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Abstract. We discuss Fredholm properties of the linearization of partial dif-
ferential equations on cylindrical domains about travelling and modulated
waves. We show that the Fredholm index of each such linearization is given by
a relative Morse index which depends only on the asymptotic coefficients. Sev-
eral strategies are outlined that help to compute relative Morse indices using
crossing numbers of spatial eigenvalues, and the results are applied to prove the
existence of small viscous shock waves in hyperbolic conservation laws upon
adding small localized time-periodic source terms.

1. Introduction. The dynamics of many spatially extended physical systems is
governed by the coherent structures, such as fronts, pulses, spiral waves, and bound-
ary layers, that the system exhibits. We are interested in analysing the properties
of the linearization of partial differential equation models (PDEs) about these co-
herent structures. Indeed, this is typically the first step in most bifurcation and
stability analyses; see [5] for details.

In many situations, the resulting linear differential operators are posed on cylin-
drical domains with asymptotically constant or periodic coefficients. The simplest
case is that of a travelling wave solution u∗(x− ct) of a reaction-diffusion system

ut = Duxx + f(u), u ∈ Rn, (1)

where D ∈ Rn×n is a positive diagonal matrix and f : Rn → Rn is a smooth
function. The eigenvalue problem associated with the linearization of (1) about the
wave u∗(x− ct) in the comoving frame ξ = x− ct is given by

λu = Duξξ + cuξ + fu(u∗(ξ))u =: L∗u
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which can be cast as a first-order nonautonomous differential equation

Uξ = A(ξ;λ)U, U = (u, uξ)T .

It can be shown that spectral properties of T (λ) := d
dξ −A(ξ;λ) and L∗ are strongly

related: both can be viewed as closed unbounded operators on L2(R), and their
Fredholm indices coincide for all λ ∈ C where at least one of the two is Fredholm;
see Theorem A.1 or [12, p. 50]. In those regions where the Fredholm index is zero,
one can also define point spectra, and it is readily seen that the geometric and alge-
braic multiplicities of eigenvalues coincide for both operators, with an appropriately
generalized notion of multiplicity for the operator stencil T (λ).

If the underlying travelling wave is a front or a pulse so that limξ→±∞ u∗(ξ)
exists, then the limiting matrices A±(λ) = limξ→±∞A(ξ;λ) also exist. In this
situation, Palmer proved in [9] that T (λ) is Fredholm if and only if the matrices
A±(λ) are hyperbolic, that is, provided that spec A±(λ)∩ iR = ∅. Furthermore, the
Fredholm index of T (λ) is then given through

i(T ) = i− − i+ (2)

where i± are the Morse indices of A±(λ): The Morse index of a hyperbolic matrix
A is the dimension of its unstable subspace, which is the generalized eigenspace
associated with all eigenvalues ν of A that have Re ν > 0. We use the term Morse
index even though the underlying equation will, in general, not have a variational
structure.

The index formula (2) shows that the Fredholm index depends only on the dif-
ference of the Morse indices, that is, only on the relative Morse index between A−
and A+. The importance of (2) lies in the fact that the Fredholm index of the
linearization encodes crucial information for perturbation analyses. Morse indices,
on the other side, are often much easier to compute.

The fact that the Fredholm index depends only on the difference of two Morse
indices makes it possible to extend (2) to situations where the individual Morse
indices may not make sense: In [12], we showed how the relative Morse index can
be defined in cases where A± are unbounded operators for which both stable and
unstable eigenspaces are infinite-dimensional (i.e. have Morse index i = ∞). This
case is of interest when formulating travelling-wave problems

uξξ + cuξ + ∆yu + f(u) = 0, (ξ, y) ∈ R× Ω

on cylinders as dynamical systems in ξ or when studying time-periodic travelling-
wave solutions

u = u(x− ct, ωt), u(ξ, τ) = u(ξ, τ + 2π)
of the reaction-diffusion system (1).

In this paper, we collect and prove several results that facilitate the computation
of relative Morse indices, and therefore of Fredholm indices, of the PDE linearization
about travelling or modulated waves on cylindrical domains.

Outline: The first part of this paper is devoted to the linearization about travel-
ling waves on cylindrical domains whose properties we introduce in §2. In §3-§4, we
state several results that allow us to calculate Fredholm indices via relative Morse
indices, through appropriate homotopies to simpler systems or by computing cross-
ing numbers of eigenvalues and Floquet exponents of the asymptotic problems. We
then comment in §5 and §6 on the applicability of these results to modulated waves
and to systems with boundary conditions. In §7, we apply our results to prove that
small localized time-periodic source terms create weak shock waves when added
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to viscous hyperbolic conservation laws. Section 8 contains a brief discussion of
possible generalizations and restrictions of the approach outlined here. Lastly, for
completeness, we prove in the appendix that first-order and second-order formula-
tions have the same Fredholm properties and indices.

Notation: Null space and range of a linear operator T are denoted by N(T ) and
Rg(T ), respectively. We denote by i(T ) := dim N(T )− codim Rg(T ) the index of a
Fredholm operator T . Morse indices will be denoted by ij where j = +,−, 1, 2, . . ..

2. Travelling waves on cylindrical domains. For ease of exposition, we focus
on the case of travelling waves on cylindrical domains with Dirichlet boundary
conditions and consider therefore the elliptic operator

Lu = D[uξξ + ∆yu] + cuξ + a(ξ, y)u (3)

L : H2(R× Ω) ∩H1
0 (R× Ω) −→ L2(R× Ω), (4)

where Ω is an open bounded subset of RN with smooth boundary, and ∆y de-
notes the Laplace operator in the variable y ∈ RN . Associated with the eigenvalue
problem for this operator is the equation

uξ = v

vξ = −∆yu−D−1[cv + a(ξ, y)u− λu], (5)

where (u, v)(ξ, ·) ∈ X := H1
0 (Ω)×L2(Ω) when considered as functions of y for fixed

ξ. We may write this equation as the abstract differential equation

Uξ = A(ξ;λ)U (6)

where

A(ξ;λ) =
(

0 id
−∆y + D−1[λ− a(ξ, y)] −D−1c

)
(7)

has domain D(A) = X1 := (H2(Ω) ∩H1
0 (Ω)) ×H1

0 (Ω) for all (ξ, λ). We may also
view equation (6) as the abstract first-order operator

T (λ) : L2(R, X1) ∩H1(R, X) −→ L2(R, X), U 7−→ T (λ)U = Uξ −A(ξ;λ)U.

We shall assume that the coefficients a(ξ, y) converge to ξ-periodic functions
a±(ξ, y) as ξ → ±∞, uniformly in y, where a±(ξ, y) = a±(ξ + ζ±, y) for some
ζ± > 0 and all ξ and y. Asymptotically constant coefficients a±(ξ, y) = a±(y) arise
as a special case. We then define the asymptotic operators L±, A±(λ), and T±(λ)
by replacing the coefficient matrix a in their definition by the asymptotic coefficients
a±.

