problem in the remainingsections.2. The abstract setting. Introducing polar coordinates x = (r cos'; r sin'),the equation for rotating wave solutions of (1.1) becomesD(U 00 + 1rU 0 + 1r2U'') + F (�; U ) = cU';(2.1)where 0 = @@r ; ' 2 S1 = R=2�Z, r 2 (0;1) and c is again the speed of rotation.We suppose that for an initial parameter value �0 we are given a spatially ho-mogeneous equilibrium U0(�0) which solves F (�0; U0(�0)) = 0. As we are merelyinterested in Hopf bifurcation we suppose that this solution can be continued in � toa branch U0(�) which we can assume without loss of generality to be the zero solution.To sum up we suppose that F (�; 0) = 0 and D = D� > 0.Note however that the �rst assumption is merely a simpli�cation for clarity of thestatements and the second assumption might be generalized slightly.As a most elementary example, which is discussed in x 9, the reader might thinkof D = id and F (�; U ) = iU +O(jU j2); U 2 R2 ' C .



Spiral waves in reaction-di�usion systems 3Next we multiply (2.1) by D�1U 00 + 1rU 0 + 1r2U'' = �D�1F (�; U ) + cD�1U'(2.2)and linearize around U = 0U 00 + 1rU 0 + 1r2U'' = �D�1FU (�; 0)U + cD�1U'(2.3)We work in the function spaces Hl(S1;RN); l � 0. Functions u 2 H l may be repre-sented by their Fourier series u(') =Xk2Zukeik'with u�k = �uk and kuk2Hl =Pk2Zjukj2k2l <1.The operator A = �@'' is self-adjoint and positive in Hl with spectrum fk2; k 2Zg and domain of de�nition H l+2. The spectral information on our bifurcation prob-lem is contained in the operatorB�;c : Hl+1 � Hl ! H lu(�) 7! �D�1FU (�; 0)u(�) + cD�1u'(�):As c 6= 0, the operator B�;c can be considered as a bounded perturbation of the closed,antisymmetric, unbounded operator Cc = cD�1@' on H l. Thereby B�;c has pointspectrum, and any strip fz 2 C ; j Imzj < Mg contains only �nitely many eigenvalues,each of �nite multiplicity.We denote by ~P c+(�; c) the spectral projection to the operator B�;c on (�1; 0] �C . Of course ~P c+(�; c) can be constructed via Dunford's integral.We rewrite equation (2.2) as an equation in function spaceu00 + 1ru0 � 1r2Au = � ~F (�; u) +Ccu(2.4)and linearize around u = 0 u00 + 1r u0 � 1r2Au = B�;cu:(2.5)We suppose that ~F 2 CK(Rp � H l+1=2;Hl); K � 1 which can be achievedassuming F 2 CK and either l > 0 such that H l+1=2 ,! C0, or assuming suitablegrowth conditions on F .We say that u is a solution of (2.4) (or (2.5)) on an interval I � (0;1) ifu 2 C0(clos I;H l+1)\C1(clos I;Hl)\C2(int I;H l)\C1(int I;H l+1)\C0(int I;H l+2)and if (2.4) (or (2.5) respectively) is satis�ed in Hl.Furthermore we introduce a new time� (r) = � log r; if r � �rr; if r � 2�rde�ned by smooth, monotone interpolation on (�r; 2�r) such that � 2 C1(R+;R). Theexact value of the positive constant �r is of no importance for the statement of theresults.



4 A. ScheelFor r < �r the di�erential equation (2.4) becomesu�� �Au = �e2� ( ~F (�; u)�Ccu):Of course the equation (2.4) remains unchanged for r � 2�r.We conclude this section emphasizing on the symmetry of equation (2.4). Therotation ' ! '+ �' on S1 ' SO(2) acts on H l(S1;RN) by shifting functions on thecircle: u(') ! u(' � �'). Of course this symmetry is inherited from the Euclideansymmetry of the original problem. Note that translations are ruled out by the ansatzfor equilibria in a �xed rotating coordinate system. Translates of any solution foundwith this ansatz would be periodic solutions in our coordinate system.3. Main results. We write (2.4) as a �rst order di�erential equationdd� u(� ) = A(� )u(� ) + G(u(� )); u = (u; dd� u(� ))(3.1)on the space u 2 X = Hl+1(S1;RN)�Hl(S1;RN). HereA(� ) = � 0 1A+ e2�B�;c 0 � ; G(u) = �e2� � 0~F (�; u) + B�;cu�Ccu � ;if � � log �r andA(� ) = � 0 1��2A+ B�;c ���1 � ; G(u) = �� 0~F (�; u) + B�;cu� Ccu � ;if � � 2�r. For � 2 (log �r; 2�r), the exact form of the equation is not important, assolutions arise from solutions of (2.4) by a bounded di�eomorphic rescaling of time.The linearisation of (3.1) along u = 0 isdd� u(� ) = A(� )u(� )(3.2)We let Y� = fu 2 C0(R;X); kukY� <1g where kukY� := sup�2Re��j�jju(� )jX�and, similarly,Y �� = fu 2 C0(R�; X); kukY� <1g where kukY�� := sup�2R� e��j�jju(� )jX� :The norm in X� of u(� ) = (u(� ); v(� )) is de�ned asju(� )jX� := � ��1jujHl+1 + jujHl+1=2 + jvjHl ; if� � 2�rju(� )jHl+1 + jv(� )jHl ; if� < 2�rLet us denote by Ec(� ) the (possibly empty) linear subspace of initial values of thelinear equation (3.2) at time � which give rise to Y�-bounded solutions. Of course Ecdepends also on �.Theorem 1. Suppose the superposition operator ~F to the nonlinearity F belongsto the class CK(Rp�Hl+1=2(S1;RN);Hl(S1;RN)), 1 � K <1. Suppose furthermorethat for � = �0 and c = c0 we have ~P c+(�; c) 6= 0.



