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Abstract Based on experimental data, we introduce and analyze a system of

reaction-diffusion equations for the regeneration of planarian flatworms. We

model dynamics of head and tail cells expressing positional control genes that

translate into localized signals which in turn guide stem cell differentiation.

Tissue orientation and positional information are encoded in a long range wnt-

related signaling gradient. Our system correctly reproduces typical cut and

graft experiments, and improves on previous models by preserving polarity

in regeneration over orders of magnitude in body size during growth phases.

Key to polarity preservation in our model flatworm is the sensitivity of cell

differentiation to gradients of wnt-related signals relative to the tissue surface.

This process is particularly relevant in small tissue layers close to cuts during

their healing, and modeled in a robust fashion through dynamic boundary

conditions.

1 Introduction

Planarians are nonparasitic flatworms commonly found in freshwater streams

and ponds [61,63] with a body size in the mm-scale. The best experimental

data is available for the species ”Schmidtea mediterranea”, which is 1mm to
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20mm long and consists of 100.000 to more than 2.000.000 cells. Planarians

possess the ability to regenerate after rather severe injuries to their body. When

small tissue parts are cut from the flatworm - in extreme cases just 0.5% of the

original size - these can regenerate to a fully functioning and intact organism

[61] with head and tail positioned such that the original orientation of the

tissue fragment is respected. When tissue parts are cut from a donor and

grafted into a host, the newly created planarian integrates the old positional

information of the tissue fragment from the donor with the new positional

information it obtains from the host. A better understanding of these processes

has a far reaching potential for regeneration in general.

Here, we present a minimal mathematical model, informed by experimental

data, that reproduces this fascinating behavior. To the best of our knowledge,

our system of reacting and diffusing species is to date the only model that

correctly recovers most of the typical cutting and grafting experiments, and

preserves polarity during regeneration, even of small tissue fragments. The

proposed mechanisms resolve a conundrum in modeling efforts. Many models

of spontaneous formation of finite-size structure in unstructured tissue so far,

allude to a Turing type mechanism to select a finite wavelength. Activator-

inhibitor systems [39], have often been discussed, for instance in the context

of regeneration in hydra, which is similarly robust as planarian regeneration.

Turing’s mechanism however does (intentionally) not scale across several or-

ders of magnitude, nor does it incorporate robust selection of polarity.

1.1 The mathematical model

We focus on the ante-posterior (AP) axis of planarians and consider a one-

dimensional domain x ∈ [−L,L], populated by different cell types and signals.

Head cells h and tail cells d generate corresponding signals uh and ud, which

activate the respective differentiation of stem cells s. A long-range wnt-related

signal w, in short wnt-signal, encodes orientational information through its

gradient. It is produced by tail cells in a saturating fashion, and degraded by

reactions with head cells:

∂ts = Ds∂xxs+ ρs(s)− phuhs− pduds , (1.1)

∂th = Dh∂xxh+ phuhs− ηhh, , (1.2)

∂td = Dd∂xxd+ pduds− ηdd , (1.3)

∂tuh = Duh
∂xxuh + h2(r0 − r1uh)− r2uhd− r3uh , (1.4)

∂tud = Dud
∂xxud + d2(r0 − r1ud)− r2udh− r3ud , (1.5)

∂tw = Dw∂xxw − pwhw + pwd(1− w) . (1.6)
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Stem cells proliferate with saturating rate and undergo apoptosis [8], which is

encoded in ρs(s) = ps
s

1+s − ηss. Stem cells also differentiate irreversibly into

head and tail cells, guided by positional control genes, which are modeled by

the respective related localized signals uh, ud. Those signals are produced by

head and tail cells up to a saturation level, with rates r0 and r1 and decay

with rate r3 . This interaction works during both, normal tissue turnover and

regeneration [61]. Head and tail cells result from stem cell differentiation and

do not proliferate. They undergo apoptosis and degrade the signal associated

with the other cell type with rate r2.

The quadratic dependence of the production of uh and ud on h and d cor-

responds to higher order molecular kinetics, quadratic here in their simplest

form. Replacing these reactions by first-order kinetics, linear in h, d, would

result in spontaneous growth of head and tail regions caused by a linear in-

stability of the zero state; see (4.1) in our analysis and model reduction in §4

based on tristability, that is, linear stability of head-only, tail-only, and zero

states. The quadratic dependence postulated here suppresses this instability

and we suggest that some effective higher-order kinetics are indeed crucial

there. We used the same parameter pw for production and degradation of w,

since differing rates showed qualitatively similar outcomes in our simulations.

Finally, random motion of cells and diffusion of signal molecules are modeled

through the diffusion coefficients Dj .

Writing U(t, x) = (s, h, d, uh, ud, w)(t, x),D = diag (Ds, Dh, Dd, Duh
, Dud

, Dw)

and F = (Fs, Fh, Fd, Fuh
, Fud

, Fw) in the system (1.1)–(1.6), we find

∂tU = DUxx + F(U) . (1.7)

We prescribe inhomogeneous Dirichlet boundary conditions Ux=±L = U± and

evolution equations for the time dependent Dirichlet data

d

dt
U± = − 1

γ
D ∂νU |x=±L + F(U±) + B , (1.8)

where ∂νU |x=±L = ± ∂xU(t, x)|x=±L denotes the normal derivative. We think

of U± as concentrations in a boundary compartment of length γ where con-

centrations are spatially constant. Fluxes − 1
γD ∂νU |x=±L ensure mass conser-

vation up to kinetics,

d

dt

(∫
U +

∑
±
γU±

)
=

∫
F(U) +

∑
±

(
D∂νU |±L + γ

d

dt
U±

)
=

∫
F(U) + γ

∑
±

(F(U±) + B) .
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Fig. 1.1: Schematic plot of the smoothed indicator functions χε that detect positive and

negative values of the gradient, respectively, with offset θ and sensing thresholds ε.