Sometimes, we shall also use the adjoint equation Uξ = −A(ξ;λ)∗U , where A∗ is
the adjoint of A in X. The associated operator T ∗ is the L2-adjoint of T .

Hypothesis 2.1 (Cauchy-Uniqueness). Assume that each solution of (6) and its
adjoint equation on R+ or on R− which vanishes at ξ = 0 vanishes everywhere.

Theorem 2.2 ([11, 12], Theorem A.1). Assume Hypothesis 2.1 holds, then the
following statements are equivalent:

(i) The operator T (λ) is Fredholm.
(ii) The operator L − λ is Fredholm.
(iii) The operators T±(λ) are both invertible.
(iv) The operators L± − λ are both invertible.
(v) Constant coefficients: The operators A±(λ) − ik are invertible on X for all

k ∈ R.
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(v)’ Periodic coefficients with period ζ±: The operators d
dξ − A±(ξ;λ) − ik are

invertible on L2
per((0, ζ±), X) for all k ∈ R.

We will refer to the characterizations (v) and (v)’ in the preceding theorem
as hyperbolicity of A±(·;λ). We record that the results in [12] actually do not
require that A(ξ;λ) has constant or periodic limits as ξ → ±∞: instead, Fredholm
properties are characterized by the existence of exponential dichotomies for (6) on
R+ and R−.

Fredholm properties and the Fredholm index are robust under relatively com-
pact perturbations [6, Theorem IV.5.26], and the Fredholm index of T (λ) depends
therefore only on the asymptotic operators:

Lemma 2.3. The Fredholm indices of T (λ) = d
dξ − A(ξ;λ) and of T̃ (λ) = d

dξ −
Ã(ξ;λ) with

Ã(ξ;λ) =
{

A−(ξ;λ) ξ ≤ 0
A+(ξ;λ) ξ > 0

coincide whenever one of them is defined.

Hence, it suffices to consider the operator T̃ (λ), and we focus therefore from now
on exclusively on this operator. The computation of its Fredholm index involves
more detailed knowledge of the asymptotic operators A±, as we shall explain in the
next two sections.

3. Relative Morse indices. We shall assume that all asymptotic coefficient op-
erators A(ξ;λ) encountered in this section are hyperbolic in the sense outlined in
the previous section after Theorem 2.2.

We begin by considering a pair of hyperbolic operators A1(ξ) and A2(ξ), both
constant or periodic with possibly different periods ζ1 and ζ2, of the form (7). To
these operators, we assign the operator A(ξ) defined through

A(ξ) =
{

A1(ξ) ξ ≤ 0
A2(ξ) ξ > 0 (8)

and the associated operator

T =
d
dξ

−A(ξ). (9)

From Theorem 2.2, we infer that T is Fredholm, and we define the index of the
operator pair (A1, A2) as

iF(A1, A2) := i(T ). (10)
This definition, although seemingly simple, makes it difficult to actually compute
the index of T . A natural refinement would be to consider the operators T± given
by

T± : L2(R±, X1) ∩H1(R±, X) ⊂ L2(R±, X) −→ L2(R±, X) (11)

U 7−→ d
dξ

U −A±(ξ)U

with A− = A1 and A+ = A2. Using hyperbolicity of A1 and A2, which we assumed
to hold, it is not difficult to see that the operators T± are both onto and therefore
semi-Fredholm. Under the uniqueness hypothesis 2.1 on the Cauchy problem, the
bounded trace maps

tr± : N(T±) −→ X, U 7−→ U(0)
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are one-to-one, and we define

Es
+ := Rg(tr+), Eu

− := Rg(tr−).

Elements in the kernel of T have traces in the intersection Es
+∩Eu

−, and we therefore
consider the natural immersion

ι12 : Es
+ × Eu

− −→ X, (U s
+, Uu

−) 7−→ U s
+ − Uu

−. (12)

Exploiting again the uniqueness of the Cauchy problem and using the adjoint equa-
tion, one finds [12, §5] that

i(ι12) = i(T ). (13)
Under the assumptions made so far, one can actually say more about the operators
T and T±. If T± is Fredholm, or equivalently if the equation

d
dξ

U = A±(ξ)U (14)

does not have any purely imaginary eigenvalues or Floquet exponents, then (14)
admits a hyperbolic splitting: Choose η > 0 so that all eigenvalues or Floquet
exponents of (14) have distance strictly larger than η from the imaginary axis, then
there exist a constant C and a ξ-dependent decomposition X = Eu

±(ξ)⊕Es
±(ξ) into

subspaces that are periodic in ξ with the same period as A±(ξ) so that the following
holds. For each U ∈ Es

±(ξ∗), there is a solution U(ξ) of (14) which is defined for
ξ > ξ∗ and for which

|U(ξ)|X ≤ Ce−η|ξ−ξ∗||U(ξ∗)|X , ξ > ξ∗.

Similarly, for each U ∈ Eu
±(ξ∗), there exists a solution U(ξ) of the above equation

(14) which is defined for ξ < ξ∗ so that

|U(ξ)|X ≤ Ce−η|ξ−ξ∗||U(ξ∗)|X , ξ < ξ∗.

We denote by P u,s
± (ξ) the projections onto Eu,s

± (ξ) with kernel Es,u
± (ξ); for constant

coefficients, these projections are simply the spectral projections associated with
the stable and unstable eigenvalues of A±. One can then measure the relative di-
mensions of Eu

±(ξ) by projecting Eu
−(ξ) onto Eu

+(ξ) along Es
+(ξ). Consider therefore

the map
p12(ξ) : Eu

−(ξ) −→ Eu
+(ξ), U 7−→ P u

+(ξ)U. (15)
We claim that

i(ι12) = i(p12(ξ)), (16)
which implies, in particular, that the index on the right-hand side is independent of
ξ. To prove (16), one shows by explicit comparison that the dimensions of the null
spaces of p12(0) and i12 coincide, as do the codimensions of their ranges. Neither
of these dimensions for p12(ξ) depends on ξ which can be shown by using the
uniqueness assumption 2.1 for (6) and its adjoint.

We record that (16) together with (13) shows that the index i12 indeed mea-
sures the difference of the unstable dimensions of the two asymptotic equations,
thus justifying the terminology of a relative Morse index. We summarize our three
characterizations of the relative Morse index in the following proposition.

Proposition 3.1. Assume that the operator T as defined in (8)-(9) is Fredholm.
Then its Fredholm index is equal to the Fredholm index of ι12, as defined in (12),
and equal to the Fredholm index of p12(ξ), as defined in (15), for any ξ:

i(T ) = i(ι12) = i(p12(ξ)).
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We emphasize that this proposition reduces the dimension of the underlying
spaces by one: the operator T is posed on L2(R, X), while both ι12 and p12 are
defined on X. This typically restores compactness properties when the direction
ξ is the only unbounded variable in the problem under consideration. In the next
section, we shall give a number of useful consequences of this geometric characteri-
zation of i(T ) through i(ι12) and i(p12).