Spiral waves in reaction-di�usion systems 5Then there are �; � > 0 such that, ifLipu[ ~F � ~Fu(�; 0)] + j�� �0j+ jc� c0j < �;there exists a unique �nite-dimensional CK-center-manifold M� X �R which con-tains all solutions of (3.1) which are bounded in Y�. The manifold M is given as agraph over fEc(� ); � 2 Rg and depends smoothly on �; c. In any section � = �0, it istangent to Ec(� ) at � = �0; c = c0.Moreover we have(i) 
ow property: for any u0 = u(�0; c; �) 2 M, there is a unique Y�-boundedsolution u(� ); � 2 R to (3.1) with u(�0) = u0.(ii) invariance: this unique solution u(� ) lies on M for all times � and dependsCK on u0; �; � and c.(iii) dimension: the dimension of Ec(� ) is dimR( ~P c+(�0; c0))+ dim ~P c+(�0; 0)RNwhere the second summand is the dimension of the range when restricted on the ho-mogeneous N -dimensional subspace of H l.(iv) symmetry: the manifold M is invariant and the 
ow on M is equivariantunder the diagonal action of SO(2) on X = Hl+1 �Hl.Remarks:(i) Let us emphasize that the operator D4+@' has continuous spectrum closeto the imaginary axis which makes a standard, �nite-dimensional bifurcation approachto the dynamical reaction-di�usion problem impossible.(ii) We will later give expansions for the spaces Ec(� ) at � = 1 and describehow to obtain expansions forM.(iii) It is possible to treat the case of F depending onru with the same methods.Indeed, both components of the gradient, ur and 1ru', are bounded with respect toj(u; ur)jX� .(iv) A slight generalization could be obtained by the use of interpolation spacesbetween X� and D(A(� )). We avoided these additional technical di�culties for thesake of clarity.(v) Making � larger it is possible to allow singularities of the rotating wavesat the origin, a phenomenon which is frequently attributed in the literature to spiralwaves. The manifold will be larger if we allow for this type of solutions, but still �nite-dimensional. However, the point in this work is, that even spiral wave like solutionswithout singularities at the tip are created via Hopf bifurcation.4. The linearized equation. The key to a center-manifold theorem is the con-struction of exponential dichotomies for the linear equation. Background informationon exponential dichotomies might be found in the textbook [2], in [15] or, in a non-evolutionary, elliptic context, in [16].4.1. Bounded solutions for � ! �1. We construct a family of projectionsP cu� (� ) which project on the initial values of bounded solutions to (3.2) on (�1; � ].In a more general context this problem has been studied in [16]. The main theoremsthere (Theorem 1 and Theorem 3), applied to our setting, state the following:Lemma 2. Under the conditions of Theorem 1, suppose �0; �1; � � 2�r. Then thereare families of evolution operators, smoothly depending on � and c,�u�(�; �0) :X ! X; � � �0�s�(�; �0) :X ! X; � � �0and constants C > 0; �u� > �s� > 0, such that



6 A. Scheel(i) �u=s� (�; �0)u is a solution of (3.2) for any u 2 X,(ii) �u=s� (�; �)u is continuous in X,(iii) �u�(�0; �0) + �s�(�0; �0) = id,(iv) �u=s� (�; �1)�u=s� (�1; �0) = �u=s� (�; �0), �u=s� (�; �1)�s=u� (�1; �0) = 0, and(v) j�u�(�; �0)jL(X;X) � Ce��u�(���0); j�s�(�; �0)jL(X;X) � Ce��s�(���0), and wecan choose any �u� > 0.We de�ne P cu� (� ) := �u�(�; � ).We will later see how we can give a more explicit representation of the evolutionoperators � in terms of Bessel functions. This will also show why the uniqueness as-sumption from [16] is automatically satis�ed in our context because the linear equationsplits into an in�nite product of ODE's, which are all uniquely solvable | in forwardand in backward time.4.2. Bounded solutions for � ! +1. The situation at � = +1 is consider-ably more di�cult as B�;c is no more � -uniformly bounded with respect to ��2A. Itis due to our careful choice of norms in X� , that we still have an analogous result toLemma 2.Lemma 3. Under the conditions of Theorem 1, suppose �0; �1; � � 2�r. Then thereare families of evolution operators, smoothly depending on �; c,�u+(�; �0) :X�0 ! X� ; � � �0�s+(�; �0) :X�0 ! X� ; � � �0and constants C > 0; �u+ > �s+ > 0, such that(i) �u=s+ (�; �0)u is a solution of (3.2) for any u 2 X,(ii) �u=s+ (�; �)u is continuous in X,(iii) �u+(�0; �0) + �s+(�0; �0) = id,(iv) �u=s+ (�; �1)�u=s+ (�1; �0) = �u=s+ (�; �0); �u=s+ (�; �1)�s=u+ (�1; �0) = 0, and(v) j�u+(�; �0)jL(X�0 ;X� ) � Ce�u+(���0); j�s�(�; �0)jL(X�0 ;X� ) � Ce�s+(���0), andwe can choose any �s+ > 0.We de�ne P cs+ (� ) := �s+(�; � ).Proof.Step1: Fourier AnsatzThe proof of this lemma is the central part of our analysis. ComplexifyingX, thesubspaces Ek = f(ueik'; veik') 2 X; u = (u; v) 2 (CN )2g � X�are invariant under (3.2). Of course, we are primarily interested in the real subspace,where we have a relation between the vectors in Ek and E�k. In Ek the di�erentialequation reads u00 + 1� u0 � k2�2u = �D�1(Fu(�; 0) + cik)u =: Bk�;cu:If we expand u(� ) =Pk2Zuk(� )eik', then ju(� )jX� is equivalent to (Pk2Zjukj2Ek� )1=2,where jukjEk� = kl( 1� jkukjCN + jk1=2ukjCN + jvjCN )