Kinetics here are identical to those in the bulk of the domain up to a new term

B, present in the dynamics for s±, h±, and d±, that represents a boundary-

specific stem-cell differentiation mechanism through rates Ψ±h/d,

d

dt
s± = − 1

γ
Ds ∂νs|x=±L + Fs − Ψ±h s− Ψ

±
d s , (1.9)

d

dt
h± = − 1

γ
Dh ∂νh|x=±L + Fh + Ψ±h s , (1.10)

d

dt
d± = − 1

γ
Dd ∂νd|x=±L + Fd + Ψ±d s . (1.11)

The differentiation is triggered by lack of head or tail cells, and directed ac-

cording to the sign of ∂νw, explicitly through Ψ±h/d = Ψh/d(h, d, ∂νw)|x=±L,

Ψh = τ(1− h)(1− d)χε>θ(∂νw), and Ψd = τ(1− h)(1− d)χε<−θ(∂νw).

Here τ � 1 is the rate of differentiation, and the χε are smoothed versions of

the characteristic function, for example

χε>θ(ξ) =
1

2

[
tanh((ξ − εθ)/ε) + 1

]
,

χε<−θ(ξ) =
1

2

[
tanh(−(ξ + εθ)/ε) + 1

]
; (1.12)

see Figure 1.1 for an illustration. The steepness ε−1 of the smoothed character-

istic function can be interpreted as a sensitivity of differentiation with respect

to small gradients. The offset θ measures minimal detectable strength of the

gradient at the body or wound edge in ε-units. Overall, the kinetics Fs in (1.1)

regulate a near-constant supply of stem-cells. As a result, a healthy planarian

consists of a high concentration of h near x = −L, a high concentration of d

near x = L, and a near-constant gradient of w in x ∈ (−L,L); see Figure 1.2.

1.2 Boundary dynamics

Differentiation rates in Ψ±h/d do not depend on w itself. In particular, con-

centration levels of the wnt-related (or other long-range) signal w are not
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Fig. 1.2: Typical experiments and their representations in terms of our mathematical model.

Top left: Schematic illustration of head grafting and regeneration of a two-headed planarian.

Top right: Head grafting and regeneration into a normal planarian with one head and tail.

Middle row: Cutting experiment and regeneration of eight planarians.

Bottom row: Schematic illustration of experiments on planarians and associated spatial

distribution of concentrations h, d, w, s, uh, ud.

Homeostasis (left) has head cells concentrated on the left, tail cells concentrated on the

right, a wnt-gradient directed towards wnt-production in the tail, roughly constant stem

cell population with a slight decrease where differentiation into head and tail cells occurs.

Head and tail signals are closely mimicking the distribution of head and tail cells.

Grafting (center): The head region of a donor is grafted into a host, retaining roughly the

distribution of cell concentrations and signaling molecules from its original location.

Cutting (right): A thin fragment (here from the trunk region) retains a small wnt-gradient

but no head or tail cells. Regeneration in this context refers to reestablishing head and tail

cell populations while preserving polarity.
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converted into positional information that in turn directs the differentiation

process. Such a direct conversion of signals is often referred to as a French-flag

model (see [86,87]and, for planarians, [63]) but intentionally not used here:

1) Positional information is inherently incapable of explaining preservation of

polarity. Since regeneration and polarity are robust with respect to the lo-

cation of cut out tissue fragments, near head, tail, or from the central body

region, absolute levels of w play apparently little role in their regeneration.

2) Positional information is not necessary in the early stages of regeneration,

but seemingly relevant only later when the size of functional regions like head

or tail are regulated; see §6.

3) There is little evidence thus far on the nature of robust biological mecha-

nisms that would translate wnt-signal levels into differentiation of stem cells.

Postulating such mechanisms would simplify the task of reproducing observed

phenomena at the (unnecessary) expense of adding a somewhat poorly sub-

stantiated regulatory mechanism.

Cutting experiments eliminate head and/or tail cells, thus influence the wnt-

pathway and destroy the associated signaling gradient. The terms B in (1.8)

model the strong local peak of differentiation of stem cells [82], at wounds

inside a formed blastema, guided by wnt-signaling [2]. This reaction, which is

specific to wounds with loss of tissue, is not completely understood [50], and

occurs in our model in regions at the ends of [−L,L]. We crucially rely on

the detection of the orientation of the wnt-gradient relative to the respective

body edge. We view this as an in some sense necessary, minimal information,

to guide regeneration while at the same time preserving polarity. Looking at

the boundary after cutting in Figure 1.2, one readily sees that the sign of ∂νw

gives clues as to whether differentiation towards head or tail cells should occur.

One can envision several scenarios that enable stem cell differentiation to be

guided by gradients of a chemical signal, for instance through comparing signal

strength spatially or temporally; see [5], [25]. We do not attempt to model

details of this sensing process in the present paper, but simply include a lumped

reaction term for differentiation, that depends sharply on the sign of ∂νw.

We shall see that our somewhat non standard dynamic (or Wentzel) boundary

conditions cannot be readily replaced by, say, Robin boundary conditions.

