BIFURCATION TO SPIRAL WAVES IN REACTION-DIFFUSION
SYSTEMS

ARND SCHEEL*

Abstract. For a large class of reaction-diffusion systems on the plane, we show rigorously that
m-armed spiral waves bifurcate from a homogeneous equilibrium when the latter undergoes a Hopf
bifurcation. In particular, we construct a finite-dimensional manifold which contains the set of small
rotating waves close to the homogeneous equilibrium. Examining the flow on this center-manifold
in a very general example, we find different types of spiral waves, distinguished by their speed of
rotation and their asymptotic shape at large distances of the tip. The relation to the special class of
A-w systems and the validity of these systems as an approximation is discussed.
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1. Introduction . We study reaction-diffusion systems
(1.1) U, =DAU + F(\U),  U(z,t) cRY AeRP

on the plane z € R?. The N-dimensional vector U typically describes a set of chemical
concentrations and temperature, depending on time ¢ € R and the space variable z.
The parameter A is a p-dimensional control parameter which shall allow us to create
instabilities of spatially homogeneous equilibria. We shall be interested in rotating
wave solutions U(t,z) = U(0, Rux), ¢ # 0, where R, is the rotation in R? around
the origin by the angle ¢ € R/27x7Z. Our analysis show that this class of solutions
appears naturally via some type of Hopf bifurcation. Moreover the spatial structure
resembles n-armed spiral waves.

Experimentally this type of spatio-temporal pattern has been observed frequently
in chemical, biological, physiological and physical experiments (e.g. the Belousov-
Zhabotinsky reaction, the catalysis on platinum surfaces, electro-chemical waves in
the cortex of the brain, signaling patterns of the slime mold and the Rayleigh-Bénard
convection). Nevertheless a rigorous treatment of existence and creation is still not
available — for various reasons.

Spiral waves are typically observed in spatially extended oscillatory processes.
Near Hopf bifurcation points the dynamics of these processes is approximated by
Ginzburg-Landau equations or A-w-systems [1, 10]. This has been shown using formal
asymptotic methods; see [1] for example. Recently a rigorous proof of the approxi-
mation property of Ginzburg-Landau equations has been given by Schneider; see [21].
The important property of the approximating equations is a decoupling of Fourier
modes which was exploited by several authors in order to construct spiral wave so-
lutions [1, 5, 7, 11], though the methods are still formal or do not cover the typical
nonlinearities appearing close to bifurcation points.
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2 A. Scheel

Of course a treatment of Hopf bifurcation using classical bifurcation methods
with symmetry is not possible because neither center-manifolds exist nor Lyapunov-
Schmidt reduction can be applied, due to presence of continuous spectrum. Another
explanation is provided by the fact that the symmetry of the reaction-diffusion equa-
tion, the Euclidean symmetry, does not have bounded finite dimensional representa-
tions; see [12] for an approach to Ginzburg-Landau equations exploiting symmetry.

In spatially extended systems including only one unbounded spatial variable, typ-
ically cylindrical domains, the continuous spectrum can be avoided by restricting to
steady state solutions and considering the unbounded spatial variable as a new time
direction. This approach was introduced by Kirchgéssner [9] and applied to various in-
teresting problems in mechanics, fluid dynamics and physics; see for example [13, 17].
Unfortunately, considering systems with several unbounded directions, this method
becomes less successful; see however [14].

We adopt the idea of spatial dynamics, now considering the radial direction in
polar coordinates as a new time variable, in order to describe the spatial structure
of rotating waves by a surprisingly finite-dimensional, non-autonomous ODE on a
center-manifold. In particular any small bounded solution to this ODE corresponds
to a rotating wave of the original reaction-diffusion system. This approach allows us
to describe systematically the creation of rotating waves from homogeneous equilibria
of reaction-diffusion systems.

The paper is organized as follows. In the next section we fix the abstract functional
analytic setting in which we formulate a center-manifold reduction theorem. This
theorem, our main result, is stated in § 3 and proved in the subsequent two sections.
The key to the proof are exponential dichotomies which are proved to exist in our
functional analytic framework in § 4. In § 6 we comment on a localization of our main
theorem using cut-off procedures and we briefly discuss regularity of solutions in § 7.
The last important abstract result is stated in § 8, where we formulate and prove the
existence of a larger manifold, containing solutions which might be singular at the
origin. This manifold is tangent to a subspace which is independent of time  (alias
the distance to the origin in R?) and therefore allows to derive explicit bifurcation
equations. We conclude by applying our results to a model problem in the remaining
sections.

2. The abstract setting. Introducing polar coordinates = (r cos g, rsin ¢),
the equation for rotating wave solutions of (1.1) becomes

1 1
(2.1) D(U" + ;U’ + ﬁUw) + F(\U) = cU,,

where ' = %, pe St =R/27Z, r € (0,00) and ¢ is again the speed of rotation.

We suppose that for an initial parameter value Ay we are given a spatially ho-
mogeneous equilibrium Up(Ag) which solves F(Ag, Up(Ag)) = 0. As we are merely
interested in Hopf bifurcation we suppose that this solution can be continued in A to
a branch Up(A) which we can assume without loss of generality to be the zero solution.

To sum up we suppose that F'(A,0) =0 and D = D* > 0.

Note however that the first assumption is merely a simplification for clarity of the
statements and the second assumption might be generalized slightly.

As a most elementary example, which is discussed in § 9, the reader might think

of D=id and F(\,U)=iU 4+ O(|U|?),U e R? ~ C.
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Next we multiply (2.1) by D=1
(2.2) U’ + %U’ + %UW =D F(\U)+ DU,
and linearize around U = 0
(2.3) U’ + %U’ + %UW =D 'Fy(\,0)U + DU,

We work in the function spaces H'(S*,RY) { > 0. Functions u € H' may be repre-
sented by their Fourier series

u(p) = Z upe'*?

k€L

with u_; = 43 and ||u||12q, =D kez luz | k% < .

The operator A = —0,,, is self-adjoint and positive in H' with spectrum {k?; k €
7} and domain of definition H'+?. The spectral information on our bifurcation prob-
lem is contained in the operator

By.:HT ' cH' — H!
u(-) = =D Fr (X, 0)u(-) + cD_luw().

As ¢ # 0, the operator B) . can be considered as a bounded perturbation of the closed,
antisymmetric, unbounded operator C. = ¢D~'d, on H'. Thereby B . has point
spectrum, and any strip {z € C; |Imz| < M} contains only finitely many eigenvalues,
each of finite multiplicity.