Spiral waves in reaction-di�usion systems 7if k 6= 0 and ju0jEk� = ju0j(CN )2 .By the above considerations we see that it is su�cient to construct the evolutionoperators on Ek� ,and uniform exponential bounds on the norms in Ek� will carry overto X� .Step2: ProjectionsAccording to the remarks in x 2, we decompose Ek into Ekc;+ = P c+Ek and Ekh;+ =(1� P c+)Ek, where P c+ = diag ( ~P c+(�0; c0); ~P c+(�0; c0)) and ~P c+(�0; c0) projects on thenegative part of the spectrum of B�0 ;c0 .Step3: Stable projections, estimatesWe show that all solutions in Ekc;+ are exponentially bounded in Ek� with anarbitrarily small exponent � | keeping �; c su�ciently close to �0; c0.As the range of ~P c+(�0; c0) is �nite-dimensional, only �nitely many modes k areinvolved in the computation. We therefore use the equivalent,standard, k- and � -independent norm on (CN )2. Decomposing Bk�;c furthermore into Jordan blocks, it issu�cient to consider u00 + 1� u0 � k2�2u+ �(k; �; c)u = 0where �(k0; �0; c0) is a Jordan block. The eigenvalue of �(k0; �0; c0) belongs to R+as u 2 R( ~P c+(�0; c0). If we add �0 = ��2, then � = 1=� and we see that at� = �0; c = c0, the origin u = 0; u0 = 0 and � = 0 (alias � = 1) is an equilib-rium with all eigenvalues of the linearization being situated on the imaginary axis.Exponential growth with rate �s+ > 0 arbitrarily small now follows from standardGronwall estimates for bounded �, that is, choosing �r bounded away from zero, and�; c su�ciently close to �0; c0. This proves the second inequality in (v).Step4: Unstable projections, estimatesNow let u 2 Ekh;+. Our aim is to decompose Ekh;+ in subspaces of exponentiallydecaying and exponentially growing solutions. We set~u(� ) = (k2�2 + Bk�0;c0)1=2u(� ):As here Bk�;c does not have eigenvalues on R�, we can use the standard square rootcut along R�. Moreover the norm jujEk� is equivalent to j~ujCN + jvjCN : Note thathere we omitted the factor kl, as it is independent of time and does not change theequations to be considered below. We write � = 1=� and L(�) = (k2�2 +Bk�0 ;c0)1=2.In the new variables, the di�erential equation on Ekh;+ reads~u0 = L(�)v + @�L(�)�0u= L(�)v � �3k2L�2(�)~uv0 = ��v + L(�)~u�0 = ��2:(4.1)Next, we set jL�1(�)j dd� = dds and obtaind~uds = LjL�1jv � �3k2L�2jL�1j~udvds = ��jL�1jv + LjL�1j~ud�ds = ��2jL�1j(4.2)



8 A. Scheelwith L = L(�). The linearization at ~u = v = 0, � = 0,d~uds = LjL�1jvdvds = LjL�1j~ud�ds = 0:(4.3)admits a projection P (~u; v) = 12(~u + v; ~u + v), which is independent of k and �.Therefore, the 
ow ~�0 of equation (4.3) possesses uniform exponential dichotomies at~u = v = 0. To see this, we �rst observe that for s � s0,j~�0(s; s0)P jL(C2N ) � jeLjL�1j(s�s0)jL(C2N ):Now remember that by de�nition of the square root, the spectrum of L lies in theright half plane and is, for jkj ! 1; � = 0, asymptotic to k1=2e�i�=4. For �nitelymany k, we therefore obtainje�LjL�1jtjL(C2N ) � C1e��1t; t > 0with some constants C1; �1 > 0, independent of k; �. As k!1, we consider �rst ~L =k�1=2L. Of course ~Lj~L�1j = LjL�1j. For k large, the operator ~L0 = (k�2+D�1ci)1=2is a small (uniformly in �; k) perturbation of ~L. As D > 0, the spectrum of D�1i lieson iR+. Therefore the spectrum of ~L0 lies in the right half plane, uniformly boundedaway from the imaginary axis, and we can diagonalize ~L0 by a transformation whichis independent of � and k to obtainje�~L0j~L�10 jtjL(C2N ) � C2e��2t; t > 0for some constants C2; �2 > 0, independent of �; k. By perturbation arguments, thesame estimate holds true for ~L and L and we concludej~�0(s; s0)P jL(C2N) � Ce�(s�s0); s � s0for some C; � > 0, independent of � and k. The calculation on R(1� P ) is the sameand we obtainj~�0(s; s0)(1� P )jL(C2N ) � je�LjL�1j(s�s0)jL(C2N ) � Ce��(s�s0); s � s0:These two estimates together guarantee an exponential dichotomy for the equa-tion (4.3). Equation (4.2) is a perturbation of (4.3). We show that the perturbationof the vector �eld is O(�), uniformly in k. By standard perturbation results on expo-nential dichotomies [2] this then proves that (4.2) possesses an exponential dichotomywith projection ~P (k; �), and constants ~C; ~� > 0, independent of k; � as long as � isbounded.The error terms we have to deal with are �3k2L�2jL�1j and �jL�1j. Of coursefor �nite k these terms are O(�). Consider now the �rst expression for large k:�3k2jL�3j = �3k2j[�2k2 + Bk�0;c0 ]�3=2j= �3k2j[�2k2 +D�1cik + O(1)]�1j � jD�1cik +O(1)j�1=2= j[1 +D�1ci 1�2k (1 + O(1=k))]�1j �O(�k�1=2):



Spiral waves in reaction-di�usion systems 9As j[1 + D�1ci 1�2k ]�1j � C3 uniformly in �; k, the above expression is O(�k�1=2),uniformly in k. Next we consider the second error term �jL�1j :�jL�1j = �j[�2k2 +D�1cik +O(1)]�1=2j= �k�1=2j~L�10 (1 + O(1=k))j= O(�k�1=2):This proves uniform smallness of the perturbation. It remains to translate theexponential dichotomy rate ~� into the correct time � = � (s).As dsd� = jL�1(�)j�1, it is su�cient to get �; k-uniform bounds jL�1(�)j�1 � �0 >0: This is precisely the type of estimate we developed above for �jL�1j. Indeed weshowed that jL�1j = k�1=2j~L�10 j(1 + O(1=k))and therefore �0 can be chosen O(k1=2) as k ! 1. This proves the lemma with�u+ = �0� and �s+ from step 3.4.3. Matching at �� = 2�r, the center space Ec(� ). We de�ne Ec(� ) =�s+(�; � )�u�(�; � )X, which, by the previous two lemmata, coincides with the de�ni-tion of Ec(� ) as the initial values for Y�-bounded solutions, if we only choose � smallenough. In order to prove the claim on the dimension of Ec(� ), we need a transver-sality result from the theory of Bessel functions. Suppose �rst that u(�� ) 2 E0, thesubspace of radially homogeneous functions. For � ! �1 the linear equation in E0is u�� = e2��u with some matrix � and clearly any solution is Y�-bounded as expo-nential rates of solutions coincide with the rates of the autonomous part u�� = 0. Sothe negative orbit of u(�� ) is Y�-bounded. The positive orbit is bounded in Y� if andonly if u(�� ) 2 P c+(�0; 0)E0; therefore dimEc \E0 = 2dim ~P c+(�0; 0)RN. For the restof this section we restrict to (E0)?, the non-homogeneous Fourier modes. Recall thatP c+ = diag ( ~P c+(�0; c0); ~P c+(�0; c0)) and P h+ = 1 � P c+ projects on the hyperbolic partof (3.2) at r =1. We claim that�s+(�� ; ��)�u�(�� ; �� )P h+u = 0(4.4)for u 2 (E0)?. We decompose into Fourier modes eik' and minimal Jordan blocks �,and we consider u00 + 1� u0 � k2�2u+�(k; �0; c0)u = 0:If � is semi-simple, that is � 2 C nR+, then the solutions of this scalar ODE are theBessel functions. Indeed, we can write this equation asr2u00 + ru0 + (�k2 + (rp�)2)u = 0and therefore u(r) = u0Jk(rp�) + u1Yk(rp�):As Jk(r) = rk(1 + O(r)) and Yk(r) = r�k(1 + O(r)) for r ! 0, if k 6= 0, solutionsbounded close to r = 0 satisfy u1 = 0. At in�nity the Jk behave likeJk(r) =r 2�r [cos(r � k�2 � �4 ) + O(1=r)]:



10 A. ScheelSolutions u(r) = u0Jk(rp�) can only stay exponentially bounded by e�r as r !1,for a small �xed �, if p� is real. But then � is real and positive, that is u 2 ~P c+X.This proves the required transversality result (4.4) for semi-simple eigenvalues.If � is a Jordan block we can rescale the principal vectors | without changingthe angle between stable and unstable subspaces | to make it a small perturbationof its semi-simple part. The transverse intersection persists for the non semi-simpleJordan block.Now suppose u 2 ~P c+X. Then the above reasoning showed that for any suchu there is exactly one Y�-bounded solution. This implies dim (Ec(� ) \ (E0)?) =dimR( ~P c+(�0; c0)(E0)?) and proves the claim (iii) in Theorem 1 on the dimension ofthe invariant manifold, once it is constructed as a graph over fEc(� ); � 2 Rg.5. Nonlinear equations, Proof of Theorem 1. With the estimates on thelinearized equation at hand, it is fairly standard to construct invariant manifolds forthe nonlinear equation. We consider equation (3.1).Proposition 4. Under the conditions of Theorem 1, any Y �� -bounded (or Y +� -bounded) solution u(�; �0) on (�1; �0] (or [�0;+1) respectively) satis�esu(�; �0) = �u�(�; �0)u(�0; �0) + Z ��0 �u�(�; �)G(u(�; �0))d�+ Z ��1�s�(�; �)G(u(�; �0))d�;or u(�; �0) = �s+(�; �0)u(�0; �0) + Z ��0 �s+(�; �)G(u(�; �0))d�+ Z ��1 �u+(�; �)G(u(�; �0))d�;respectively. On the other hand, the above integral equations possess for any u(�0; �0)a unique solution u(�; �0) in Y �� which depends CK on u(�0; �0); �; c; � and �0.Proof. The integral operators are bounded operators on Y �� and the Lipschitzconstant of the nonlinearity G is small. IndeedLipX�G � LipHl+1=2!Hl [ ~F � ~Fu]which was supposed to be su�ciently small. Regularity of the unique �xed point canbe proved as usually for center-manifolds; see [24] for example.We call the setf�u�(�; � )u+ Z ��1�s�(�; �)G(u(�; � ))d� =: 	�(�u�(�; � )u); u 2 Xgthe center-unstable manifoldMcu� (� ) at �1 and the setf�s+(�; � )u+ Z �1 �u+(�; �)G(u(�; � ))d� =: 	+(�s+(�; � )u); u 2 Xgthe center-stable manifoldMcs+ (� ) at +1 and we de�neM(� ) =Mcu� (� ) \Mcs+ (� ):



Spiral waves in reaction-di�usion systems 11By de�nition, M(� ) = f initial values at time � of Y�-bounded solutions g. We haveto show that M(� ) is a smooth manifold, parameterized over Ec(� ).Therefore, we have to solve 	+ � 	� = 0. The linearization is given by �u� ��s+ = 0. We already know that the kernel of this equation is exactly Ec, thus �nite-dimensional. In order to apply the implicit function theorem we have to show that�u���s+ is surjective. We have to decompose a u 2 Ek into two vectors belonging tothe range of �s+ and �u� respectively, with estimates on the norms uniformwith respectto k. The fact that we can decompose follows simply from the linear independenceof the Bessel functions of the �rst and second kind Jk and Yk (actually, we merelyrefer to purely imaginary arguments, the hyperbolic case, where the notation is Ik forthe Bessel function bounded at r = 0, and Kk for the solution bounded at r = 1).Estimates on the norms | for a �xed time � | follow from uniform estimates on theWronski-determinant det� Ik(� ) Kk(� )I 0k(� ) K0k(� ) �which in turn are an immediate consequence of the Taylor expansions at r = 0 of theBessel functions; see for example [25]. As in x4.3, Jordan blocks can be considered as asmall perturbation. By Lyapunov-Schmidt reduction we can now solve 	+�	� = 0,parameterizing the set of solutions over the kernel of the linearization Ec(� ). Thisproves Theorem 1.6. Local center-manifolds. If the nonlinearity ~F does not have a small Lips-chitz constant, which is usually the case in applications, we have to modify ~F .We cut o� ~F outside a small neighborhood B�0 of zero with a smooth cut-o�function in Hl+1=2, for example the norm, which is invariant under the action ofSO(2). Therefore let � 2 C1([0;1);R) with �(t) = 1 if t � 1 and �(t) = 0 if t � 2.Then de�ne~Fmod(�; u) = �(juj2Hl+1=2=�0)( ~F (�; u)� ~Fu(�; 0)u) + ~Fu(�; 0)u:The nonlinear part of ~Fmod has an arbitrarily small Lipschitz constant if we make �0su�ciently small, and thereby satis�es the conditions of Theorem 1. Any solution onthe center-manifold to the modi�ed nonlinearity ~Fmod, which has norm sup� ju(� )jX�small enough, will have sup� ju(� )jHl+1=2 small such that the modi�ed nonlinearitycoincides with the original nonlinearity on the solution u(� ), which is in consequencea solution to the original equation. Note that bounds on the norm in X� are byconstruction ofM equivalent to bounds on the norms of the projection of the solutionon fEc(� ); � 2 Rg.7. Regularity of solutions. The solutions u(r; ') we obtain are bounded inX� .By the smoothing property of the equation (which can be considered for any l, withoutchanging M), any solution is actually of class C1 with respect to r > 0 and ', if Fis | though M is not C1 in general! As r !1, the angular derivatives @m' u(r; ')are bounded for any m, which implies that the derivatives along curves r � constwith respect to arclength rd' are of order 1=rm: patterns are slowly varying in theangular direction far away from the origin.At r = 0 we have to be careful about smoothness of the solution. Suppose �rstthat Ec(� ) does not contain solutions in the angular homogeneous subspace E0. Thensolutions in Ec(� ) are O(r) = O(e� ) as r ! 0 and smooth in a neighborhood of theorigin by interior elliptic regularity.