4. Computation of relative Morse indices. We start with a simple transitivity
lemma, which also justifies our index terminology. Consider the equations

d
dξ

U = Aj(ξ)U, j = 1, 2, 3

where Aj(ξ) are arbitrary constant or periodic coefficient operators for j = 1, 2, 3,
and define the relative Morse indices

ikl := i(ιkl)

for 1 ≤ k, l ≤ 3, whenever possible.

Lemma 4.1 (Transitivity). We have i13 = i12 + i23 where, in particular, the rela-
tive Morse index i13 is defined whenever the relative Morse indices i12 and i23 are
defined.

Proof. The result follows from the characterization of the indices ijk via the projec-
tions pjk and the additivity of Fredholm indices under composition of operators.

We remark that the preceding lemma is not so obvious from the characterization
of ijk as the Fredholm index of Tjk.

In the remainder of this section, we outline several strategies for computing
relative Morse indices. These strategies are facilitated by the robustness properties
of Fredholm indices under small perturbations which allow us to calculate relative
Morse indices via continuation and homotopies.

4.1. Continuation. Suppose therefore that we are interested in computing the
relative Morse index i12 of the hyperbolic operators A1(ξ) and A2(ξ) which we
assume to be periodic in ξ. Their relative Morse index is given by i12 = i(T ) with
T = d/dξ −A(ξ) as in (9) and A(ξ) as in (8):

A(ξ) =
{

A1(ξ) ξ ≤ 0
A2(ξ) ξ > 0.

Assume furthermore that we have found a homotopy A(ξ;µ) between A1(ξ) and
A2(ξ) so that A1(ξ) = A(ξ; 0) and A2(ξ) = A(ξ; 1), the domain of A(ξ;µ) is inde-
pendent of µ and ξ, and A(µ; ξ) depends smoothly on µ as an operator from X1

into X for each ξ. Possibly after rescaling ξ in a µ-dependent fashion, we may also
assume that A(ξ;µ) has period L in ξ, independently of µ. Our first result states
that the relative Morse index is zero if A(ξ;µ) is hyperbolic for all µ ∈ [0, 1].

Lemma 4.2 (Continuation). Assume that either
1. A(ξ;µ) = A(µ) is independent of ξ, and [ν−A(µ)]−1 exists for all ν ∈ iR and

µ ∈ [0, 1], or
2. A(ξ;µ) is L-periodic in ξ, and [ d

dξ + ν − A(ξ;µ)]−1 exists on L2
per((0, L), X)

for all ν ∈ iR and µ ∈ [0, 1],
then i12 = 0, where i12 is the relative Morse index of A1(ξ) = A(ξ; 0) and A2(ξ) =
A(ξ; 1).
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Proof. We consider the operator T (µ) associated with the coefficients{
A1(ξ) ξ ≤ 0
A(ξ;µ) ξ > 0

which depends continuously on µ in the operator norm and, by Theorem 2.2, is
Fredholm for all values of µ. Thus, its Fredholm index is constant, and therefore
equal to zero since it vanishes at µ = 0.

4.2. Crossing numbers. Having established the continuation lemma, it remains
to find a way to track the change of Morse indices at points of a homotopy where the
asymptotic system fails to be hyperbolic: this would allow us to compute relative
Morse indices through arbitrary homotopies. For the sake of clarity, we focus on
constant-coefficients operators: the results below hold also for periodic coefficients
by simply replacing, in the following discussion, eigenvalues by Floquet exponents.

Assume therefore that we wish to compute the relative Morse index i12 of the
hyperbolic operators A1 and A2. Suppose that A(µ) is a homotopy with constant
coefficients for all µ ∈ [−1, 1] which is hyperbolic for µ 6= 0 and satisfies A1 = A(−1)
and A2 = A(1). We also assume that A(0) has a finite-dimensional center eigenspace
at µ = 0 where hyperbolicity fails. In this case, there exists a spectral projection
P c(0) onto the finite-dimensional center space which persists as a spectral projection
P c(µ) for all µ near zero. Lastly, we assume that the spectral projections P c(µ) can
be continued continuously, as spectral projections of A(µ), to µ ∈ [−1, 0) ∪ (0, 1].
In this situation, the relative Morse index i12 should be equal to the difference of
the Morse indices inside the center space Rg P c(µ) at µ = −1, corresponding to
ξ = −∞, and µ = 1, corresponding to ξ = ∞, as in (2). This is indeed the case:
For µ 6= 0, let P c

u(µ) be the projection on the unstable subspace inside Rg P c(µ),
then we have the following result:

Lemma 4.3 (Crossing number). In the setting outlined above, the relative Morse
index i12 is given by

i12 = dim Rg P c
u(−1)− dim Rg P c

u(1).

In other words, it is equal to the crossing number, that is, the difference of the
number of eigenvalues (or Floquet exponents) of A(µ) crossing from right to left
and left to right, respectively, through the imaginary axis as µ increases through
zero.

An alternative explanation for the formula in the preceding lemma goes as follows:
Inside the finite-dimensional eigenspace Rg P c(µ), the dynamics are described by
constant- or periodic-coefficient ordinary differential equations (ODEs), and stable
and unstable subspaces are consequently characterized completely through algebraic
multiplicities of eigenvalues or Floquet exponents ν with Re ν < 0 and Re ν > 0,
respectively. Rouché’s theorem shows that we can continue eigenvalues continuously
in µ. The relative Morse index is therefore given by the number of eigenvalues,
counted with algebraic multiplicity, that cross the imaginary axis from right to left
minus the number of eigenvalues that cross from left to right when increasing µ
through zero.

Before proving Lemma 4.3, we record the following standard bordering lemma.
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Lemma 4.4. Suppose that X and Y are Banach spaces and that A : X → Y is a
Fredholm operator with index i(A). The operator

S =
(
A B
C D

)
: X × Rp −→ Y × Rq

is then Fredholm with index i(S) = i(A) + p− q provided B, C, and D are bounded
and linear.

Proof of Lemma 4.3. The transitivity and continuation properties stated in Lem-
mas 4.1 and 4.2 imply that i12 is equal to the relative Morse index of{

A(−ε) ξ ≤ 0
A(ε) ξ > 0

for each small ε > 0. To compute its relative Morse index, we use the characteriza-
tion of i12 through p12. Due to continuity of A(µ) and the properties of the spectral
projection P c(µ) stated above, we have

Eu
−(−ε) = Ẽu(−ε)⊕ Rg P c

u(−ε), Eu
+(ε) = Ẽu(ε)⊕ Rg P c

u(ε)

where the subspace Ẽu(µ) can be chosen to depend continuously on µ for µ near
zero. Thus, we need to compute the Fredholm index of

p12 : Ẽu(−ε)⊕ Rg P c
u(−ε) −→ Ẽu(ε)⊕ Rg P c

u(ε), U 7−→ P u
+(ε)U.

Due to continuity of Ẽu(µ), we have that P u
+(ε)|Ẽu(−ε) : Ẽu(−ε) → Ẽu(ε) is close

to the identity in the operator norm for ε close to zero, and therefore has Fredholm
index zero. The preceding bordering lemma 4.4 for Fredholm operators shows that

i(p12) = p− q = dim Rg P c
u(−ε)− dim Rg P c

u(ε).