We denote by IS_f_(A, ¢) the spectral projection to the operator By . on (—o0,0] C
C. Of course ]S_f_(A, ¢) can be constructed via Dunford’s integral.

We rewrite equation (2.2) as an equation in function space

1 1 ~
(2.4) u' + —u' — —Au=—F(\ u)+ Ceu
r r
and linearize around u = 0
1 1
(2.5) u + —u — —Au= B cu.
r r

We suppose that F € CE(RP x H*Y2 [, K > 1 which can be achieved
assuming F' € C¥ and either [ > 0 such that H*/? — C° or assuming suitable
growth conditions on F'.

We say that u is a solution of (2.4) (or (2.5)) on an interval 7 C (0, 00) if
u € Cclos I, HY ) nCHclos I, HYNC*(int I, HYNC(int I, H )N CO>int T, H'+?)

and if (2.4) (or (2.5) respectively) is satisfied in H'.
Furthermore we introduce a new time

| logr, ifr<vr
T(r)_{ 7, if »>2r

defined by smooth, monotone interpolation on (7, 27) such that r € C*°(R* R). The
exact value of the positive constant 7 is of no importance for the statement of the
results.
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For r < 7 the differential equation (2.4) becomes

Urr — Au = —eZT(F(/\, u) — Ceu).

Of course the equation (2.4) remains unchanged for » > 27.

We conclude this section emphasizing on the symmetry of equation (2.4). The
rotation ¢ — ¢ + @ on St ~ SO(2) acts on H'(S', RY) by shifting functions on the
circle: u(yp) — u(p — @). Of course this symmetry is inherited from the Euclidean
symmetry of the original problem. Note that translations are ruled out by the ansatz
for equilibria in a fixed rotating coordinate system. Translates of any solution found
with this ansatz would be periodic solutions in our coordinate system.

3. Main results. We write (2.4) as a first order differential equation

(3.1) Lu(r) = A7)+ Gu(r)), = (ueu(r))

on the space u € X = H'TH(SY RY) x H!(S1 RY). Here

. 0 1 _ 2T - 0
Al = ( A4 € By, 0 ) ’ Glu) =~ ( F(Au)+ Bxcu—Ceu ) ’

if 7 <logr and

0 1 0
./4(7') = ( T_2A+ B)\,c _7_—1 ) ’ g(ﬂ) = - ( F(/\,U) =+ B;ch — CCU ) ’

if 7> 27. For 7 € (logF,27), the exact form of the equation is not important, as
solutions arise from solutions of (2.4) by a bounded diffeomorphic rescaling of time.
The linearisation of (3.1) along v = 0 is

(32) Lor) = A(r)u(r)

We let

Y5 = {u€ CO(R, X); [Jully, < oo} where ||ully, = sup ™1 u(r)[x,
7R

and, similarly,

—t _
V¥ = {ue OO, X); Ilullv, < oo} where [Jully = sup e~*lju(r)lx..
7R

The norm in X, of u(r) = (u(r),v(r)) is defined as

(7| x, = = ul g + |ul gz + vl ifT > 27
rr |w(T)|gre+r + |0(7) | a2, ifr < 27

Let us denote by E°(r) the (possibly empty) linear subspace of initial values of the
linear equation (3.2) at time 7 which give rise to Ys-bounded solutions. Of course E°
depends also on 6.

THEOREM 1. Suppose the superposition operator F 1o the nonlinearity F' belongs
to the class CK(RP x HH1/2(ST BN) HI(SY BRM)), 1 < K < co. Suppose furthermore

bl

that for A = Xg and ¢ = ¢y we have P{(A, ¢) # 0.
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Then there are €,6 > 0 such that, if
Lip [F — Fu(X, 0)] 4 |A = Ao| + |e — o] < ¢,

there exists a unique finite-dimensional C* -center-manifold M C X x R which con-
tains all solutions of (3.1) which are bounded in Ys. The manifold M is given as a
graph over {E°(7); 7 € R} and depends smoothly on A c. In any section T = 79, it is
tangent to E°(1) at A = Ag, ¢ = cg.

Moreover we have

(i) flow property: for any uy = u(ro, ¢, A) € M, there is a unique Ys-bounded
solution u(r), 7 € R {0 (3.1) with u(my) = ug.

(ii) dnvariance: this unique solution u(r) lies on M for all times 7 and depends
CE on uy, 7, A and c.

(iil) dimension: the dimension of E°(7) is dim R(ﬁ_f_(/\o, ¢p))+ dim IS_f_(Ao, 0)RY
where the second summand ts the dimension of the range when restricted on the ho-
mogeneous N-dimensional subspace of H'.

(iv) symmetry: the manifold M is invariant and the flow on M is equivariant
under the diagonal action of SO(2) on X = H'*! x H'.

Remarks:

(1) Let us emphasize that the operator DA + 9, has continuous spectrum close
to the imaginary axis which makes a standard, finite-dimensional bifurcation approach
to the dynamical reaction-diffusion problem impossible.

(ii) We will later give expansions for the spaces E°(7) at 7 = oo and describe
how to obtain expansions for M.

(iii) Tt is possible to treat the case of F' depending on Vu with the same methods.
Indeed, both components of the gradient, w, and %Uw are bounded with respect to
|(ua UT) |X7— :

(iv) A slight generalization could be obtained by the use of interpolation spaces
between X, and D(A(7)). We avoided these additional technical difficulties for the
sake of clarity.

(v) Making é larger it is possible to allow singularities of the rotating waves
at the origin, a phenomenon which is frequently attributed in the literature to spiral
waves. The manifold will be larger if we allow for this type of solutions, but still finite-
dimensional. However, the point in this work 1s, that even spiral wave like solutions
without singularities at the tip are created via Hopf bifurcation.

4. The linearized equation. The key to a center-manifold theorem is the con-
struction of exponential dichotomies for the linear equation. Background information
on exponential dichotomies might be found in the textbook [2], in [15] or, in a non-
evolutionary, elliptic context, in [16].

4.1. Bounded solutions for 7 — —oco. We construct a family of projections
Pe%(7) which project on the initial values of bounded solutions to (3.2) on (—oo, 7].
In a more general context this problem has been studied in [16]. The main theorems
there (Theorem 1 and Theorem 3), applied to our setting, state the following:

LEMMA 2. Under the conditions of Theorem 1, suppose 19,7, 7 < 2r. Then there
are families of evolution operators, smoothly depending on A and c,

Y (r,m) X =X, 7<m
P () X =X, 7>m1

and constants C' > 0, n* > n >0, such that
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uls (-, 70)u is a solution of (3.2) for any u € X,
/8(

(i) @
(ii) @
iii) ®

11

Ju is continuous in X,

( (TQ,TQ)—|—<I) (To,To) Zd,

(iv) ® U/S(T )0 uls (11,7m0) = <I>li/s(7', ), <I>li/s(7', 7'1)<I>3_/u(7'1, ) =0, and

(v) 9% (7, m0)|r(x,x) < Ce™ - “(7=7o) |D2 (7, 70)|L(x,x) < Ce "=(7=70) and we
can choose any n* > 0.
We define P2(r) := ®% (1, 7).