Formally, one could for instance let rates of boundary dynamics tend to infinity

or the mass fraction of the boundary compartment γ tend to zero. In the latter

case, assuming at the same time rapid reactions N1, in

d

dt
U± = − 1

γ
D ∂νU |x=±L +N , N =

1

γ
N1 +N2 ,

one finds in the limit the mixed boundary condition D∂νU = N1(U). In §4.3,

we will see that, in this limit to “instantaneous” boundary conditions, the
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model does not correctly reproduce the phenomena of regeneration. This math-

ematical curiosity implies for instance the presence of distinguished body re-

gions relevant in regeneration and may relate to the concept of poles separating

head and tail regions from the trunk as discussed in [63] where it is attributed

a key role in regeneration.

In another interpretation of dynamic boundary conditions, we can think of

compartments for the main body on a uniform grid x(1), . . . , x(N), with size

x(j+1) − x(j) ≡ dx and associated concentrations U (1), . . . , U (N) such that

individual compartments carry masses dxU (j). We now add separate bound-

ary compartments U (0) = U− and U (N+1) = U+ carrying (larger) masses

γU (0), γU (N+1), independent of dx, and impose no-flux boundary conditions

on this inhomogeneous spatial grid. Fixing γ and letting dx→ 0 we arrive at

our dynamic boundary condition. Letting γ → dx, we loose the concept of dy-

namic boundary conditions and should interpret the additional reaction terms

B as nonlinear fluxes. We are not aware of a systematic analysis of such limits,

connecting discretization, nonlinear fluxes, and dynamic boundary conditions.

1.3 Outline of the paper

We review biological experiments that motivate our model in §2 and describe

numerical simulations that mimic planarian regeneration in various scenarios

in §3. In §4, we present analytical results that reduce dynamics to an order

parameter c that lumps concentrations of head and tail cells, coupled to the

long-range wnt-related signal w. This reduction clearly illustrates how the non-

linear boundary fluxes restore head and tail cell concentrations in dependence

on the normal derivatives of w, and initiate and organize regeneration. We

outline a (in)stability analysis and pinpoint to failure of regeneration, i.e. no

recovery of the wnt-gradient, when dynamic boundary conditions are relaxed.

In a drastic oversimplification, the key feature, namely restoration of a signal

gradient through body edge sensing, is distilled in a scalar model for w. Again

we outline the limits of regeneration and point to oscillations, caused by cou-

pling of the scalar, non-oscillatory dynamics in the boundary to the diffusive

signal field in the bulk and the resulting delayed feedback mechanism. Finally,

we remark on other models in the existing literature in §5 and end with a

discussion of our results.
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2 Planarian regeneration - experiments

Planarians consist of three tissue layers [31], and exhibit a bilateral symme-

try, three distinct body axes, a well-differentiated nervous system including a

brain, a gastrovascular tract, and a body-wall musculature. Pluripotent adult

stem cells (neoblasts), about 30% of the total cell population [7], are the source

of all cells [74], and cell types. Neoblasts divide and differentiate constantly.

Differentiated cells die after some time. During this dynamic steady state, the

flatworm maintains cell type proportions. Planarians and hydra are among the

few species that seem to possess a nearly unlimited regenerative ability, recov-

ering from practically every injury, and regenerating when aging. Some asexual

planarian species even reproduce by tearing themselves apart and subsequently

develop into two intact worms [31]. The ability to replace lost or damaged tis-

sue in humans is very limited. Examples in animals include regeneration of

deer antlers, fins of fish, tails of geckos, or complete limbs in some crabs or

salamanders. The study of regeneration in biological model organisms holds

tremendous appeal and potential for a better understanding of regeneration

of human tissue, such as parts of the heart muscle after an infarct.

Cutting. Cutting tissue off a planarian results in regeneration of both parts

into an intact organism, more or less independent of position, size, or direction

of the cut, with a few exceptions. Each strip of a transverse dissection of the

AP-axis will regenerate into a complete flatworm, including an intact brain.

In cuts close to head or tail, regeneration of a new head occurs in 3− 4 weeks.

Complete restoration of the right proportions, usually requires 2− 3 months,

[40]. Tissue cut from close to head or tail lacks a pharynx, and draws resources

from itself, shrinking to as little as a tenth of its original size, while restoring its

basic functions first. Since polarity is preserved, even in small tissue fragments,

neighboring cells will regenerate as either head or tail accordingly, after they

have been separated by a cut! Exceptions are very long or short fragments,

which sometimes regenerate a second head instead of a tail. Too small or too

thin cuts are not able to regenerate at all. See Figure 1.2 for the schematics

of experiments and the respective representation in our model.

Grafting. Cutting out tissue of an intact donor planarian and transplanting

it into another healthy host, the donor usually regenerates as described be-

fore, whereas the host may develop new phenotypes; see Figure 1.2. When

transplanting parts of the head of the donor into different positions within the

host, regeneration depends on the size and position of the donor head tissue

within the host. Either a normal flatworm develops, with the grafted second

head vanishing, or a second axis is generated at the position of the transplant

such that two heads and one tail result, or a two-headed planarian without tail.

Outgrowth seems more likely for a larger distance between the head transplant
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and the host’s head. This is similar for larger head transplants and for tissue

taken closer to the donor’s head. Transplanting a donor tail into the upper

part of a host, sometimes results in a second pharynx in opposite direction,

possibly also leading to outgrowth. Transplanting a complete tail fragment

below the head fragment of a bisected host, such that just an intermediate

strip for a complete planarian is missing, regenerates this missing strip.