12 A. ScheelThe homogeneous subspace can be | and has been | treated separately studyingthe ODE on Fix(SO(2)). Indeed there is a subspace of dimension N with solutionswhich actually stay bounded, whereas solutions outside this subspace have singulari-ties of order log r.On the other hand, considering again � -dynamics in M, this subspace of homo-geneous functions is �bered by strongly unstable �bers such that any solution in Mconverges with rate O(e� ) to a solution in the homogeneous subspace and inherits itsregularity.8. Center-manifolds at in�nity. We construct a �nite-dimensional invariantmanifold which contains all solutions which are bounded at � = +1 but do not decaytoo rapidly. Recall that P c+ = diag ( ~P c+; ~P c+) projects on the center part of (3.2) at� = 1=r = 1=� = 0.Proposition 5. Under the conditions of Theorem 1, consider equation (3.1)close to u = 0. Fix � > 0 su�ciently small and K <1.Then there is an invariant CK-manifold Mc+, contained in Mcs+ and containingM, given as a graph over fR(P c+); � 2 Rg, smoothly depending on �; c.Moreover there is a CK-
ow on Mc+ such that any orbit is a solution of (3.1)and any solution u(� ) of (3.1) withsup�0��>2�� e��j���0j ju(� )jX�ju(�0)jX�0 <1is contained in Mc+.Proof. We start by constructingMc+ for 0 < � = 1=r � 1=2�r bounded. The man-ifoldMc+ is the union of center-unstable �bers of the zero-solution in the center-stablemanifoldMcs+ . These �bers can easily be shown to exist, using graph transformation(we have a smooth semi-
ow onMcs+ ) or a Lyapunov-Perron approach as in [16]. Thedependence on time � = 1=� is smooth as �bers are mapped into each other by the
ow.We have to ensure that we can arrange to haveM included inMc+. This can beachieved by either starting the graph transformation with graphs that containM (and'feeding in' such graphs appropiately) or, referring to the Lyapunov-Perron approachof [16], including the manifoldM in the �xed initial unstable �ber at � = 2�r (see forexample [16], at the end of x3).We next have to continue this manifold for � > 1=2�r, or, equivalently, for t!�1.This will again be done using the methods from [16]. If we had an evolution typeequation we would propagate the manifoldMc+ with the 
ow. Here we do not havea 
ow! By [16], the equation possesses an exponential dichotomy which permits toprove the existence of the center-unstable manifoldMcu� (the union of unstable �bersover time � ), as pointed out in Lemma 2 and, furthermore, the existence of stable�brations to any solution in Mcu� for any �xed initial �ber at � = 2�r (which istransversely intersecting Mcu� \ f� = 2�rg). We are interested in the stable �brationinduced by the manifoldMc+, which is of course not complementary toMcu� . Howeverthe methods from [16] can be adapted in order to guarantee precisely the existence ofsuch a manifold. In the following we indicate how to make the necessary changes.We solve the integral equation for stable and unstable �brations with the restric-tion that the �ber at the initial time � = 2�r belongs to a �xed manifold transverse toMcu� which we can choose to contain Mc+ \ f� = 2�rg. On this smaller subspace the�xed point equation for stable and unstable �bers still de�nes a contraction mappingand the solution is the desired global continuation of Mc+. The smoothness of the



Spiral waves in reaction-di�usion systems 13union of the �bers as a manifold follows, because we can di�erentiate the �xed pointequation with respect to the base solution in the center-unstable manifoldMcu� . Theexponential properties of the new �xed point equation allow for a setting in the usualscale of exponentially weighted spaces [23], because the equation for the stable �berat a �xed time � only involves the �nite time interval [�; 1=2�r]. We do not carry outthe details which include only straightforward modi�cations of smoothness proofs for�brations (note however that we do not care about the limit � = �1 | alias r = 0| of the �bration which would lead to limitation in regularity of the �bration).Of course the projected vector �eld is also smooth and thereby de�nes a smooth
ow on the �nite-dimensional manifoldMc+.The hypothesis ~F (�; 0) = 0 was only needed in order to �x a reference solutionin Mcs+ , notably the zero solution. In general we could construct smooth �brationsalong any solution in Mcs+ .The manifold Mc+ we constructed is very useful in order to describe boundedsolutions near in�nity, though most solutions on Mc+ are not bounded at the originr = 0.9. Hopf bifurcation and (�; !)-systems. We give the most simple non-trivialapplication of our main theorem. Suppose D = id; ~F (�; 0) = 0; � 2 R and N = 2,that is U 2 R2 which we identify with C . Suppose that the homogeneous zero stateundergoes a non-degenerate Hopf bifurcation in the space of homogeneous solutions:ddU ~F (�; 0) = i! + �; ! 6= 0:We write U as a complex Fourier series U (r; ') =Pk2ZUk(r)eik'. The spaces Ek arejust the complex two-dimensional spans h(eik'; 0); (0; eik')i. The operator B�;c actson Ek as multiplication Bk(�; c) : Uk ! (cik � i! � �)Uk. Thereby Ec(r) � Ek0 ifc0k0 = !. In other words, for any k(-armed spiral) there is a rotation speed c = !=ksuch that rotating waves with this speed may bifurcate. Our analysis has shown thatfor other wave speeds, the homogeneous state is isolated as a rotating wave.Let us comment on the symmetry. The 
ow on M projected on Ec(r) � Ek isequivariant with respect to the action of SO(2):(U;U 0)! (Uei ; U 0ei );  2 R=2�Z' SO(2):This is exactly the same symmetry that authors usually assumed to be present inbifurcation equations, the so-called (�; !)-systems, modeling the creation of spiralwaves; see [1]. We showed rigorously that the symmetry of (�; !)-systems, withoutany error term, is present in this type of bifurcations.The actual solutions U = Uk(r)eik' of the linearized system in Ec(� ) are eas-ily calculated: they solve (Uk)00 + 1r (Uk)0 = (k2=r2)Uk and are given as U (r; ') =U crkeik'; U c 2 C . Note that the invariant complement in Ek, spanned by ~U(r; ') =~U cr�keik'; ~U c 2 C converges as Ec(r) to the same limit f(U;U 0); U 0 = 0g. This isthe reason why we constructed Mc+ tangent to Ek in x 8. The equation on Mc+ isa non-autonomous, SO(2)-equivariant ODE in C 2 with linear part given by Bessel'sdi�erential equation. It can be smoothly extended to time � = 1(� = 0) where theequation becomes autonomous. In order to determine existence and shape of rotatingwaves at r = 1, we have to calculate expansions of the vector �eld on Mc+ anddetermine the !-limit set of the two-dimensional slice M(� ) in Mc+. We examine asimple model problem in the next sections.