We will later see how we can give a more explicit representation of the evolution

u
u

operators ® in terms of Bessel functions. This will also show why the uniqueness as-
sumption from [16] is automatically satisfied in our context because the linear equation
splits into an infinite product of ODE’s; which are all uniquely solvable — in forward
and in backward time.

4.2. Bounded solutions for 7 — +0co. The situation at 7 = +00 is consider-
ably more difficult as B) . is no more r-uniformly bounded with respect to 7724. It
is due to our careful choice of norms in X, that we still have an analogous result to
Lemma 2.

LEMMA 3. Under the conditions of Theorem 1, suppose 19, 7,7 > 2r. Then there
are families of evolution operators, smoothly depending on A, c,

q)i(Ta TO) :XTU - XTa T S 70
q)j—(Ta TO) :XTU - XTa T Z 70

and constanis C'> 0, ny > n’% >0, such thal
(i) @i/s(~, To)u is a solution of (3.2) for any u € X,
(ii) <I>j_/s(~, Ju is continuous in X,
(111) q)l_f_(To, To) —|— q)j_(To, To) = Zd,
(iv) <I>1_f_/s(7', Tl)q)i/s(Tl, ) = <I>1_i_/s(7', o), <I>1_f_/s(7', Tl)q)j_/u(Tl, ) = (s), and
(V) @47, 70)|Lix,, x,) < Ce™tT=m) @ (r,70)|L(x,, x,) < Ce+ 7™ and
we can choose any 1y > 0.
We define P{*(1) := @5 (7, 7).
Proof.
Stepl: Fourier Ansatz
The proof of this lemma is the central part of our analysis. Complexifying X, the
subspaces

To)

E* = {(ue*® ve*?) € X; u = (u,v) € (CV)?} < X,

are invariant under (3.2). Of course, we are primarily interested in the real subspace,
where we have a relation between the vectors in E* and E~*. In E* the differential
equation reads

k2
u' + ' — Zu=—D7YF, (X, 0)+ cik)u =: BY u.
- :

If we expand u(7) = Y, oz v (7)e'* %, then |u(7)|x, is equivalent to (3", ¢y, Juk 2,12,
where

1
|| pr = kl(;|kuk|@N + k2 b o + o)
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if k 75 0 and |QO|E1; = |QO|(@N)2.

By the above considerations we see that 1t 1s sufficient to construct the evolution
operators on £¥ and uniform exponential bounds on the norms in £* will carry over
to X,.

Step2: Projections

According to the remarks in § 2, we decompose E* into E§,+ = P_lc_Ek and E£,+ =
(1- P_Ic_)Ek, where P{ = diag (p_f_(/\o, o), P_Ic_(Ao, ¢p)) and IS_IC_(/\O, ¢p) projects on the
negative part of the spectrum of By, ., .

Step3: Stable projections, estimates

We show that all solutions in E§,+ are exponentially bounded in E* with an
arbitrarily small exponent 6 — keeping A, ¢ sufficiently close to Ag, ¢g.

As the range of IS_f_(Ao, ¢p) is finite-dimensional, only finitely many modes k are
involved in the computation. We therefore use the equivalent,standard, k- and 7-
independent norm on (CV)2. Decomposing Bl)f,c furthermore into Jordan blocks, it is
sufficient to consider

1 k2
u' —|——u ——u—i—A(k Acu=0

where A(ko, Ao, ¢o) is a Jordan block. The eigenvalue of A(kg, Ao, co) belongs to R,
as u € R( (Ao, c0). If we add o = —a?, then 7 = 1/a and we see that at
A = Xy, ¢ = ¢, the origin v = 0,4 = 0 and & = 0 (alias 7 = o0) is an equilib-
rium with all eigenvalues of the linearization being situated on the imaginary axis.
Exponential growth with rate 3 > 0 arbitrarily small now follows from standard
Gronwall estimates for bounded «, that is, choosing 7 bounded away from zero, and
A, ¢ sufficiently close to Ag, ¢g. This proves the second inequality in (v).

Step4: Unstable projections, estimates

Now let u € E . Our aim is to decompose Eh + in subspaces of exponentially
decaying and exponentlally growing solutions. We set

- k?
i(7) = (5 + B, ) u().

As here B;f . does not have eigenvalues on R_, we can use the standard square root
cut along R_. Moreover the norm |u|gx is equivalent to |i[gy + [v|gnv. Note that

here we omitted the factor &', as it is independent of time and does not change the
equations to be considered below. We write « = 1/7 and L(a) = (k%a® + B>\D 00)1/2.

In the new variables, the differential equation on Eﬁ 4 reads

@ = L(a)v+ 0.L(a)a'u
= Lla)v— kL7 %(a)a
(4.1) v = —av+ L(a)u
o = —a’
Next, we set |[L7!(a)|-L = & and obtain
i = L|L7'v—o?k?L72 |07 a
(4.2) @ = —a|L v+ L|IL7 G
& _ o
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with I = L(«). The linearization at 4 = v = 0, o = 0,

@ = LIL7Mw
(4.3) &= LLYa
da _
ds .
admits a projection P(&,v) = %(ﬂ + v, % + v), which is independent of k¥ and «.

Therefore, the flow ®y of equation (4.3) possesses uniform exponential dichotomies at
u = v = 0. To see this, we first observe that for s < s,

|Bo (s, 50) P p(cany < |eEETE=50) | o).