Growth and Shrinking. Adult planarians of the species “Schmidtea mediter-

ranea” are roughly 20mm long if well fed, and can shrink to about 1mm if

starved. When food supply is restored, they regrow while keeping relative pro-

portions and ratios of cell populations intact [7]. For more details on planaria;

see [7,9,6,10,12,15,65,41,56,57,66,71,46,42,40,64].

The freshwater polyp hydra, shows a similarly robust regeneration behavior,

see [80,32,70,69,11,84]. But stem cells in hydra are distributed exclusively

inside the body region, below the epithelium. Therefore a tissue fragment con-

sisting only of head or foot cells will not regenerate. See [1] for a quantitative

study on induction of additional foot or tail axes. When tissue of hydra is disso-

ciated by pressing it through a net and the resulting fragments are reorganized

randomly, a bulb of hydra tissue arises, which subsequently regenerates head

and foot structures. Depending on the number of involved cells, several head

and body axes occur that will separate only later [47]. Compare Figure 3.5 for

a related set-up in our model, which has not yet been described for planarians.

Genetics. Measuring the amount of RNA produced from specific genes dur-

ing protein synthesis, e.g. through in situ hybridization or northern blot [48],

one can identify, which genes are mainly expressed close to head, tail, or after

wounding or feeding in planarians. Via RNA interference, short pieces of RNA

interact and neutralize targeted mRNA molecules. Thus synthesis of messen-

ger molecules stops at an earlier point in time, and it can be decided, which

of the genes being expressed within the head region are actually necessary to

regenerate a head. This allows for some analysis of the production dynam-

ics and functioning of related signals (uh, ud in our model), even though the

corresponding messenger molecules can not be tracked directly so far. Corre-

sponding antibodies are not yet available. We refer to [50], [63] for a review

on biological results pertinent to our mathematical model.

Gene expression sites. The three main body axes in planarians are organized

by different signaling systems, which seem to act quite independently [60].

This justifies a 1D-model, and we therefore focus on genes which organize the

AP-axis. More details can be found in [2,60,51,21,4,18,62].

Among the genes which are expressed close to the head are notum, sFRP-1,

and sFRP-2. Notum and sFRP-1 are expressed more locally, while expression

of sFRP-2 extends from the planarian head tip to its center. Genes which
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are expressed closer to the tail include wnt1, and wnt11-5 (or wntP-2). Here

wnt1 is expressed very locally, while wnt11-5 is expressed from the tail tip to

the center region in a graded fashion. By local expression we mean a few cells

producing molecules at the very tips of the planarian, most likely subepidermal

muscle cells [85].

The time dynamics of gene expression after wounding are described in [4,52,

81,53]; wnt1, wnt11-5, notum, and sFRP-1 are expressed very early; wnt1 is

expressed first at all wound sites and then normalizes to the behavior described

above. Among 128 wound induced genes only notum shows a polarized expres-

sion [88], i.e. it is expressed at wounds that face missing head structures. Only

the cell-internal downstream factor of wnt-signaling, β-catenin [18], seems to

influence this asymmetric expression [67]. Inhibition of notum and head ampu-

tation prevents head regeneration, while inhibition of wnt1 and tail amputa-

tion prevents tail regeneration. The flatworm will regenerate with two tails or

two heads, respectively. Thus wnt1 and notum are expressed very early after

wounding and act in an antagonizing manner [26].

The canonical wnt-pathway is crucial for establishing and maintaining the

polarity along the AP-axis. High levels of wnt signaling correlate with high

levels of β-catenin within the cytoplasm. Inhibiting β-catenin leads to different

phenotypes [2]. If low doses of inhibitor dsRNA are injected into a planarian

and the tail is removed, the wound closes but no tail regenerates. Higher doses

will lead to regeneration of a second head at the tail wound with a second

opposing pharynx in the middle of the planarian body. If the doses are further

increased, the pharynx (both) disorganize and ectopic eyes appear. Complete

inhibition of β-catenin leads to a radially shaped planarian with head-related

structures (nerve cells, eyes, etc.) everywhere, even without tail amputation.

An organizing β-catenin concentration gradient, with maximum at the head

and minimum at the tail has been confirmed experimentally [73,72].

Much of the current understanding of planarian regeneration rests on the idea

of a full body gradient of wnt-signaling [2], although details are not completely

understood. Expression of wnt1 at tail identities [52] leads to accumulation

of β-catenin inside the cells [13]. The expression of the wnt-antagonist notum

[26], is exclusively affected by β-catenin signaling [67,53]. It is expressed locally

at the tip of the head [60], and required for head regeneration. These mutual

dependencies of β-catenin and members of the wnt-signaling family together

with its inhibitors appear to form a wnt-related signaling gradient over the

planarian body.

In our mathematical model the gradient of w is retained in body fragments,

providing clues for polarization in regeneration. We do not take into account
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β-catenin or notum, since the additional information would be equivalent to

1− w and therefore not contribute in a mathematically essential way.

The hydra homologues of the above mentioned genes wnt, disheveled, gsk3,

tcf and β-catenin seem to act in a comparable way; see [55,24,54,27,19].

These similarities lead us to suggest that our model for planarians does carry

implications also for hydra. The wnt-pathway appears to be even more widely

conserved during evolution, beyond hydra and planaria.

3 Simulations of cutting, grafting, and growth

Our numerical simulations of system (1.1)-(1.6), (1.9)-(1.11) illustrate home-

ostasis, cutting, grafting, and growth, confirming and expanding on the sche-

matic representation in Figure 1.2.