This is the desired result as these dimensions cannot change from µ = ±ε to µ = ±1
due to hyperbolicity for µ 6= 0 and the assumed existence of the spectral projection
P c(µ) for all µ.

Lemma 4.3 and transitivity imply the following corollary.

Corollary 4.5. The change of the relative Morse index during homotopies can be
computed by adding crossing numbers at all parameter values where hyperbolicity
fails.

4.3. Exponentially weighted spaces. We now give an application of Lemma 4.3
to operators posed on exponentially weighted spaces. We formulate our results again
only for constant-coefficients operators but emphasize that the results below hold
also for periodic coefficients upon replacing eigenvalues by Floquet exponents.

Thus, assume that A has constant coefficients and consider the associated oper-
ator T = d

dξ −A on the space L2
η(R, X) with norm

|U |η := |U(ξ)eηξ|L2 .

Using the isomorphism

L2
η(R, X) −→ L2(R, X), U(ξ) 7−→ V (ξ) = U(ξ)eηξ,

the operator T for U on L2
η is readily seen to be conjugated to T η = d

dξ −(A+η) for
V on L2. We record that T η is Fredholm for η in open subsets of the real line, that
is, in a countable union of intervals. When A possesses a finite-dimensional center
eigenspace, as discussed above in the context of crossing numbers, we can consider
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η < 0 η = 0

Rg P c
u(η)

η > 0

Figure 1. Plotted is the spectrum of A + η which illustrates
the dependence of the dimension of Rg P c

u(η) on η: We have
dim Rg P c

u(η) = 0 for η < 0 and dim Rg P c
u(η) = 2 for η > 0.

the family of operators T η with η close to zero. Note that the eigenvalues in the
center space depend trivially on η, namely through ν(η) = ν(0) + η, so that the
crossing number is −dim Ec; see also Figure 1. More generally, we can introduce a
two-sided family of weights via

|U |η−,η+ := |Uχ+|η+ + |Uχ−|η−
where

χ±(ξ) =
{

1 ±ξ > 0
0 otherwise.

The operator T on L2
η−,η+

is again conjugated to an operator T η−,η+ on L2 whose
coefficients are A+η+ for ξ > 0 and A+η− for ξ < 0. An application of Lemma 4.3
gives the following result:

Corollary 4.6. The operator T η−,η+ is Fredholm for all η± close to zero with
η−η+ 6= 0, and its Fredholm index is given by

i(T η−,η+) =
1
2
[sign η− − sign η+] dim Ec.

Proof. The eigenvalues ν(η) of A + η are given by ν(0) + η. Thus, in the notation
used in the paragraph preceding Lemma 4.3, we have

dim Rg P c
u(η) =

{
0 η < 0
dim Ec η > 0

for all η 6= 0 close to zero. Using the formula given in Lemma 4.3, the result now
follows.

4.4. Fredholm boundaries and group velocities. In the case of homotopies
in the complex λ-plane, hyperbolicity typically fails along curves. We call these
curves Fredholm boundaries and refer to the dimension dim Rg P c(λ) as the multi-
plicity of the Fredholm boundary. The generic case of simple Fredholm boundaries,
corresponding to crossing numbers equal to ±1, has in many examples a physical
interpretation. Assume that A(λ) is analytic in λ and that A(λ∗) has a single
simple eigenvalue ν = ik on the imaginary axis. This eigenvalue can be continued
analytically as an eigenvalue ν(λ) for all near values of λ. We assume that

dν

dλ
(λ∗) 6= 0 (17)

and define the group velocity to be

cg = −Re
dλ

dν
= −Re

(
dν

dλ

)−1

= −dRe λ

dRe ν
= −d Im λ

d Im ν
, (18)
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Re ν = 0

ν

ν ν
λ∗

Re λ

Im λ

Figure 2. The crossing number of A(λ∗+µ) as µ increases through
µ = 0 is illustrated for positive group velocity cg > 0. Using that
Re λ = Re λ∗ − cg Re ν, we see that the eigenvalue ν crosses from
right to left as µ increases, so that the dimension of the unstable
subspace decreases by one, and the crossing number is equal to one.

evaluated at λ = λ∗ or ν = ik. We assume that cg 6= 0 and refer to [2] for an
interpretation of group velocities in terms of transport of perturbations along wave
trains.

Lemma 4.7. Under the above assumptions, that is, for a single simple eigenvalue
ν = ik on the imaginary axis that satisfies (17) and for a nonzero group velocity cg,
the crossing number of A(λ∗ + µ) across the curve Im ν(λ) = 0 at µ = 0 is given by
the sign of the group velocity:

i12 = sign cg.

We refer to Figure 2 for an illustration of this result.

Proof. Without loss of generality, we may assume that ν = 0. Writing
dλ

dν
(0) = −cg + ib,

we find that

λ = λ∗ − cg Re ν − b Im ν + i[−cg Im ν + b Re ν] + O(|ν|2),

and the Fredholm boundary {λ; Re ν = 0} is given by

λfb = λ∗ − [b + icg] Im ν + O(|ν|2).

In particular, the Fredholm boundary is not horizontal in the λ-plane as cg 6= 0,
and computing the crossing number of A(λ∗ + µ) as the real parameter µ varies
near zero makes sense. For Im ν = 0, we have

Re[λ− λ∗] = −cg Re ν.

Thus, as µ increases through zero from left to right (meaning that we cross the
Fredholm boundary from left to right), the eigenvalue ν crosses from left to right
for cg < 0, and from right to left when cg > 0. Thus, the crossing number is equal
to sign cg as claimed.

An analogous statement holds in the case of periodic coefficients with the change
that the eigenvalue ν needs to be replaced by a Floquet exponent ν.

In summary, the Fredholm index of T (λ) jumps up or down by one when crossing
a simple Fredholm boundary, and which jump occurs depends on the sign of the
group velocity; see also [4, §2.3] for a similar discussion. The following corollary is
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central to the characterization of coherent structures in terms of group velocities,
linear stability, and multiplicity.

Corollary 4.8 ([13]). Given a simple Fredholm boundary with eigenvalue ν = ik+

at λ = 0 for A+(λ), then the Fredholm boundary near λ = 0 is a curve tangent to the
imaginary axis. The Fredholm index to the left of this curve is given by i(T (0−)) =
i(T (0+))− sign c+

g where i(T (0±)) are the Fredholm indices for λ to the right and
left of the imaginary axis. Moreover, the Fredholm boundary is shifted into the left
half plane on weighted spaces when η+c+

g < 0. Similarly, for a simple eigenvalue
at ξ = −∞ with finite group velocity, we have i(T (0−)) = i(T (0+)) + sign c−g , and
the Fredholm boundary is shifted into the left half plane on weighted spaces when
η−c−g > 0.