Now remember that by definition of the square root, the spectrum of L lies in the
right half plane and is, for |k| — oo, = 0, asymptotic to k1/2exim/4 For finitely
many k, we therefore obtain

|6_L|L_1|t|L(@2N) S Cle_mt, t>0

with some constants 1,71 > 0, independent of k, . As k — oo, we consider first L=
k=121, Of course L|L=' = L|L='|. For k large, the operator Lo = (ka®4 D~ 'ei)t/?
is a small (uniformly in «, k) perturbation of L. As D > 0, the spectrum of D=1 lies
on iRT. Therefore the spectrum of L lies in the right half plane, uniformly bounded
away from the imaginary axis, and we can diagonalize Ly by a transformation which
is independent of & and & to obtain
|6_ED|EU_1|t|L(@2N) < 026_772t, t>0

for some constants C'z,72 > 0, independent of o, k. By perturbation arguments, the
same estimate holds true for L and L and we conclude

|<i>0(5; s50)Plrcomy < Ce"s=s0) 5 < g

for some C,n > 0, independent of o and k. The calculation on R(1 — P) is the same
and we obtain
|Bo(s; 50)(1 = P)|peemy < e EETIE30) |y < oGm0 g > g,

These two estimates together guarantee an exponential dichotomy for the equa-
tion (4.3). Equation (4.2) is a perturbation of (4.3). We show that the perturbation
of the vector field is O(«), uniformly in k. By standard perturbation results on expo-
nential dichotomies [2] this then proves that (4.2) possesses an exponential dichotomy
with projection ]S(k, «), and constants C~', 7 > 0, independent of &, o as long as « is
bounded.

The error terms we have to deal with are a®k?L=2|L~!| and «|L~!|. Of course
for finite k& these terms are O(«). Consider now the first expression for large k:

oPR?[L7%) = o’k [0’k? + B, 177
= o®k?[0’k? + D™ teik + O(1)] 7Y - | D™ Yeik 4+ O(1)| 712
1 _ _
(1+O0(1/k)] ™" - O(ak™"/?).

ct——
a?k

=1+ D7
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As |[1+ D_lciaék]_w < Cj3 uniformly in a, k, the above expression is O(ak~1/?),
uniformly in k. Next we consider the second error term a|L™1]:

a|L7Y = a|[e®k? 4+ D eik + O(1)] 72
= k2L + O(1/k)))
= O(ak™1/?).

This proves uniform smallness of the perturbation. It remains to translate the
exponential dichotomy rate 7 into the correct time 7 = 7(s).

As & = |L7Y(a)|71, it is sufficient to get &, k-uniform bounds |L~(a)|™! > 5o >
0. This is precisely the type of estimate we developed above for a|L™!|. Indeed we

showed that
L7 = k7 PLG (1 + O(1/k))

and therefore 1y can be chosen O(kl/z) as k — oco. This proves the lemma with
ny = non and % from step 3. O

4.3. Matching at 7 = 27, the center space E°(r). We define F°(r) =
@3 (7, 7)® (7, 7)X, which, by the previous two lemmata, coincides with the defini-
tion of F¢(7) as the initial values for Ys-bounded solutions, if we only choose § small
enough. In order to prove the claim on the dimension of E¢(r), we need a transver-
sality result from the theory of Bessel functions. Suppose first that u(7) € E°, the
subspace of radially homogeneous functions. For 7 — —co the linear equation in E°
is u;r = 27 Au with some matrix A and clearly any solution is Ys-bounded as expo-
nential rates of solutions coincide with the rates of the autonomous part u,, = 0. So
the negative orbit of u(7) is Ys-bounded. The positive orbit is bounded in V5 if and
only if u(7) € P{(Xo,0)E?; therefore dim £°N E° = 2dim ]S_f_(/\o, 0)RY. For the rest
of this section we restrict to (E°)1, the non-homogeneous Fourier modes. Recall that
P{ = diag (ﬁ_f_(/\o, o), ]S_lc_(/\o, ¢p)) and P_lh_ = 1— P projects on the hyperbolic part
of (3.2) at r = co. We claim that

(4.4) &% (7, 7)Q (7, T)Plu =0

for u € (E%)L. We decompose into Fourier modes ¢**¥ and minimal Jordan blocks A,
and we consider

1 1 / kz
u' 4+ —u' — —u+ A(k, Ao, co)u = 0.
T T

If A is semi-simple, that is A € C\ Ry, then the solutions of this scalar ODE are the
Bessel functions. Indeed, we can write this equation as

2 e+ (—k? 4 (r\/X)z)u =0
and therefore

u(r) = uojk(r\/X) + ulYk(r\/X).

As Jp(r) = 7F(1 + O(r)) and Yi(r) = r~%(1 + O(r)) for r — 0, if k& # 0, solutions
bounded close to r = 0 satisfy u; = 0. At infinity the Ji behave like
2 kr @

Jr(r) = E[cos(r — 5 Z) +O(1/r)].
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Solutions u(r) = ugJi(V/A) can only stay exponentially bounded by ¢ as r — oo,
for a small fixed 8, if /A is real. But then A is real and positive, that is u € ﬁ_f_X
This proves the required transversality result (4.4) for semi-simple eigenvalues.

If A is a Jordan block we can rescale the principal vectors — without changing
the angle between stable and unstable subspaces — to make it a small perturbation
of its semi-simple part. The transverse intersection persists for the non semi-simple
Jordan block.

Now suppose u € p_IC_X Then the above reasoning showed that for any such
u there is exactly one Yjs-bounded solution. This implies dim (E¢(r) N (E%)%) =
dim R(p_f_(/\o, c0)(E°)%) and proves the claim (iii) in Theorem 1 on the dimension of
the invariant manifold, once it is constructed as a graph over {E°(7); 7 € R}.

5. Nonlinear equations, Proof of Theorem 1. With the estimates on the
linearized equation at hand, it is fairly standard to construct invariant manifolds for
the nonlinear equation. We consider equation (3.1).

PROPOSITION 4. Under the conditions of Theorem 1, any Y, -bounded (or Yé'l'-
bounded) solution u(T, ) on (—oo, 9] (or [0, +00) respectively) satisfies

u(r, 70) = O (7, 70)u(r0, 70) + /T QY (1,0)G(u(o, 70))do

—1—/_7 ® (1,0)G(u(o, 10))do,

oQ

or

u(r,70) = @4 (7, 70)u(10, 70) + /T @ (1,0)G(u(0, 0))do

—|—/T QY (7, 0)G(u(o, m0))do,

— 00

respectively. On the other hand, the above integral equations possess for any u(7g, 7o)
a unique solution u(r,79) in Yéi which depends CX on u(ro,70), A, ¢, 7 and 5.

Proof. The integral operators are bounded operators on Yéi and the Lipschitz
constant of the nonlinearity G is small. Indeed

Lipx G < Lipgiti/2_ g [F — Fu]

which was supposed to be sufficiently small. Regularity of the unique fixed point can
be proved as usually for center-manifolds; see [24] for example. a0

We call the set

T

{®% (7, 7)u + / ®* (7,0)G(u(o, 7))do =: ¥_(®* (1, 7)u); u € X}

— 00

the center-unstable manifold M (7) at —co and the set
{5 (7, T)u+ / QY (1,0)G(u(o, 7))do = U (P (7, T)u); u€ X}

oQ

the center-stable manifold M$(7) at +o00 and we define

M(1) = M ()N M (7).
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By definition, M(7) = { initial values at time 7 of Ys-bounded solutions }. We have
to show that M(7) is a smooth manifold, parameterized over E¢(r).