Parameter values. Our default parameter values in Table 1 roughly represent

expected orders of magnitude within the system. In [75] a non-dimensionaliza-

tion was performed for a closely related model. Most parameter values do not

have a significant effect on the outcome of our simulations and can be changed

by several orders of magnitude, with notable exceptions discussed below. Ran-

Ds 1 ps 200 r0 18 ηs 100

Dh 10−3 ph 1 r1 12 ηh 1

Dd 10−3 pd 1 r2 6 ηd 1

Duh 10−2 pw 10 r3 6 τ 0.5

Dud 10−2 γ 0.3 θ 3

Dw 1 L 10 ε 2 · 10−3

Table 1: Parameter values used in simulations throughout, unless noted otherwise. A dis-

cussion on the biological measurements and non-dimensionalization can be found in [75].

dom motion of stem cells is of order one as they move fairly freely through

the body. Random motion of head and tail cells is very slow. Similarly, the

localized signals uh/d diffuse slowly, while the long-range wnt-related signal

w has a diffusion constant of order 1. We work on domains of length 10 and

attribute a mass fraction γ = 0.3 to the boundary. We assume very fast pro-

liferation of stem cells ps � 1 and fast signaling dynamics rj relative to cell

differentiation. Cell differentiation ph/d, apoptosis ηh/d, and differentiation at

the tissue edges during wound healing τ occur on a time scale of order 1. The

production rate of wnt-related signals pw is faster in comparison.

Numerical implementation. We implemented the dynamic boundary condi-

tions as time-dependent Dirichlet conditions. The system was solved with grid
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spacing dx = 0.01 and time stepping 5 · 10−4 using a semi-implicit Euler

method. We found little changes from refining spatio-temporal grids and also

used Matlab’s stiff solver ode15s for comparison with good agreement.

Results of the numerical simulations. We obtained equilibrium profiles start-

ing with initial conditions that represent head and tail cells in the boundary

compartments at the body edges, a uniform distribution of stem cells through-

out the trunk, and a uniform wnt-signaling gradient. Solving the initial-value

problem for a short time, we found that concentrations approached constants

in time. Specifically, we used initial conditions

h0(x) ≡ 0, h−,0 = 1, h+,0 = 0 , d0(x) ≡ 0, d−,0 = 0, d+,0 = 1 , (3.1)

s0(x) ≡ 1, s−,0 = 1, s+,0 = 1 , w0(x) =
x+ L

2L
, w−,0 = 0, w+,0 = 1 ,

and let uh, ud equal h, d. The results match the schematics in Figure 1.2.

Figure 3.1 illustrates the dynamic stationary profiles of healthy planarians of

different body size in our mathematical model. The linear concentration profile

-1 0 1

0

0.5

1

-5 0 5

0

0.5

1

-25 0 25

0

0.5

1

Fig. 3.1: Equilibrium profiles showing a linear wnt-signaling profile, head and tail cells con-

centrated near boundaries, stem cell concentrations with small deviations from constant,

and chemical signals closely following head and tail-cell concentrations, respectively. Dif-

ferent scales for x represent different body sizes of planarians. Homeostasis and cutting

experiments are illustrated in the supplementary materials cutting sequel.mp4.

in the wnt-signal is quite robust under dramatic changes in the domain size.

Fixing the width of the boundary compartment γ and varying L we found

robust homeostasis between L = 0.005 (!) and L = 40. For very small L, the

total variation of the wnt-signal w decreases: w stays bounded away from 0

and 1, and the gradient of w remains bounded for L→ 0. In this regime, the

signals uh and ud follow the concentrations h and d less closely, being much

smaller in amplitude. For very large L, the equilibrium state is sensitive to
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small fluctuations since the wnt-signaling gradient is small, within [−θ · ε, θ · ε]
where detection of the gradient no longer triggers differentiation. Increasing γ

helped stabilize dynamics, and we found robust homeostasis for domain sizes

1, . . . , 50 and boundary compartments of size γ = 0.1, . . . , 15. Very small sizes,

such as γ = 0.015, L = 5, were not able to sustain a head-trunk-tail profile,

consistent with our discussion in §4. Whenever we saw homeostasis, we tested

robustness against small amplitude perturbations and found recovery within

expected limits, excluding for instance perturbations that alter the sign of the

wnt-signaling gradient near the boundary.

The localization of the regions occupied by head and tail cells depends first

on the strength of random motion Dd, Dh and diffusion rates of their associ-

ated morphogens; see Figure 3.2. Changing production and degradation rates

r0, r1, r2, r3 for uh/d, one can trigger a spontaneous expansion of the region for

head and tail cells, where now the rate of expansion depends on these rates

and the diffusivities.
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Fig. 3.2: Growing/shrinking of head and tail cell regions (left/right) with r0 = 16, r3 = 4

(top left) and r0 = 18, r3 = 10 (top right); initial conditions as in (3.1). Expansion of head

and tail regions (top left) with snapshots at T = 12 (translucent) and T = 120 (solid);

shrinking (top right) terminates at T = 12 and homeostasis is reached. Influence of strong

random motion and diffusion on homeostasis (bottom left). Other parameters are as in Table

1. See also supplementary material cutting sequel.mp4.

Cutting. Part of the homeostatic state in the central region of the domain is

chosen as initial condition

w = y0 + α(x+ L)/(2L), s ≡ 1, h ≡ d ≡ uh ≡ ud ≡ 0 . (3.2)

Here, α represents the fraction of the fragment cut, and y0 ∈ [0, 1] the concen-

tration of w at the left edge of the cut fragment, corresponding to a cutting
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location x0 = L(2y0− 1) ∈ [−L,L]. Thus α = 0.02 corresponds to a cut of 2%

of body length, and y0 = 0.75 to a cut at three quarters of the body lengths

distance from the head. Boundary data is chosen compatible U± = U(±L) at

t = 0. Figure 3.3 shows regeneration from cuts of 2% and 4% of body length.