14 A. Scheel10. An example. As an example we study the following reaction-di�usion sys-tem ut = d14u+ �u� v � au3vt = d24v + bu� 
vin the plane x 2 R2. When � = 
 and b�
� > 0, the pure reaction system undergoesa Hopf bifurcation in the origin u = v = 0. Rescaling u; v; t and x, we may assumethe system to be in the particular formut = 4u+ �u� �v � au3vt = �4v + �u � �v + �vwith �2��2 = 1 and �; � > 0. We assume in the following that � is close to zero, thatis, we are close to a Hopf bifurcation with eigenvalues �i of the linearized reactionsystem. The rotating wave ansatz yieldscu' = 4r;'u+ �u� �v � au3cu' = �4r;'v + �u � �v + �v(10.1)where 4r;' = @rr + 1r @r + 1r2 @''. The linearization at � = 0; u = v = 0 iscu' = 4r;'u+ �u� �vcv' = �4r;'v + �u� �v:(10.2)We now expand the solutions in Fourier series with respect to '(u; v) =Xk2Z(uk; vk)eik'; (u�k; v�k) = (uk; vk):The linearization (10.2) then becomes an uncoupled system of ODEs for the Fouriercoe�cients 4r;kuk = (cik � �)uk + �vk�4r;kv = ��uk + (cik + �)vkwhere 4r;k = @rr + 1r @r � k2r2 . The right side has a kernel as a linear operator on C 2whenever ck = 1 and we therefore set c = 1=k0+ � with � close to zero, having �xedk0 2 N for the sequel.Remember that together with the above equations we should write the equationsfor the complex conjugates, which are just the conjugate equations.The eigenvector in the kernel is easily calculated asw0 = �uk + �(i� �)vk; 4r;kw0 = 0;and w1 = ��uk + (i + �)vk; 4r;kw1 = (i � �+ i+ �� )w1is the complementary eigenvector to the eigenvalue i � �+ (i+ �)=�.Proposition 5 implies the existence of a center-manifoldMc+ with a smooth vector�eld, tangent to the span of w0eik0' and @rw0eik0' at any 'time' r. The vector �eldis obtained up to third order using the following strategy:



Spiral waves in reaction-di�usion systems 15(i) write the linear equation for w0, depending on parameters �; �; this givesthe linear part of the vector �eld on Mc+.(ii) calculate the quadratic (in w0) expansion ofMc+ depending on time; this iszero, due to the absence of quadratic terms in the reaction.(iii) evaluate the nonlinearity au3 on w0eik0'.(iv) project away non-critical Fourier modes.(v) project on < w0eik0' > along < w1eik0' >.Carrying out the necessary calculations gives �rst, by projecting away the non-criticalFourier modes, 4r;kuk = (i � �)uk + �vk + i�uk + aukjukj2�4r;kv = ��uk + (i+ �vk) + i�vk � �vkand therefore 4r;kw0 = i��uk + �aukjukj2 � (i� �)�vk + (i� �)i�vk:Transforming back uk = i+ ��(i + �+ �(i� �))w0 +O(w1)vk = 1i+ �+ �(i� �)w0 +O(w1)gives, onMc+, up to third order, the second order in time ordinary di�erential equation4r;kw0 = �2�� (i � �)�i + �+ �(i� �)w0 + a�2 11 + � i��i+� j 11 + � i��i+� j2w0jw0j2:The �fth order terms might of course destroy the second order structure of this equa-tion, though keeping the structure of a local non-autonomous di�erential equation inC 2 . We write new parameters �0; a0 2 C such that the truncated equation takes theform (w0)rr + 1r (w0)r � k2r2w0 = �0w0 + a0w0jw0j2:(10.3)Disregarded all our e�orts in reducing and simplifying the problem, this equation is ingeneral still hard to solve analytically. In the following section we study this problem,obtaining existence of bounded solutions w(r) (and thereby solutions (u(r; '); v(r; '))to (10.1)), when a0 is almost real. This is actually the approach taken by [7, 11], whodeal with a similar system.By our explicit calculations, the imaginary part of a0 will be small if the di�usionrate � or the parameter � is close to zero.The �rst condition has an interesting interpretation as the limit d2 ! 0 is exactlythe interesting limit in excitable media, though we admit that our equation is di�er-ent from the typical models for excitable media (the null-clines of �u � au3 � v aresymmetric to the origin whereas this is not the usual assumption for excitable media,modeled for example by the Fitz-Hugh-Nagumo equation). We refer the reader to theinteresting, though formal, work on spiral waves in excitable media reviewed in [22].