Therefore, we have to solve ¥y — W_ = (. The linearization is given by ®* —
@} = 0. We already know that the kernel of this equation is exactly £, thus finite-
dimensional. In order to apply the implicit function theorem we have to show that
®* — @4 is surjective. We have to decompose a u € E* into two vectors belonging to
the range of @4 and ®* respectively, with estimates on the norms uniform with respect
to k. The fact that we can decompose follows simply from the linear independence
of the Bessel functions of the first and second kind Jj and Y} (actually, we merely
refer to purely imaginary arguments, the hyperbolic case, where the notation is I for
the Bessel function bounded at r = 0, and Kj for the solution bounded at r = o).
Estimates on the norms — for a fixed time 7 — follow from uniform estimates on the

Wronski-determinant
Ik (T) [(k (T) )
det ,
( I(r) Ki(r)

which in turn are an immediate consequence of the Taylor expansions at 7 = 0 of the
Bessel functions; see for example [25]. As in §4.3, Jordan blocks can be considered as a
small perturbation. By Lyapunov-Schmidt reduction we can now solve ¥, —¥_ =0,
parameterizing the set of solutions over the kernel of the linearization E°(r). This
proves Theorem 1.

6. Local center-manifolds. If the nonlinearity F does not have a small Lips-
chitz constant, which is usually the case in applications, we have to modify F.

We cut off F outside a small neighborhood B., of zero with a smooth cut-off
function in H'*/2 for example the norm, which is invariant under the action of
S8O(2). Therefore let x € C*°([0,00), R) with x(#) = 1if ¢t <1 and x(t) =0if ¢ > 2.
Then define

Fonoa (X 0) = x([ufpaaz /o) (F(A, 1) = Fu(X, 0)u) + Fu(X, 0)u.

The nonlinear part of Fmod has an arbitrarily small Lipschitz constant if we make ¢
sufficiently small, and thereby satisfies the conditions of Theorem 1. Any solution on
the center-manifold to the modified nonlinearity F,,q, which has norm sup, |u(7)|x,
small enough, will have sup_ |u(7)|gi+1/2 small such that the modified nonlinearity
coincides with the original nonlinearity on the solution u(r), which is in consequence
a solution to the original equation. Note that bounds on the norm in X, are by
construction of M equivalent to bounds on the norms of the projection of the solution
on {F°(r); T € R}.

7. Regularity of solutions. The solutions u(r, ¢) we obtain are bounded in X;.
By the smoothing property of the equation (which can be considered for any {, without
changing M), any solution is actually of class C'* with respect to r > 0 and ¢, if '
is — though M is not C in general! As r — oo, the angular derivatives ;' u(r, )
are bounded for any m, which implies that the derivatives along curves r = const
with respect to arclength rdy are of order 1/r™: patterns are slowly varying in the
angular direction far away from the origin.

At r = 0 we have to be careful about smoothness of the solution. Suppose first
that E°(7) does not contain solutions in the angular homogeneous subspace E°. Then
solutions in F¢(r) are O(r) = O(e") as r — 0 and smooth in a neighborhood of the
origin by interior elliptic regularity.
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The homogeneous subspace can be — and has been — treated separately studying
the ODE on Fix(SO(2)). Indeed there is a subspace of dimension N with solutions
which actually stay bounded, whereas solutions outside this subspace have singulari-
ties of order logr.

On the other hand, considering again 7-dynamics in M, this subspace of homo-
geneous functions is fibered by strongly unstable fibers such that any solution in M
converges with rate O(e”) to a solution in the homogeneous subspace and inherits its
regularity.

8. Center-manifolds at infinity. We construct a finite-dimensional invariant
manifold which contains all solutions which are bounded at 7 = 4+co but do not decay
too rapidly. Recall that P{ = diag (]S_f_, ]S_f_) projects on the center part of (3.2) at
a=1/r=1/r=0.

PROPOSITION 5. Under the conditions of Theorem 1, consider equation (3.1)
close to u=10. Fiz 6 > 0 sufficiently small and K < oo.

Then there is an invariant CK -manifold M, contained in M and containing
M, given as a graph over {R(P}); 7 € R}, smoothly depending on A, c.

Moreover there is a C¥-flow on MS such that any orbit is a solution of (3.1)
and any solution u(r) of (3.1) with

sup e—6|T—TD| |@(T)|Xr

< 0
To2T>2T |Q(TO |X,.D

is contained in MY .

Proof. We start by constructing M¢ for 0 < o = 1/r < 1/27 bounded. The man-
ifold M¢_is the union of center-unstable fibers of the zero-solution in the center-stable
manifold M. These fibers can easily be shown to exist, using graph transformation
(we have a smooth semi-flow on M§*) or a Lyapunov-Perron approach as in [16]. The
dependence on time «« = 1/7 is smooth as fibers are mapped into each other by the
flow.

We have to ensure that we can arrange to have M included in M€ . This can be
achieved by either starting the graph transformation with graphs that contain M (and
“feeding in’ such graphs appropiately) or, referring to the Lyapunov-Perron approach
of [16], including the manifold M in the fixed initial unstable fiber at 7 = 27 (see for
example [16], at the end of §3).

We next have to continue this manifold for &« > 1/27, or, equivalently, for t — —oo.
This will again be done using the methods from [16]. If we had an evolution type
equation we would propagate the manifold M9 with the flow. Here we do not have
a flow! By [16], the equation possesses an exponential dichotomy which permits to
prove the existence of the center-unstable manifold M (the union of unstable fibers
over time 1), as pointed out in Lemma 2 and, furthermore, the existence of stable
fibrations to any solution in M® for any fixed initial fiber at 7 = 27 (which is
transversely intersecting M N {r = 27}). We are interested in the stable fibration
induced by the manifold M7 | which is of course not complementary to M““. However
the methods from [16] can be adapted in order to guarantee precisely the existence of
such a manifold. In the following we indicate how to make the necessary changes.