Recovery is more sensitive if segments are cut out from tail or head regions. Re-

generation depends on the sensitivity ε−1 and the threshold θ. Smaller values

of ε and θ increase sensitivity and enhance regeneration, but also vulnerabil-

ity to noise. Smaller mass fractions γ . 0.03 in the boundary compartments

for L = 5 prevent regeneration even for medium-size cuts, to the same ex-

tent as homeostasis breaks down. Generally, for cuts near the tail, the head

regenerates first, and vice-versa. Polarity is consistently preserved.
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Fig. 3.3: Regeneration after cutting 1/50th from trunk region y0 = 0.7 (top left), 1/25th

close to tail y0 = 0.815 (top right) and from tail y = 0.95 (bottom left); see (3.2) for

initial conditions. Regeneration failure and emergence of heads on both sides, loss of the

wnt-signaling gradient (bottom left), for a cut very close to the tail region. Parameters are

as in Table 1; translucent curves show concentrations at earlier snapshots as listed in the

title. Compare video cutting sequel.mp4 in the supplementary materials.

In our numerical simulations, we observed an initial strong burst in differenti-

ation triggered by the boundary sensing Ψ±h/d. This is compensated for by the

strong proliferation of stem cells ps. Still the stem cell population decreases

at the boundary, s± < 1
2L

∫
s, an effect that is more pronounced for smaller

values of ps or larger τ , thus quantifying the experimentally observed strong

proliferation of stem cells during wound healing in our model.

Grafting. Results of homeostasis simulation are used as basis for initial condi-

tions. In a region of a size of 10% of the length of the organism, the concentra-

tion of head cells h and uh is increased to 1, and wnt-signaling is eliminated,

i.e. w ≡ 0, in order to mimic grafting of a head. The head region survives and

changes the profile of w. Numerically grafting head cells of a donor close to
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the head region of the host leads to merging of the two head regions. Grafting

donor head cells near the tail of the host preserves the tail, unless tail cells are

significantly destroyed during grafting; see Figure 3.4. The different outcomes

reflect the dichotomy seen in experiments where an additional head may grow

out of a graft or the graft disappears; see the discussion in §2 and Figure 1.2.

We caution here that our simulations rely to some extent on astute choices

of production rates for head and tail cells and the associated morphogen, as

well as the choice of diffusivity. The boundary between head and trunk cells

is nearly stationary and sharply localized. Roughly speaking, an open set of

parameter values will lead to expanding head (or tail) regions, a complemen-

tary open set will lead to shrinking head (or tail) regions. At the boundary of

these parameter regions, head and tail regions will remain nearly stationary,

subject only to a slow coarsening interaction as seen in the head-to-head graft-

ing. Stronger diffusivities will enhance both speed of growth and shrinking as

well as the slow coarsening. Our parameters are close to the critical values,

where head and tail regions neither shrink nor expand. We emphasize that

for parameters where head- or tail regions shrink, grafted regions will slowly

disappear, but the head- and tail regions near the boundary will persist due to

the wnt-related gradient triggered differentiation of stem cells. Since regions
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Fig. 3.4: Regeneration after grafting head tissue into center of body (top left), head region

(top right), or tail region (bottom left). Parameters are as in Table 1; translucent curves show

concentrations at earlier snapshots. Persistence of the grafted head (left panels). Merging

(and eventual vanishing) of the graft (top right). Compare also supplement grafting.mp4.

between two heads (two tails) do not generate a wnt-signaling gradient, our

prediction is that secondary cuts from such regions will neither regenerate con-

sistently, nor preserve polarity. These results should be further compared to

experiments where possible. Mimicking dissociation experiments in hydra, see
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Figure 3.5, we inserted head and tail fragments of roughly 3% of body length

randomly at various locations. Larger pieces persist as head and tail regions;

smaller pieces eventually disappear.
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Fig. 3.5: Regeneration after grafting multiple head and tail regions for L = 10, 20, 40. Pa-

rameters are as in Table 1; translucent curves show concentrations at earlier snapshots.

Annihilation of all grafts (top left). Multiple persistent regions for larger domains (top

right, bottom left).

Growth. In our simulations for a growing flatworm, the body size expands

uniformly at a constant speed c = 0.3, 1.5, 3 and we monitor the concentration

profiles; see Figure 3.6. More precisely, we assume x(t) = x(0)(L0 + ct)/L0,

where (−L0, L0) is the body size at time t = 0 and (−L0− ct, L0 + ct) at time

t. Mass conservation in the extended domain, in absence of reaction terms,

then forces the dilution ∂tU(t, x) = ρ(t)U(t, x), with ρ(t) = −c/L(t). Trans-

forming back to a fixed domain via the coordinate change x 7→ xL0/L(t) gives

a diffusion equation on (−L,L) with diffusion matrix L2
0D/L(t)2. Therefore in

(1.7) we amend the diffusion constant and add a dilution term to model the

system on the growing domain,

∂tU = D(t)Uxx +F(U) + ρ(t)U , D(t) = DL2
0/L(t)2 , ρ(t) = −c/L(t) . (3.3)

The relative size of the boundary compartments is preserved, i.e.