5. Modulated waves. The case when travelling waves are periodic in time in a
comoving frame deserves special attention. Consider therefore a modulated wave
u(x, t) = u∗(x− c∗t, ω∗t) where u∗(ξ, τ) = u∗(ξ, τ + 2π) for some frequency ω∗ > 0.
The linearization of a reaction-diffusion system about this wave is given by

wt −Dwξξ − c∗wξ − a(ξ, ω∗t)w = 0, a(ξ, ω∗t) = fu(u∗(ξ, ω∗t)). (19)

The Floquet ansatz w(x, t) = u(ξ, ω∗t)eλt leads to

ω∗uτ −Duξξ − c∗uξ − a(ξ, τ)u + λu = 0 (20)

and to the first-order system

uξ = v (21)

vξ = D−1[ω∗∂τu− c∗v − a(ξ, τ)u + λu]

where U = (u, v)T ∈ Y = H1/2(S1) × L2(S1) is 2π-periodic in τ for each fixed ξ.
We may rewrite (21) as an abstract equation

Uξ = A(ξ;λ)U, (22)

with the associated operator T (λ) : L2(R, Y 1) ∩ H1(R, Y ) 7→ L2(R, Y ) where
Y 1 = H1(S1)×H1/2(S1). We may also consider the operator L : L2(R,H1(S1)) ∩
H2(R, L2(S1)) → L2(R, L2(S1)) defined by the left-hand side of the parabolic
boundary-value problem (20), and the period map

Φ : L2(R) −→ L2(R), w(ξ, 0) 7−→ w(ξ,
2π

ω
)

where w solves (19). We also define A±, L±, T±, and Φ± via the limiting equation
at ξ = ±∞ in a fashion completely analogous to §2.

Theorem 5.1 ([12], Theorem A.1). The following statements are equivalent:
(i) The operator T (λ) is Fredholm;
(ii) The operator L(λ) is Fredholm;
(iii) The operator Φ− e2πλ/ω∗ is Fredholm;
(iv) The operators T±(λ) are both invertible;
(v) The operators L± − λ are both invertible;
(vi) The operators Φ± − e2πλ/ω∗ are both invertible;
(vii) Constant coefficients: The operators A±(λ)− ik are invertible for all k ∈ R;
(vii)’ Periodic coefficients: The operators d

dξ−A±(ξ;λ)−ik are invertible on L2
per((0, L±), Y )

for all k ∈ R.
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Furthermore, the Fredholm indices of T (λ), L − λ, and Φ− e2πλ/ω∗ coincide when
they exist and depend only on the operators A±(λ).

The uniqueness hypothesis 2.1 is automatically satisfied; see [12] and the refer-
ences therein.

A very common example are modulated travelling waves that are asymptotic
as x → ±∞ to spatially periodic travelling waves u±(κ±x − ω±t) with u±(τ) =
u±(τ + 2π): We shall refer to spatially periodic travelling waves as wave trains. In
the frame ξ = x−c∗t of the modulated wave, the convergence of its profile u∗(ξ, ω∗t)
to the asymptotic wave trains requires that u∗(ξ, ω∗t) → u±(κ±(ξ + c∗t)− ω±t) as
ξ → ±∞ uniformly in t. We focus now on the resulting asymptotic problems which
involve only the wave trains as their relative Morse index determines, on account
of Theorem 5.1, the Fredholm index of the linearization about the modulated wave
u∗.

Every wave train uwt is temporally periodic in any comoving frame since uwt(κx−
ωt) = uwt(κ(ξ + ct)−ωt) is periodic in t with frequency ω̃(c) = ω− cκ. If we choose
c = cp = ω/κ, then the wave train becomes stationary in this frame. For any
given c, one can actually calculate the relative Morse index from a ξ-independent
problem: We set ξ = x − ct and τ = ω̃(c)t = (ω − cκ)t so that the linearization
about the wave train uwt becomes

Uξ =
(

0 id
D−1[ω̃∂τ + λ− fu(uwt(κξ − τ))] −D−1c

)
U = A(ξ;λ)U. (23)

We compare (23) with the corotating version

Vξ =
(

−κ∂σ id
D−1[ω̃∂σ + λ− fu(uwt(σ))] −κ∂σ −D−1c

)
V = Ã(λ)V, (24)

which arises from (23) via the shear transformation

(ξ, τ) 7→ (ξ, σ) = (ξ, κξ − τ). (25)

Theorem 5.2. Equation (23) is hyperbolic if and only if [Ã(λ) − ik] is invertible
for all k ∈ R, that is, if and only if the operator on the right-hand side of (24) is
hyperbolic. If (24) is hyperbolic, there exists a spectral projection P̃ u on the gener-
alized eigenspace associated with spectrum of Ã(λ) in the right half plane Re ν > 0,
and relative Morse indices can be computed using the projection P̃ u in §3 and (16)
instead of the projection P u(ξ) associated with (23).

Proof. Assume first that Ã is hyperbolic and (23) is not. Since the Floquet spectrum
of (23) is discrete, see [8, Lemma 6.1] or [12, §4], this equation has a nontrivial
solution U(ξ, τ) = eikξU0(ξ, τ) with U0(ξ, τ) periodic in ξ and τ . Using the shear
transformation (25), we find a bounded nontrivial solution V (ξ, σ) = eikξU0(ξ, κξ−
σ) of (24) which contradicts hyperbolicity of Ã(λ). The reversed conclusion can be
obtained in a similar fashion. Lastly, evaluating at ξ = 0, say, one finds that the
stable and unstable subspaces of (23) and (24) coincide, which proves the claim on
the Morse indices.

An interesting consequence of this description is a unique characterization of
Floquet exponents of (23). For each eigenvalue ν of Ã, we find an associated solution
V (ξ, σ) = eνξV0(σ) of (24). Applying the shear transformation (25), this yields a
solution U(ξ, τ) = eνξV0(κξ − τ) of (23), which is associated with the Floquet
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exponent ν. One can rewrite this solution in the form

U(ξ, τ) = eνξV0(κξ − τ) = e(ν+i`)ξU0(ξ, τ) with U0(ξ, τ) = e−i`ξV0(κξ − τ)

for any ` ∈ Z, which illustrates the well known fact that Floquet exponents are not
unique: If ν is a spatial Floquet exponent, so is ν+i` for each ` ∈ Z. We emphasize,
however, that the representation with ` = 0 is special in that it involves a function
that depends only on the argument κξ − τ of the wave train.