We solve the integral equation for stable and unstable fibrations with the restric-
tion that the fiber at the initial time 7 = 27 belongs to a fixed manifold transverse to
M2 which we can choose to contain M5 N {7 = 2r}. On this smaller subspace the
fixed point equation for stable and unstable fibers still defines a contraction mapping
and the solution is the desired global continuation of M9 . The smoothness of the
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union of the fibers as a manifold follows, because we can differentiate the fixed point
equation with respect to the base solution in the center-unstable manifold M. The
exponential properties of the new fixed point equation allow for a setting in the usual
scale of exponentially weighted spaces [23], because the equation for the stable fiber
at a fixed time 7 only involves the finite time interval [, 1/27]. We do not carry out
the details which include only straightforward modifications of smoothness proofs for
fibrations (note however that we do not care about the limit 7 = —oco — alias r = 0
— of the fibration which would lead to limitation in regularity of the fibration).

Of course the projected vector field is also smooth and thereby defines a smooth
flow on the finite-dimensional manifold M . O

The hypothesis F(/\, 0) = 0 was only needed in order to fix a reference solution
in M7, notably the zero solution. In general we could construct smooth fibrations
along any solution in M%*.

The manifold M4 we constructed is very useful in order to describe bounded
solutions near infinity, though most solutions on M? are not bounded at the origin

r=0.

9. Hopf bifurcation and (A, w)-systems. We give the most simple non-trivial
application of our main theorem. Suppose D = id, F(/\, 0)=0, AeRand N = 2,
that is U € R? which we identify with C. Suppose that the homogeneous zero state
undergoes a non-degenerate Hopf bifurcation in the space of homogeneous solutions:

%F(A,O) —iw+A w0
We write U as a complex Fourier series U(r, ¢) = 3 ;o U*(r)et*?. The spaces E* are
just the complex two-dimensional spans ((¢**%0), (0, e'*¥)). The operator B, . acts
on E* as multiplication B¥(X,¢) : U¥ — (cik — iw — A)U*. Thereby E¢(r) < E*o if
coky = w. In other words, for any k(-armed spiral) there is a rotation speed ¢ = w/k
such that rotating waves with this speed may bifurcate. Our analysis has shown that
for other wave speeds, the homogeneous state is isolated as a rotating wave.

Let us comment on the symmetry. The flow on M projected on E¢(r) < E* is
equivariant with respect to the action of SO(2):

(U, U — (U, U'et¥), v ER/277 ~ SO(2).

This is exactly the same symmetry that authors usually assumed to be present in
bifurcation equations, the so-called (A,w)-systems, modeling the creation of spiral
waves; see [1]. We showed rigorously that the symmetry of (A, w)-systems, without
any error term, is present in this type of bifurcations.

The actual solutions U = U¥(r)et*? of the linearized system in E°(7) are eas-
ily calculated: they solve (U*)" + %(Uk)’ = (k?/r2)U* and are given as U(r,p) =
Ucrkel*? /¢ € C. Note that the invariant complement in £*, spanned by [7(7“, p) =
Uecr—keike [7¢ € C converges as E¢(r) to the same limit {(U,U’); U’ = 0}. This is
the reason why we constructed M5 tangent to E* in § 8. The equation on M7 s
a non-autonomous, SO(2)-equivariant ODE in C? with linear part given by Bessel’s
differential equation. Tt can be smoothly extended to time 7 = co(a = 0) where the
equation becomes autonomous. In order to determine existence and shape of rotating
waves at r = oo, we have to calculate expansions of the vector field on M9 and
determine the w-limit set of the two-dimensional slice M(7) in M5 . We examine a
simple model problem in the next sections.
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10. An example. As an example we study the following reaction-diffusion sys-
tem

u = diAu+ ku — v — au’

vy = doAv + bu — Yo

in the plane z € R?2. When &« = v and b— & > 0, the pure reaction system undergoes
a Hopf bifurcation in the origin v = v = 0. Rescaling u,v,¢t and z, we may assume
the system to be in the particular form

uy = Au+ au — fo — au®

ve = vAv + Bu — av + Av

with 82 —a? =1 and «, 8 > 0. We assume in the following that ) is close to zero, that
is, we are close to a Hopf bifurcation with eigenvalues ¢ of the linearized reaction
system. The rotating wave ansatz yields

_ 3
cuy, = Dpou+au—fuv—au

(10.1) cuy = v v+ fu—av+ Ay

where A, , = Opr + %&« + r%aww The linearization at A= 0,u =v =018

cup, = Dpoutau— Py
vy = v, v+ fu— av.

(10.2)

We now expand the solutions in Fourier series with respect to ¢

(u,v) = Z(uk,vk)eikw, (w™F v™F) = (uk, o).

k€L

The linearization (10.2) then becomes an uncoupled system of ODEs for the Fourier
coefficients

Ahkuk = (cik — a)u® + pot
v, pv = —pBu* + (cik + a)v*

where A, = 0y + %&« - f—j The right side has a kernel as a linear operator on C?
whenever ¢k = 1 and we therefore set ¢ = 1/ko + p with p close to zero, having fixed
ko € N for the sequel.

Remember that together with the above equations we should write the equations
for the complex conjugates, which are just the conjugate equations.

The eigenvector in the kernel 1s easily calculated as

wy = Bu* + v(i— oz)vk, Ay pwo = 0,
and
1+«
v

wy = —ﬁuk—i—(i—l—a)vk, Nppwr = (I —a+ Jwy
is the complementary eigenvector to the eigenvalue i — o + (i + o) /v.

Proposition 5 implies the existence of a center-manifold M4 with a smooth vector
field, tangent to the span of wge'*°? and J,wge’**¥ at any ’time’ . The vector field
is obtained up to third order using the following strategy:
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(i) write the linear equation for wg, depending on parameters A, y; this gives
the linear part of the vector field on M.

(ii) calculate the quadratic (in wq) expansion of M4 depending on time; this is
zero, due to the absence of quadratic terms in the reaction.

(iii) evaluate the nonlinearity au® on wge*o¥.

(iv) project away non-critical Fourier modes.

(v) project on < wge*o¥ > along < wyet*o¥ >.
Carrying out the necessary calculations gives first, by projecting away the non-critical
Fourier modes,

Dy = (1 — a)ub + pot +ipu® 4 au®|ut)?
v, g = —put + (i+ owk) + gt — Ao*

and therefore
Ay pwp = infut + ﬁauk|uk|2 —(i— oz)/\vk + (i— oz)i/wk.
Transforming back

ke 14+ «
Y= ST at v —ay et O
1
k _
o i—|—oz—|—1/(i—oz)wo+o(w1)

gives, on MS | up to third order, the second order in time ordinary differential equation

—2u— (i —a)A a 1 1

- - wy + - -
Pratii-m "t E TR T

|2w0|w0|2.

Ar,ka —

The fifth order terms might of course destroy the second order structure of this equa-
tion, though keeping the structure of a local non-autonomous differential equation in
c2.