γ = γ(t) = γ(0)L(t)/L0, thus introducing the same dilution term in (1.8).

Fluxes need to be adjusted to −D(t)
γ(t) ∂νU . See [75] for more details on different

growth laws and further references.

The resulting system is simulated on a fixed grid corresponding to scaled x-

coordinates, but plotted in the actual unscaled x-variables, see Figure 3.6.

Parameters are chosen according to Table 1. For slow and moderate growth

speeds, the concentration profiles resemble the homeostatic profiles at a given
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length. Key features do fail only for rapid expansion. Here c = 3 corresponds to

a doubling of a flatworm of length 18 in 3 time units, while cell differentiation

happens with rate 1, generating at most 1 unit volume of head or tail cells

from stem cells in 1 time unit. This failure at rapid growth can be attributed to

the dilution of the wnt-related signal that is not adequately compensated for

by production through tail cells and diffusion, resulting in a very small wnt-

signaling gradient in the head region. With a gradient close to the sensing limit

determined by ε and θ, sensitivity to perturbations increases dramatically.
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Fig. 3.6: A healthy planarian under uniform linear growth with speeds c = 0.3, 1.5, 3. Con-

centration profiles are plotted in actual coordinates, such that they occupy only part of

the final domain at earlier times (faded curves terminate at ±(L0 + cT )). Profiles are well

maintained close to homeostasis for slow (top left) and moderate (top right) growth speeds.

For larger speeds (bottom left) dilution of w reduces the overall concentration. The gradient

at the left boundary (where w ∼ 0) falls below the sensing threshold, the concentration of

head cells decreases, and a second tail appears.

Our externally imposed growth is clearly not entirely appropriate for actual

growth of planarians while feeding. Also, it cannot yet characterize the shrink-

ing dynamics under starvation conditions. The negative dilution term results

in an overcrowding of cells with sometimes unstable signaling gradients near

the boundary. In an improved model one would like to relate growth laws

to proliferation and food supply. Nevertheless, we demonstrated here that our

model replicates correctly inherent independence of patterning from body size,

and robustness during growth in this simple, first modeling approximation.
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4 Analysis via model reduction

Eliminating stem cells and short-range signals. Proliferation of stem cells in

(1.1) is much faster than differentiation, ps = 200, ph = pd = 1. Thus equilib-

rium concentrations depend only marginally on differentiation, that is, on the

concentrations of uh/d. Solving for equilibria by setting ρs(s) = 0, we obtain

s = (ps − ηs)/ηs which in our choice of parameters gives s ≡ 1. Note that our

simulations all support this approximation. Having set s ≡ 1, we notice that

the signal production rates rj are larger than the cell differentiation and death

rates ph/d and ηh/d. Using an adiabatic reduction for the kinetics, one then

equilibrates the reaction rates for uh/d and finds uh/d as functions of h and d,

uh =
r0h

2

r1h2 + r2d+ r3
, ud =

r0d
2

r1d2 + r2h+ r3
. (4.1)

Similar to the case of stem cell dynamics, the reduction for the kinetics is

valid under suitable bounds on gradients, and we shall demonstrate below

that such reduced systems capture the key structure of the dynamics quite

well. In summary we obtain

∂th = Dh∂xxh+ ph
r0h

2

r1h2 + r2d+ r3
− ηhh ,

∂td = Dd∂xxd+ pd
r0d

2

r1d2 + r2h+ r3
− ηdd , (4.2)

∂tw = Dw∂xxw − pwhw + pwd(1− w) , with boundary data

d

dt
h± = − 1

γ
Dh∂νh± + ph

r0h
2
±

r1h2± + r2d± + r3
− ηhh± + Ψ±h ,

d

dt
d± = − 1

γ
Dd∂νd± + pd

r0d
2
±

r1d2± + r2h± + r3
− ηdd± + Ψ±d ,

d

dt
w± = − 1

γ
Dw∂νw± − pwh±w± + pwd±(1− w±) , where again

Ψh(h, d, ∂νw) = τ(1− h)(1− d)χε>0(∂νw) ,

Ψd(h, d, ∂νw) = τ(1− h)(1− d)χε<0(∂νw) .

Simulations of this reduced model are almost indistinguishable from the full

model and therefore not displayed here.

4.1 From cell type to order parameter

In our simulations, concentration profiles of h and d are mostly constant,

taking on values (h∗, 0), (0, d∗), or (0, 0), where h∗ = d∗ = h+,

h± =
phr0 ±

√
p2hr

2
0 − 4η2hr1r3

2ηhr1
, provided that p2hr

2
0 > 4η2hr1r3 ,
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Fig. 4.1: Schematic of the reduction from cell type to order parameter c. In the kinetics of

the head-cell dynamics, the ω-limit set of a large ball consists of the line segments of the

coordinate axis between the origin and pure-head and pure-tail state, respectively. Restrict-

ing to this ω-limit set (1) gives the joined line segments, which one (2) bends open to (3)

arrive at a straight one-dimensional line segment with dynamics equivalent to c ∼ d− h.

which we assume in the sequel. These three states are stable equilibria for

the ODE kinetics and the full PDE (4.2) for h, d, when Dh = Dd. They

correspond to head-only, tail-only, and trunk-only states, respectively. The

equilibria (h−, 0) and (0, h−) satisfy 0 < h− < h+ and are unstable threshold

states, separating initial conditions that evolve toward head cells from initial

conditions evolving toward trunk-only cells. The symmetric choice of parame-

ter values, yields equal concentrations of pure head and tail states, but is not

necessary to reproduced the phenomena described here.