16 A. ScheelThe second, alternative condition is merely an assumption on the location of equi-libria in the pure reaction system, which are situated approximately at u � �pb=(a�)and zero.The important point to notice at this stage is that the full equation on Mc+ is asmall perturbation of the truncated equation close to the bifurcation point, that is,close to Re�0 = 0. Indeed, scaling jRe�0jr2 = ~r2 and w20 = jRe�0j ~w02 makes thehigher order terms O(jRe�0j). Structurally stable dynamics of the truncated equationpersist for the full system onMc+ for su�ciently small jRe�0j.In this sense, we have established a rigorous proof of the validity of approxima-tions of reaction-di�usion systems by �-! systems, at least when we restrict to thequestion of existence of rotating wave solutions. This was proved up to now only usingformal multi-scale methods. The advantage of our approach is that it gives rigorousproofs and information on the domain of validity in parameter space of such kinds ofapproximations.Furthermore, we should comment on the symmetry. The equation possesses, asannounced, an SO(2)-symmetry w0 ! w0ei�; � 2 S1. The additional re
ection(u; v) ! (�u;�v) in the original reaction-di�usion system does not yield any moresymmetry in the bifurcation equation.At Ima0 = Im�0 = 0, there is the additional re
ectional symmetry w0 ! �w0,�xing the real subspace. Note also that Im�0 = 0 can be achieved by adjusting thewave speed c.11. The bifurcation equations. During this section we omit the primes of �and a. We begin with a study of possible asymptotic states of (10.4) at r = 1. Thelimit equation w00 = �w + awjwj2; 0 = ddrcan be simpli�ed by dividing out the symmetry with the new coordinates z = zR +izI = w0=w 2 �C and R = jwj 2 R+:R0 = zRRz0 = �z2 + � + aR2:Reversibility of the w-equation (r!�r) is translated into reversibility with respect tothe re
ection z !�z (and of course r !�r). Any equilibrium of (11.1) correspondsto a periodic orbit of the w-equation which we call a rotating wave, as it is a relativeequilibrium, for the dynamics in r, with respect to rotational symmetry SO(2). Theasymptotic shape of a spiral wave behaving like such a rotating wave for large r is justa one-dimensional periodic wave-train, translation invariant in one space-direction.There are two types of equilibria. Type I has R = 0 and corresponds to the origin ofthe w-equation, and z = �p� are the blown up invariant manifolds of the equilibriumw = w0 = 0. Type II has necessarily zR = 0 andR2 = ��I=aI ; z2I = ��R + aR�I=aI:A linear stability analysis gives that the type I equilibrium with Rep� > 0 is stable infR = 0; z 2 �C g and unstable in the direction of R. The equilibrium with Rep� < 0is unstable in fR = 0; z 2 �C g but stable in the direction of R. Along the type IIequilibria the linearization isL = 0@ 0 R 02aRR 0 2zI2aIR �2zI 0 1A ; detL = �4�IzI ; traceL = 0;



Spiral waves in reaction-di�usion systems 17such that one equilibrium is 2d-unstable and the other is 2d-stable.Bifurcations occur at Rep� = 0 where type I equilibria coalesce, the originbecomes a center, and when a�� 2 R, where a reversible saddle-node bifurcation of thetype II equilibria occurs.For the non-autonomous system, we can interpret the manifoldM as a shootingmanifold, which is two-dimensional in (w;w0)-space at any �xed time r, invariantunder the symmetry and therefore yields a one-dimensional shooting curve in thereduced phase space (z;R). We focus here on asymptotically stationary behaviorwhere the shooting curve intersects the stable manifold of an equilibrium of (11.1).These are possibly not the only asymptotic shapes at large distances from the centerof rotation but they seem to be of su�cient physical relevance making reasonable sucha restriction.In the following, we distinguish two di�erent cases which we refer to as the sub-critical case, when aR > 0, and the supercritical case, when aR < 0. These termsare justi�ed by the branching of equilibria of (11.1) at �I = aI = 0. In our modelproblem of the preceding section, these two cases are distinguished by the sign ofa(1� �(�2� 1)=�2).We now study the real sub-system in the non-autonomous setting.Lemma 6. (Supercritical)[5, 11] Suppose aR < 0 and �R > 0. Then for anywave number k0 2 N, there exists a heteroclinic orbit w(r) > 0, with limr!0 w(r) = 0and limr!1 w(r) = p��R=aR. Moreover the heteroclinic orbit is transverse in thereal subsystem: the center-manifold M intersects transversely the stable manifold ofp��R=aR.Proof. The proof of this lemma can be found in [11], where the necessary modi-�cations to the proof of a similar statement in [5] are indicated.Lemma 7. (Subcritical) Suppose aR > 0 and �R < 0. Then for any k0 2 N,there exists a heteroclinic orbit w(r), with limr!0 w(r) = limr!1 w(r) = 0. Moreoverthe heteroclinic orbit is transverse in the real subsystem: the manifold M intersectstransversely the stable manifold of the origin at r =1.Proof. The proof, together with a more detailed description of such solutions, canbe found in [18].We next examine the non-degenerate system with aI 6= 0.Proposition 8. (Supercritical, aI 6= 0) Suppose aR < 0 and �R > 0 and �xany wave number k0 2 N. Then for any aI ; �I su�ciently small and �I=aI � 1� a2Ithere exists a heteroclinic orbit w(r), with limr!0w(r) = 0 and tending to a type IIequilibrium as r ! 1. The heteroclinic orbit is transverse. Moreover there existsa unique value �0I = O(aI) such that the heteroclinic orbit tends to the other type IIequilibrium as r !1. This heteroclinic orbit is transversely unfolded by the parameter�I . Proof. We suppose aR = �1 and �R = 1. We use singular perturbation methodsin order to establish the existence of heteroclinic orbits for the perturbed system. AtaI = �I = 0, there is a curve of type II equilibria for the asymptotic equations atr = 1, given by z2I = 1 � R2, which intersects transversely the real subspace at theequilibrium z = 0; R = 1. Therefore the center-stable manifold of this line of equilibriaintersects transversely the shooting manifoldM in (z;R; � )-space. In the perturbedsystem, the line of equilibria persists as a normally hyperbolic slow manifold (see [3]).The heteroclinic as a transverse intersection persists as the intersection with a strongstable �ber of the slow manifold for aI ; �I small enough. On the slow manifold thereare two equilibria z2I = �1 � �I=aI , which are close to the real subspace fzI = 0g