We write new parameters X, @’ € C such that the truncated equation takes the
form

1 k?
(103) (w0)7‘7‘ + ;(wo)r - ﬁwo = /\/wo + a/w0|w0|2.

Disregarded all our efforts in reducing and simplifying the problem, this equation is in
general still hard to solve analytically. In the following section we study this problem,
obtaining existence of bounded solutions w(r) (and thereby solutions (u(r, @), v(r, ¢))
to (10.1)), when @’ is almost real. This is actually the approach taken by [7, 11], who
deal with a similar system.

By our explicit calculations, the imaginary part of @’ will be small if the diffusion
rate v or the parameter « is close to zero.

The first condition has an interesting interpretation as the limit ds — 0 1s exactly
the interesting limit in excitable media, though we admit that our equation is differ-
ent from the typical models for excitable media (the null-clines of au — au® — v are
symmetric to the origin whereas this 1s not the usual assumption for excitable media,
modeled for example by the Fitz-Hugh-Nagumo equation). We refer the reader to the
interesting, though formal, work on spiral waves in excitable media reviewed in [22].
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The second, alternative condition is merely an assumption on the location of equi-
libria in the pure reaction system, which are situated approximately at « ~ +4/b/(ac)
and zero.

The important point to notice at this stage is that the full equation on MY is a
small perturbation of the truncated equation close to the bifurcation point, that is,
close to Re X = 0. Indeed, scaling | Re X|r? = 72 and w? = | Re X'|wo? makes the
higher order terms O(] Re A'[). Structurally stable dynamics of the truncated equation
persist for the full system on M for sufficiently small | Re X'|.

In this sense, we have established a rigorous proof of the validity of approxima-
tions of reaction-diffusion systems by A-w systems, at least when we restrict to the
question of existence of rotating wave solutions. This was proved up to now only using
formal multi-scale methods. The advantage of our approach is that it gives rigorous
proofs and information on the domain of validity in parameter space of such kinds of
approximations.

Furthermore, we should comment on the symmetry. The equation possesses, as
announced, an SO(2)-symmetry wy — wpe'?, § € S'. The additional reflection
(u,v) — (—u,—v) in the original reaction-diffusion system does not yield any more
symmetry in the bifurcation equation.

At Ima’ = Tm A = 0, there is the additional reflectional symmetry wy — 1w,
fixing the real subspace. Note also that Im A = 0 can be achieved by adjusting the
wave speed c.

11. The bifurcation equations. During this section we omit the primes of A
and a. We begin with a study of possible asymptotic states of (10.4) at » = co. The
limit equation
_d
T dr
can be simplified by dividing out the symmetry with the new coordinates z = zg +
izi =w'/weCand R=|w| € Ry:

R/ = ZRR
2 = =224+ A4+ aR?

w' = dw + aw|w|?, '

Reversibility of the w-equation (r — —r) is translated into reversibility with respect to
the reflection z — —z (and of course r — —r). Any equilibrium of (11.1) corresponds
to a periodic orbit of the w-equation which we call a rotating wave, as it 1s a relative
equilibrium, for the dynamics in r, with respect to rotational symmetry SO(2). The
asymptotic shape of a spiral wave behaving like such a rotating wave for large r is just
a one-dimensional periodic wave-train, translation invariant in one space-direction.
There are two types of equilibria. Type I has R = 0 and corresponds to the origin of
the w-equation, and z = /X are the blown up invariant manifolds of the equilibrium
w=w' = 0. Type II has necessarily zg = 0 and

RZI—/\[/a[, Z%I—/\R—I—aR/\]/a].

A linear stability analysis gives that the type I equilibrium with Re VA > s stable in
{R =0,z € C} and unstable in the direction of R. The equilibrium with Re VA < 0
is unstable in {R = 0,z € C} but stable in the direction of R. Along the type 11
equilibria the linearization is

0 R 0
L=\ 2arR 0 2zr |, det L = —4Arzy, trace L =0,
2a1R —22’[ 0



Spiral waves in reaction-diffusion systems 17

such that one equilibrium is 2d-unstable and the other is 2d-stable.

Bifurcations occur at Rev/A = 0 where type I equilibria coalesce, the origin
becomes a center, and when aX € R, where a reversible saddle-node bifurcation of the
type Il equilibria occurs.

For the non-autonomous system, we can interpret the manifold M as a shooting
manifold, which is two-dimensional in (w,w’)-space at any fixed time r, invariant
under the symmetry and therefore yields a one-dimensional shooting curve in the
reduced phase space (z, R). We focus here on asymptotically stationary behavior
where the shooting curve intersects the stable manifold of an equilibrium of (11.1).
These are possibly not the only asymptotic shapes at large distances from the center
of rotation but they seem to be of sufficient physical relevance making reasonable such
a restriction.

In the following, we distinguish two different cases which we refer to as the sub-
critical case, when ag > 0, and the supercritical case, when ag < 0. These terms
are justified by the branching of equilibria of (11.1) at Ay = a;y = 0. In our model
problem of the preceding section, these two cases are distinguished by the sign of
a(l —v(a?-1)/58%).

We now study the real sub-system in the non-autonomous setting.

LEMMA 6. (Supercritical)[5, 11] Suppose ap < 0 and Ag > 0. Then for any
wave number ko € N, there exists a heteroclinic orbit w(r) > 0, with lim,_ow(r) =0
and limy o w(r) = \/—Ar/ar. Moreover the heteroclinic orbit is transverse in the
real subsystem: the center-manifold M intersects transversely the stable manifold of
z/ —/\R/aR.

Proof. The proof of this lemma can be found in [11], where the necessary modi-
fications to the proof of a similar statement in [5] are indicated. O

LEMMA 7. (Subcritical) Suppose ag > 0 and Ap < 0. Then for any ko € N,
there exists a heteroclinic orbit w(r), with lim,_o w(r) = lim, .o w(r) = 0. Moreover
the heteroclinic orbit is transverse in the real subsystem: the manifold M intersects
transversely the stable manifold of the origin at r = co.

Proof. The proof, together with a more detailed description of such solutions, can
be found in [18]. |

We next examine the non-degenerate system with ay # 0.

PROPOSITION 8. (Supercritical, af # 0) Suppose ap < 0 and Agr > 0 and fir
any wave number ko € N. Then for any ar, A1 sufficiently small and Ar/ay — 1> a3
there exists a heteroclinic orbit w(r), with limy_ow(r) = 0 and tending to a type IT
equiltbrium as r — oo. The heteroclinic orbit is transverse. Moreover there exists
a unique value A} = O(ay) such that the heteroclinic orbit tends to the other type II
equiltbrium as r — oo. This heteroclinic orbit is transversely unfolded by the parameter
Ar.