One can also compare relative Morse indices when varying the speed of the frame
c. Purely imaginary Floquet exponents ν ∈ iR occur only when (23) or (24) have
nontrivial bounded solutions, that is, when λ belongs to the Floquet spectrum. We
discuss now the most relevant case of a stable wave train when Φ − ρ is invertible
for all |ρ| ≥ 1 with ρ 6= 1, and the Fredholm boundary at λ = 0 is simple. Firstly,
from §4, we know that the relative Morse index of Φ−ρ, with ρ = 1− δ for δ small,
is given by the sign of the group velocity computed in the frame that moves with
speed c: The group velocity of wave trains transforms nicely under frame changes
in that c̃g(c) = cg(c = 0)− c is the group velocity in the frame moving with speed
c [13, §3.2]. Thus, the relative Morse index changes precisely when c = cg(0),
that is, if we sit in the frame that moves with the group velocity computed in the
original coordinate x. The second distinguished frame occurs when c = cp = ω/κ,
since we then have ω̃ = 0, and the regularity properties of equations (23) and (24)
degenerate. In fact, (23) becomes the ODE

Uξ =
(

0 id
D−1[λ− fu(u(κξ))] −D−1c

)
U = A(ξ;λ)U (26)

which has only finitely many Floquet multipliers. Actually, the wave train is time
periodic with any period in this special comoving frame, so that one can also con-
sider the relative Morse indices of

Uξ =
(

0 id
D−1[ω̂∂τ + λ− fu(u(κξ))] −D−1c

)
U = A(ξ;λ)U (27)

for any frequency ω̂. Under the above assumptions of stability, this relative Morse
index would then not depend on ω̂. More generally, (27) decouples into an infinite
product of ODEs for the Fourier modes U`ei`τ with ` ∈ Z. For ω̂ large, these ODES
are hyperbolic, as can be readily concluded by considering the principal part

Uξ =
(

0 id
i`ω̂D−1 0

)
U. (28)

The relative Morse index can therefore be inferred from the ODE (26).

6. Boundary conditions. In this section, we consider problems posed on half-
cylinders R+ × Ω in the setup considered in §2. In this case, boundary conditions
need to be imposed on the end section {0} × Ω of the cylinder, and we introduce
these conditions for the abstract first-order system. Let Ebc ⊂ X1/2 be some
closed subspace. We are interested in solutions of Uξ = A(ξ)U with U(0) ∈ Ebc.
Equivalently, we can study the kernel of the operator

Tbc : D(Tbc) ⊂ L2(R+, X) −→ L2(R+, X), U 7−→ d
dξ

U −A(ξ)U, (29)

where
D(Tbc) := {U ∈ L2(R+, X1) ∩H1(R+, X); U(0) ∈ Ebc},
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which, by the trace theorem and interpolation theory, is a closed subspace of
L2(R+, X1) ∩H1(R+, X).

We may then define the relative Morse index of the boundary condition Ebc and
A(ξ) as the Fredholm index of Tbc:

iF (bc, A) := i(Tbc).

Using the projection P u
+ associated with the asymptotic equation at ξ = ∞, we find

that

iF (bc, A) = i(pbc) where pbc : Ebc −→ Rg P u
+, U 7−→ P u

+U. (30)

The proof of this assertion is again a consequence of the spatial dynamics formula-
tion in [12]. From the relation (30), one immediately concludes transitivity

iF (bc, A2) = iF (bc, A1) + i12. (31)

We also record that the Fredholm index is stable under perturbations of the bound-
ary conditions. Here, continuity of subspaces is measured in the usual graph norm
by writing a subspace E2 as a graph over E1 with values in the normal direction in
X1/2.

For problems on R−, one would reflect ξ or, equivalently, construct a ”negative
relative Morse index” via the stable projection of A and the boundary subspace. By
adding the negative Morse index of a boundary-value problem on R− × Ω and the
Morse index on R+×Ω, one can then compute Morse indices on bounded cylinders
J × Ω for finite intervals J . We note, however, that transitivity results between
boundary conditions need not hold in general.

We conclude this section by discussing the important special cases of Dirichlet
(u = 0) and Neumann (v = 0) boundary conditions.

Lemma 6.1. The operator Tbc with Dirichlet or Neumann boundary conditions is
Fredholm if and only if A is hyperbolic. The relative Morse index is zero for the two
special cases associated with L1u = D(uξξ + uyy)− u and L2u = ωuτ −Duξξ + u.

Proof. Invertibility is easily shown in the two examples using eigenfunction expan-
sions in the τ - or y-direction. The transitivity formula (31) then gives the result for
general hyperbolic operators A.

7. Example: Localized source terms in hyperbolic conservation laws. We
now give an application of our results that illustrates the relevance of Fredholm
indices and their computation through relative Morse indices. Consider the viscous
conservation law

ut = Buxx + f(u)x + εg(t, x, u, ux), u ∈ Rn (32)

for a positive definite, symmetric viscosity matrix B, a smooth hyperbolic flux f
with

spec fu(0) = {−c1 > −c2 > . . . > −cn}, spec[B−1fu(0)] ∩ iR = ∅, (33)

and a smooth, spatially localized, temporally periodic source term g so that for
appropriate positive constants T,C, δ > 0

g(t, x, u, v) = g(t + T, x, u, v), |g(t, x, u, v)| ≤ Ce−δ|x| (34)

for all (t, x) and all (u, v) near zero.
We are interested in finding time-periodic solutions u(x, t) = u(x, t + T ) of (32)

and their asymptotic rest states for ε ≈ 0. If g does not depend on t and is in
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Figure 3. The autonomous flows of (35) for ε = 0 [left] and on
the two-dimensional center manifold of (36) for ε 6= 0 [right] are
shown for n = 1 with c1 > 0, illustrating the existence of shock
profiles for ε 6= 0 when g = g(x, u, ux).

conservation form, g = h(x, u)x, and the characteristic speeds cj 6= 0 are nonzero
for all j, one can easily obtain a perturbation result for solutions close to u = 0 by
inspecting the integrated steady-state equation

Bux + f(u) + εh(x, u) = 0

and using the hyperbolicity of the origin.
We consider first the more general case g = g(x, u, ux) and seek small bounded

solutions of the second-order differential equation

Buxx + f(u)x + εg(x, u, ux) = 0. (35)

As illustrated in Figure 3, this can be achieved using dynamical-systems methods
applied to the autonomous first-order system ux

vx

zx

 =

 v
−B−1[fu(u)v + εg(x(z), u, v)]

δ
4 (1− z2)

 , x =
2
δ

ln
1 + z

1− z
(36)

for (u, v, z) ∈ R2 × [−1, 1] with δ as in (34).
Alternatively, we may pursue an approach based only on functional analysis and

Lyapunov–Schmidt reduction, thus exploiting the Fredholm constructions outlined
above. We explain this latter approach in the case of time-independent g and for
nonzero characteristic speeds cj 6= 0. Afterwards, we outline the modifications
that are necessary to deal with the general case of time-periodic source terms and
vanishing characteristic speeds.

Key to the functional-analytic approach is the linearization

Lu = Buxx + fu(0)ux (37)

at the origin, which can be viewed as a closed, densely defined operator on L2(R, Rn).
We may also consider L as a closed, densely defined operator on L̃2

η(R, Rn) with
norm

|u|L̃2
η

= |u(x)eη|x||L2 . (38)

For η > 0, elements in L̃2
η decay exponentially as |x| → ∞.

Lemma 7.1. Assume that cj 6= 0 for all j, then there is an η∗ > 0 with the following
property. For each fixed η with 0 < η < η∗, the operator L defined on L̃2

η(R, Rn) is
Fredholm of index −n and has trivial null space.