18 A. Scheelif ��I=aI is close to, but bigger than one. By the above stability analysis, theequilibrium which is stable within the slow manifold has det L > 0 and thereby�IzI < 0. We now have to examine the perturbation of the shooting manifoldM bythe complex perturbation terms involving �I and aI . The derivative along the realheteroclinic at �I = aI = 0 of the non-autonomous equation for zI with respect to �Iand aI gives z0I = �I + aIR2 = aI(�I=aI +R2):Thereby the Melnikov integral along the heteroclinic gives a contribution O(aI) whichshows that the shooting manifoldM intersects transversely a stable �ber of a pointon the slow manifold with z0I = O(aI).With these ingredients we can establish the existence of the desired connections.Firstly choosing �I as a parameter, the shooting manifoldM crosses transversely thestrong stable �bers of the slow manifold. The type II equilibria on the slow manifoldare located at O(pj�I=aI + 1j). If jz0I j <pj�I=aI � 1j, there is a heteroclinic trajec-tory connecting to the type II equilibrium which is stable within the slow manifold.If (z0I )2 = ��I=aI � 1, the heteroclinic trajectory connects to the type II equilibriumwhich is unstable on the slow manifold. This proves the proposition.Proposition 9. (Subcritical, aI 6= 0) Suppose aR > 0 and �R < 0 and �x anywave number k0 2 N. Then for any aI su�ciently small, there exists a smooth function�I = �I(aI) such that there exists a heteroclinic orbit w(r), with limr!0 w(r) =limr!1 w(r) = 0. The heteroclinic orbit is transversely unfolded by the parameter�I . Proof. We suppose aR = 1 and �R = �1. In the real subspace at �I = aI = 0, theheteroclinic orbit joining the origin at r = 0 to the origin at r = 1 is transverse byLemma 7. Transverse to the real subspace, the origin is unstable at both, r = 0 andr = 1: the heteroclinic is non-transverse in full-space. We now need the parameter�I (alias the speed of rotation) in order to obtain connections for speci�c valuesof the parameter �I = �I (aI). For this it is su�cient to show that the Melnikovintegral with respect to the parameter �I along the heteroclinic does not vanish.The adjoint variational equation along the heteroclinic has a unique (up to scalarmultiples) bounded solution which lies strictly in the half space zI > 0, because zI = 0is invariant. The derivative of the vector �eld with respect to �I in the direction ofthis half space is just 1, which proves that the Melnikov integral is non-zero. In otherwords we can push through the stable and unstable manifolds by the help of �I withnon-zero speed. This proofs the proposition.12. Conclusions. For a large class of reaction-di�usion systems we have shownthe existence of spiral wave solutions. In contrast to the previous results on �-!systems, our reduction to a non-autonomous ODE is not based on the assumption thatFourier modes decouple. We merely show that, close to the threshold of instability of ahomogeneous equilibrium, there is some kind of decoupling. The interaction betweencritical modes is in a smooth sense of higher order then the projection on the criticalmodes. Compared to similar reduction methods, technical complications arise herebecause the problem is non-autonomous, even in the principal part (from a regularitypoint of view).As another advantage of our method we are able to determine explicitly coe�-cients in our bifurcation equations. These are in general still hard to analyse analyt-ically | we considered a simple but interesting model problem in the last section |but can easily be studied numerically.



Spiral waves in reaction-di�usion systems 19The reduction procedure can be applied to other problems, possibly involvinghigher-dimensional center-manifolds. A systematic treatise of such equations (asknown for elliptic problems in in�nite cylinders, exploiting reversibility, integrabil-ity and normal forms of the reduced bifurcation equations) would be interesting.The rotating waves we discover are of various shape, depending on the natureof the bifurcation. In supercritical bifurcations, they are approximately archimedianspirals at large distances from the tip. Indeed, the derivative of the phase of u isgiven by zI and approaches for large values of the radius r a constant but non-zerovalue. As a subtle di�erence we noticed that in the supercritical case there are twodi�erent types of asymptotic states, given by the two di�erent types of equilibriazI = �p��I=aI � 1 (see the preceding section). For the �rst type, zI approachesits limit value exponentially at a uniform rate with respect to �I , whereas for theother type the exponential rate is close to zero. The sign of zI has another importantinterpretation. If zI is positive, then the arms turn in the sense of the rotation of thespiral; at a �xed ray, under time evolution of the reaction-di�usion system, the armsmove towards the center of rotation. Similarly, zI < 0 corresponds to an outwardsmovement of the arms. Therefore the waves, appearing for discrete wave speeds moveoutwards if aI < 0 and inwards if aI > 0.The rotating waves bifurcating subcritically are isolated as rotating waves andappear for distinguished speeds of rotation. Their shape at large distances from thecenter of rotation is determined by the phase varying according to ' � e�const�r andtheir amplitude decaying to zero exponentially.Though we do not carry out here a stability analysis, we comment on the di�erencebetween sub- and supercritical bifurcation. Linearizing the reaction-di�usion systemalong the subcritical waves in say L2(R2;R2) gives us a linearized operator for theperiod map whose continuous spectrum is strictly contained in the left half plane,bounded away from the imaginary axis. Zero is (at least) a triple eigenvalue due to theeuclidean symmetry, generated by rotation and translations. An analysis of secondarybifurcations from this type of spiral waves, including meandering and drifting waveshas been carried out in [19, 20] and [4].The linearized period map along supercritical waves has zero in the essentialspectrum and rigorous stability proofs seem to be hard. Hagan showed [7] that one-armed spiral waves might be stable whereas multi-armed waves (k0 6= 1) should beunstable. REFERENCES[1] D.S. COHEN, J.C. NEU, and R.R. ROSALES, Rotating spiral wave solutions of reaction-di�usion equations, SIAM J. Appl. Math., 35 (1978), pp. 536{547.[2] W.A. COPPEL, Dichotomies in stability theory, Lect. Notes Math., 629, Springer, Berlin,1978.[3] N. FENICHEL, Geometric singular perturbation theory for ordinary di�erential equations,J. Di�. Eq., 31 (1979), 53{98.[4] B. FIEDLER, B. SANDSTEDE, A. SCHEEL, and C. WULFF, Bifurcation from relativeequilibria with non-compact group actions: skew products, meanders and drifts, Doc.Math. J. DMV, 1 (1996), pp. 479{505.[5] J.M. GREENBERG, Spiral waves for �-! systems, SIAM J. Appl. Math., 39 (1980), pp.301{309.[6] J.M. GREENBERG, Spiral waves for �-! systems, II, Adv.Appl.Math., 2 (1989), pp.450{455.[7] P.S. HAGAN, Spiral waves in reaction-di�usion equations, SIAM J. Appl. Math. 42(1982), pp. 762{786.
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