Proof. We suppose ag = —1 and Agr = 1. We use singular perturbation methods
in order to establish the existence of heteroclinic orbits for the perturbed system. At
ar = A; = 0, there i1s a curve of type Il equilibria for the asymptotic equations at
r = oo, given by 27 = 1 — R?, which intersects transversely the real subspace at the
equilibrium z = 0, R = 1. Therefore the center-stable manifold of this line of equilibria
intersects transversely the shooting manifold M in (z, R, 7)-space. In the perturbed
system, the line of equilibria persists as a normally hyperbolic slow manifold (see [3]).
The heteroclinic as a transverse intersection persists as the intersection with a strong
stable fiber of the slow manifold for ay, Ay small enough. On the slow manifold there
are two equilibria 27 = —1 — A;/ay, which are close to the real subspace {z; = 0}
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if —Ar/ay is close to, but bigger than one. By the above stability analysis, the
equilibrium which 1s stable within the slow manifold has det L > 0 and thereby
Arzr < 0. We now have to examine the perturbation of the shooting manifold M by
the complex perturbation terms involving A; and ay. The derivative along the real
heteroclinic at Ay = a;y = 0 of the non-autonomous equation for z; with respect to Ay
and ay gives

Z} =Ar+ Cl[RZ = a[(/\]/a[ + RZ)

Thereby the Melnikov integral along the heteroclinic gives a contribution O(ay) which
shows that the shooting manifold M intersects transversely a stable fiber of a point
on the slow manifold with 2 = O(ay).

With these ingredients we can establish the existence of the desired connections.
Firstly choosing A; as a parameter, the shooting manifold M crosses transversely the
strong stable fibers of the slow manifold. The type II equilibria on the slow manifold
are located at O(\/|Ar/ar + 1]). If |27 < \/|Ar/ar — 1|, there is a heteroclinic trajec-
tory connecting to the type II equilibrium which is stable within the slow manifold.
If (29)% = —Ar/ar — 1, the heteroclinic trajectory connects to the type I equilibrium
which 1s unstable on the slow manifold. This proves the proposition. 0

PROPOSITION 9. (Subcritical, ar # 0) Suppose ag > 0 and Ap < 0 and fix any
wave number kg € N. Then for any ay sufficiently small, there exists a smooth function
Ar = Ar(ar) such that there exists a heteroclinic orbit w(r), with lim,_ow(r) =
limy— 0o w(r) = 0. The heteroclinic orbit is transversely unfolded by the parameter
Ar.

Proof. We suppose ag = 1 and Ag = —1. In the real subspace at Ay = a; = 0, the
heteroclinic orbit joining the origin at » = 0 to the origin at » = co is transverse by
Lemma 7. Transverse to the real subspace, the origin is unstable at both, » = 0 and
r = 0o: the heteroclinic is non-transverse in full-space. We now need the parameter
Ar (alias the speed of rotation) in order to obtain connections for specific values
of the parameter Ay = Ar(ay). For this it is sufficient to show that the Melnikov
integral with respect to the parameter A; along the heteroclinic does not vanish.
The adjoint variational equation along the heteroclinic has a unique (up to scalar
multiples) bounded solution which lies strictly in the half space z; > 0, because z; = 0
is invariant. The derivative of the vector field with respect to Ay in the direction of
this half space is just 1, which proves that the Melnikov integral is non-zero. In other
words we can push through the stable and unstable manifolds by the help of A; with
non-zero speed. This proofs the proposition. o

12. Conclusions. For a large class of reaction-diffusion systems we have shown
the existence of spiral wave solutions. In contrast to the previous results on A-w
systems,; our reduction to a non-autonomous ODE is not based on the assumption that
Fourier modes decouple. We merely show that, close to the threshold of instability of a
homogeneous equilibrium, there is some kind of decoupling. The interaction between
critical modes is in a smooth sense of higher order then the projection on the critical
modes. Compared to similar reduction methods, technical complications arise here
because the problem is non-autonomous, even in the principal part (from a regularity
point of view).

As another advantage of our method we are able to determine explicitly coeffi-
cients in our bifurcation equations. These are in general still hard to analyse analyt-
ically — we considered a simple but interesting model problem in the last section —
but can easily be studied numerically.
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The reduction procedure can be applied to other problems, possibly involving
higher-dimensional center-manifolds. A systematic treatise of such equations (as
known for elliptic problems in infinite cylinders, exploiting reversibility, integrabil-
ity and normal forms of the reduced bifurcation equations) would be interesting.

The rotating waves we discover are of various shape, depending on the nature
of the bifurcation. In supercritical bifurcations, they are approximately archimedian
spirals at large distances from the tip. Indeed, the derivative of the phase of u is
given by zy and approaches for large values of the radius r a constant but non-zero
value. As a subtle difference we noticed that in the supercritical case there are two
different types of asymptotic states, given by the two different types of equilibria
z1 = £+/—Ar/ar — 1 (see the preceding section). For the first type, zy approaches
its limit value exponentially at a uniform rate with respect to Ay , whereas for the
other type the exponential rate is close to zero. The sign of z; has another important
interpretation. If z; is positive, then the arms turn in the sense of the rotation of the
spiral; at a fixed ray, under time evolution of the reaction-diffusion system, the arms
move towards the center of rotation. Similarly, z; < 0 corresponds to an outwards
movement of the arms. Therefore the waves, appearing for discrete wave speeds move
outwards if a; < 0 and inwards if a; > 0.

The rotating waves bifurcating subcritically are isolated as rotating waves and
appear for distinguished speeds of rotation. Their shape at large distances from the
center of rotation is determined by the phase varying according to ¢ ~ e~8t"" and
their amplitude decaying to zero exponentially.

Though we do not carry out here a stability analysis, we comment on the difference
between sub- and supercritical bifurcation. Linearizing the reaction-diffusion system
along the subcritical waves in say L?(IR% R?) gives us a linearized operator for the
period map whose continuous spectrum is strictly contained in the left half plane,
bounded away from the imaginary axis. Zero is (at least) a triple eigenvalue due to the
euclidean symmetry, generated by rotation and translations. An analysis of secondary
bifurcations from this type of spiral waves, including meandering and drifting waves
has been carried out in [19, 20] and [4].

The linearized period map along supercritical waves has zero in the essential
spectrum and rigorous stability proofs seem to be hard. Hagan showed [7] that one-
armed spiral waves might be stable whereas multi-armed waves (kg # 1) should be
unstable.
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