Proof. The eigenvalues ν of the second-order system Lu = 0 are solutions of

det[ν2B + fu(0)ν] = νn det[νB + fu(0)] = 0, (39)
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so that ν = 0 is an eigenvalue with multiplicity n, and all other eigenvalues have
nonzero real part due to (33). In particular, we have dim Ec = n. We apply
Theorem 5.1 and Corollary 4.6 to the weighted norm (38), which corresponds to
η− = −η < 0 and η+ = η > 0 in the notation of §4, and therefore find that the
Fredholm index of L on L̃2

η is equal to −n as claimed. Since (37) is a constant-
coefficient operator, one can readily check that the kernel of L in the exponentially
weighted space is trivial.

Lemma 7.1 implies that the kernel of the L2-adjoint L∗ considered on L̃2
−η is

n-dimensional and spanned by the constants ej for j = 1, . . . , n, where ej are the
canonical basis vectors in Rn.

To find shock-like transition layers, caused by the inhomogeneity g for small ε,
we make the ansatz

u(x) =
n∑

j=1

ajejχ(x) +
n∑

j=1

bjejχ(−x) + w(x), (40)

where aj , bj ∈ R, w ∈ L̃2
η, and χ(x) = (1 + tanh(x))/2. Substituting this ansatz

into (32), we obtain an equation of the form

F (a, b, w; ε) = 0, F (·; ε) : Rn × Rn ×D(L) ⊂ R2n × L̃2
η −→ L̃2

η (41)

for a = (aj), b = (bj) and w. For 0 < η � 1, the map F is smooth, as elements in
L̃2

η and the source term g decay exponentially as |x| → ∞, and its linearization at
(a, b, w) = 0 is given by

Fw(0; 0) = L, Faj
(0; 0) = Bejχ

′′ + fu(0)ejχ
′, Fbj (0; 0) = Bejχ

′′ − fu(0)ejχ
′

where Fa(0; 0) and Fb(0; 0) lie in L̃2
η.

Lemma 7.2. Under the hypotheses of Lemma 7.1, the operator

Fa,w(0; 0) : Rn × L̃2
η −→ L̃2

η, (a,w) 7−→ Fa(0; 0)a + Fw(0; 0)w

is invertible.

Proof. Lemma 7.1 shows that L has trivial kernel and Fredholm index −n. First,
we observe that the n partial derivatives with respect to aj are linearly independent:
To see this, evaluate Faj

(0; 0) at x = 0 where χ′′(0) = 0 and χ′(0) = 1
2 , and exploit

that fu(0) is invertible. Next, we compute the scalar products of Faj (0; 0) with the
elements ei of the kernel of the adjoint L∗:∫

R
〈Faj

(0; 0)(x), ei〉dx =
∫

R
〈Bejχ

′′ + fu(0)ejχ
′, ei〉dx = 〈fu(0)ej , ei〉 = [fu(0)]ij

(42)
which, for fixed j, is nonzero for some i by invertibility of fu(0). Hence, the partial
derivatives Faj (0; 0) are not in the range of L. Taking these facts together proves
the lemma.

We can therefore solve (41) with the implicit function theorem and obtain unique
solutions (a,w)(b; ε). The physically interesting quantity is the jump u(∞) −
u(−∞) = a(b; ε)− b. A straightforward expansion gives

u(∞)− u(−∞) = a(b; ε)− b = ε

∫
R

fu(0)−1g(x, 0, 0) dx + O(ε2)

which, to leading order, is independent of b. By continuity, the characteristics of
the PDE associated with the new shock profile are close to those of u = 0 at the
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origin, and we conclude that the number of positive characteristic speeds at ∞ and
−∞ are equal: thus, the inhomogeneity allows for transmission, and the resulting
shock profiles are undercompressive shocks of index 1.

Using the results in §5 on Fredholm indices and relative Morse indices for mod-
ulated waves, the preceding analysis generalizes immediately to the case where g
depends periodically on t with period T = 2π/ω: The only extra hypothesis needed
is that the linearization L does not have essential spectrum at λ = iω` for ` ∈ Z,
which is guaranteed to hold, for instance, when B = id.

The functional-analytic approach allows us also to study the case where precisely
one characteristic speed cj vanishes. In this situation, we may, without loss of
generality, assume that fu(0)e1 = 0. We see that the Morse index of L in L̃2

η is
−(n + 1), since ν = 0 has multiplicity n + 1 as a solution of (39). The kernel of the
adjoint operator L∗ on L̃2

−η is spanned by the constant functions ej and the linear
function xe1, which lies in L̃2

−η for η > 0. Using the ansatz (40), we arrive again at
the function F given in (41):

Lemma 7.3. Assume that fu(0) has distinct real eigenvalues with a simple eigen-
value at ν = 0 with eigenvector e1. We also assume that spec[B−1fu(0)] does not
contain nonzero purely imaginary eigenvalues. Then the linearization of F with
respect to (a, b1, w) is invertible at (0; 0).

Proof. One readily verifies that the partial derivatives with respect to {aj}j=1,...,n

and b1 are linearly independent. Furthermore, for each fixed j = 2, . . . , n, we have∫
R
〈Bejχ

′′ + fu(0)ejχ
′, ei〉dx = 〈fu(0)ej , ei〉 = [fu(0)]ij

which is nonzero for some i since fu(0)u = 0 only when u is a multiple of e1. Lastly,∫
R
〈Fa1(0; 0)(x), xe1〉dx =

∫
R
〈Be1χ

′′ + fu(0)e1χ
′, xe1〉dx = −〈Be1, e1〉 < 0

and similarly∫
R
〈Fb1(0; 0)(x), xe1〉dx =

∫
R
〈Be1χ

′′(−x)− fu(0)e1χ
′(−x), xe1〉dx = 〈Be1, e1〉 > 0

so that Fa1(0; 0) and Fb1(0; 0) do not lie in the range of Fw(0; 0). In summary, the
n+1 linearly independent functions Faj (0; 0) and Fb1(0, 0) lie outside the range of L
which is one-to-one with Fredholm index −(n + 1). Thus, Fa,b1,w(0; 0) is invertible
as claimed.

We can therefore solve (41) with the implicit function theorem and obtain unique
solutions (a, b1, w) as functions of (b2, . . . , bn; ε). The interesting aspect in this
situation is that the solution selects both a1 and b1 via

a1 = Mε + O(ε2), b1 = −Mε + O(ε2), M :=
∫

R

x〈e1, g(x, 0, 0)〉
〈Be1, e1〉

dx.

Provided M 6= 0, the difference between the number of positive characteristic speeds
at ∞ and −∞ is therefore two, and the viscous profile is a Lax shock or an under-
compressive shock of index 2, depending on the sign of ε (and of M).

In the simple case of a scalar conservation law, the preceding analysis parallels
[13, §6.5] and [7, §3.2]. We emphasize, however, that the present analysis, by fo-
cusing on solutions which are exponentially localized at x = ±∞ with a uniform
rate η, misses contact and transmission defects. In the language of shocks, contact
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defects correspond to shocks with glancing modes, while transmission defects cor-
respond to the undercompressive shock waves of index 1 that we found in the case
of inhomogeneities for non-vanishing characteristic speeds. We also note that there
are many more Lax shocks in the vicinity of u = 0 for each sign of ε. The Lax
shocks found in our analysis are special in that they are strongly decaying towards
the asymptotic constant states.

8. Discussion. The results that we presented in this paper are valid for semilin-
ear elliptic problems in cylindrical domains and for modulated waves in reaction-
diffusion systems. Similar results hold for the linearization at radially symmetric
stationary or time-periodic patterns [16] and at spiral waves [15], and also for per-
turbations of eigenvalues embedded in the essential spectrum of elliptic operators
[3]. We expect that analogous results hold in far more general situations: In partic-
ular, the coefficients in front of the higher-order derivatives may depend on (ξ, y, λ)
but we will not pursue this question here.

Lastly, we mention that the strategy we pursued in §7 for time-periodic pertur-
bations of viscous conservation laws may also be successful when studying Hopf
bifurcations from viscous shock profiles. This may give existence proofs that are
simpler than those given in [14, 17, 18] though we do not know whether the stability
proof given in [14] can be simplified using this approach.

Appendix A. Fredholm properties of first- and second-order operators.
We consider the operator

L = D∂xx + c(x)∂x + a(x)

as a densely defined operator on X = L2(R, Cn) with domain X1 = H2(R, Cn) or,
alternatively, on X = C0

unif(R, Cn) with domain X1 = C2
unif(R, Cn). Here, D is a

diagonal matrix with strictly positive entries, and a, c ∈ C0(R, Cn×n) are continuous
matrix-valued functions. We also consider the associated first-order operator

T =
d
dx

−
(

0 1
−D−1a(x) −D−1c(x)

)
as a densely defined operator on Y = L2(R, C2n) with domain Y 1 = H1(R, C2n) or,
alternatively, on Y = C0

unif(R, C2n) with domain Y 1 = C1
unif(R, C2n). Both L and

T are closed operators.

Theorem A.1. The following statements hold:
(i) The operator T is Fredholm on L2 if and only if it is Fredholm on C0

unif . The
Fredholm indices coincide on these spaces.

(ii) The operator L is Fredholm on X if and only if the operator T is Fredholm
on Y (with X = L2 and Y = L2 or with X = C0

unif and Y = C0
unif).

(iii) If L and T are Fredholm on X and Y , respectively, then their Fredholm indices
coincide.

Using the material in [12], the proof of Theorem A.1 given below applies also
to the situations described in Theorems 2.2 and 5.1 to show the equivalence of
first-order and second-order formulations, and we will omit the details.

Proof. Palmer proved in [9, 10] that T is Fredholm on C0
unif if and only if the ordi-

nary differential equation T U = 0 has exponential dichotomies on R+ and on R−.
Ben-Artzi and Gohberg [1] proved the same result for L2 spaces. Alternatively, the
equivalence of exponential dichotomies on R± and Fredholm properties on L2 was
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proved in [12] for a far more general class of operators that may depend on additional
independent variables provided c is a constant; if there are no additional variables
present as in our setting, the proof in [12] works for the operators considered here1.
This establishes (i).

We define the operator

Tref =
d
dx

−
(

0 1
D−1 0

)
from Y into itself with domain Y 1 and record that Tref is invertible. We may then
define the continuous operator

P : Y −→ X, G 7−→ −D−1[(1 + a(x))P1 + c(x)P2]T −1
ref G (43)

where Pj : Y → X, G = (g1, g2)T 7→ gj projects onto the jth component.

Lemma A.2. We have

G ∈ Rg(T ) ⇐⇒
(

0
PG

)
∈ Rg(T ),

(
0
h

)
∈ Rg(T ) ⇐⇒ h ∈ Rg(L). (44)

Specifically, T U = G for some U ∈ Y 1 if and only if T V = (0,PG)T , where
U = V + T −1

ref G.

Proof. Assume that T U = G for some U ∈ Y 1. Define V := U −T −1
ref G ∈ Y 1, then

T V = T U − T T −1
ref G = G︸︷︷︸

=T U

+ [Tref − T ]T −1
ref G−G︸ ︷︷ ︸

=−T T −1
ref G

= [Tref − T ]T −1
ref G

=
(

0 0
−D−1[1 + a(x)] −D−1c(x)

)
T −1

ref G
(43)
=

(
0
PG

)
∈ Y.

The converse is proved by reversing the order of the above argument. The second
equivalence in (44) is obvious.

Regarding statement (ii), it is not difficult to see that L is Fredholm whenever
T is Fredholm. We therefore prove only the converse. Thus, assume that L is
Fredholm.

We first claim that Rg(T ) is closed in Y . To show this, take a sequence Gn ∈
Rg(T ) with Gn → G in Y as n → ∞. We need to prove that G ∈ Rg(T ). Since
Gn ∈ Rg(T ), we know from Lemma A.2 that PGn ∈ Rg(L) for all n. Continuity
of P and closedness of Rg(L) implies that the limit PG ∈ Rg(L), and Lemma A.2
shows that G ∈ Rg(T ). Thus, Rg(T ) is closed in Y as claimed.

To complete the proof of of (ii) and of statement (iii), we first record that

dim N(L) = dim N(T ).

We have shown above that if Rg(L) or Rg(T ) is closed, then both spaces are closed.
Assuming therefore that these spaces are closed, we need to show that their codi-
mensions are equal, which will complete the proof of (ii) and (iii). Lemma A.2
implies that

G /∈ Rg(T ) ⇐⇒
(

0
PG

)
/∈ Rg(T ),

(
0
h

)
/∈ Rg(T ) ⇐⇒ h /∈ Rg(L). (45)

1The assumption in [12] that c is constant is needed only to guarantee compactness with respect
to the additional independent variables.
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In particular, if Gj /∈ Rg(T ) are linearly independent in Y for j = 1, . . . , N , then
the elements PGj are linearly independent in X; otherwise, the first equivalence in
(45) would not hold.

Assume first that L is Fredholm, then codim Rg(L) =: N is finite, and we can
choose a basis {hj}j=1,...,N of a complement of Rg(L). Thus, Hj := (0, hj)T are lin-
early independent in Y and Hj /∈ Rg(T ) by (45), which shows that codim Rg(T ) ≥
codim Rg(L). If codim Rg(T ) > codim Rg(L), then there exists an element HN+1 /∈
Rg(T )⊕ span{Hj}j=1,...,N . In particular, Hj /∈ Rg(T ) are linearly independent for
j = 1, . . . , N + 1, and the discussion following (45) shows that ĥj := PHj /∈ Rg(L)
are also linearly independent for j = 1, . . . , N + 1 which contradicts our starting
assumption. Thus, codim Rg(T ) = codim Rg(L).

An analogous, and in fact simpler, argument leads to the same conclusion if
we start from the assumption that T is Fredholm. This completes the proof of
Theorem A.1.
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