Regions of constant values of h and d are separated by interfaces (or fronts)

that propagate with a speed=speed(rk, ηj , pj). The three possible fronts are,

head-trunk, tail-trunk, and head-tail. Fronts between pure head and trunk

state can be understood in the h-equation, setting d ≡ 0.

∂th = Dh∂xxh+ gh(h), gh(h) = ph
r0h

2

r1h2 + r3
− ηhh .

This equation is a gradient flow related to the free energy
∫
Dh

1
2h

2
x +Gh(h).

Here G′h = −gh is the potential with critical points 0, h±. The direction of

motion of the front changes sign at the Maxwell point, when Gh(h+) = Gh(0).

For our parameters, fronts propagate slowly toward the head region. Fronts

between tail and trunk regions can be described in an equivalent fashion. Fronts

between tail and head regions do not propagate due to symmetry if they exist.

For our parameter values, such fronts in fact do not appear but front-like

initial conditions rather split into two fronts (h∗, 0)↔ (0, 0)↔ (0, h∗), where

the newly emerged state (0, 0) expands. All of those features can be captured

in a scalar reaction-diffusion equation. Somewhat formally, on the level of the

kinetics, one can envision straightening out the line segments in the h−d-plane

(h∗, 0)→ (0, 0)→ (0, d∗) into a 1D line segment −1→ 0→ 1; see Figure 4.1.

In its simplest functional form, tristability is represented by

ct = Dccxx + c(1− c2)(c2 − κ2) , with 0 < κ < 1 , (4.3)

which possesses stable equilibria {−1, 0, 1} corresponding to head-, trunk-, and

tail-only states. The odd symmetry c→ −c, mimics the symmetry between d
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and h in our simplified model. The critical “Maxwell” point is κ∗ = 1/
√

3, such

that (0, 0) invades (1, 0) and (0, 1) for κ < κ∗ and (0, 0) is invaded otherwise.

Similarly to (4.2), fronts between −1 and 1 alias head and tail exist in (4.3)

precisely when splitting of the front is not expected, that is, when −1 invades

0. This can be seen from the phase portrait of the steady-state equation.

Production and degradation now occur for c positive and negative, respec-

tively, reflected in modified w-kinetics

wt = Dwwxx + pw
[
cχε>0(c)(1− w) + cχε<0(c)w

]
. (4.4)

Gradient sensing at the body edges now is lumped together

d

dt
c± = − 1

γ
Dc∂νc± + c±(1− c2±)(c2± − κ2) + Ψ±c , (4.5)

d

dt
w± = − 1

γ
Dw∂νw± + pw [c±χ

ε
>0(c±)(1− w±) + c±χ

ε
<0(c±)w±] , (4.6)

where Ψ±c = τχε>θ(−∂νw|±L)(1− c±) + τχε<−θ(∂νw|±L)(−1− c±) .

System (4.3)–(4.6) forms the minimal model that is able to mimic robust

regeneration under cutting, grafting, and growth.

4.2 Homeostasis, cutting, and grafting for system (4.3)–(4.6)

We simulate system (4.3)—(4.6) with parameter values Dc = 0, 001, Dw = 1,

κ = 0.577, pw = 10, ε = 0.002, τ = 0.5, θ = 3, γ = 0.3, on a domain of

size 2L = 10. Figure 4.2 illustrates prototypical experiments and regeneration

with these parameter values. Initial conditions for cutting are

w = y0 + α(x+ L)/(2L) , c ≡ 0. (4.7)

Initial conditions for grafting are w = 0 and c = ±1 on segments of length 1.

We chose κ near the Maxwell point, which prevents changes of size in grafting

experiments. Different choices of κ lead to expanding or retracting head- or

tail regions, similar to the full model as shown in Figure 3.2. Increasing ε or

significantly decreasing the mass in the body edge compartments γ prevents

recovery. Near critical values of the gradient, the boundary values w± behave

non-monotonically; see Figure 4.3. As in the full model, two heads merge for

grafts near the host’s head, and one head persists for grafts sufficiently far

from the host’s head. This reflects the dichotomy between vanishing of the

graft and outgrowth of a new head in experiments.
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Fig. 4.2: Simulations of the reduced model (4.3)—(4.6) with initial conditions corresponding

to cutting (top left), to grafting where a head is grafted into the center (top right), and

random grafting of head and tail pieces (bottom left); see text for details.
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Fig. 4.3: Simulations of the reduced model (4.3)—(4.6) with initial conditions corresponding

to cutting, for parameters which cause difficult recovery or recovery failure. Reduction of

mass in boundary compartment γ = 0.055 with ε = 0.002 (top left) leads to slow and

non-monotone recovery: the wnt-signaling gradient first decreases before head and tail cell

populations are established (top left; associated time series of w− bottom left). Analogously,

larger ε = 0.012 with moderate value γ = 0.3 slows recovery (top right). Larger ε together

with smaller mass fraction prevents recovery.

4.3 Analysis and comparison with Robin boundary conditions.

Throughout this section, let θ = 0. Cutting experiments with small fragments

can be thought of as starting with initial conditions close to c ≡ 0, w ≡ 1/2,

which is a trivial solution of (4.3)–(4.4). Regeneration and its failure can there-

fore be well predicted from a stability analysis of this solution. Stability would

prevent regeneration of small fragments, while instability indicates the onset
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of a pattern-forming process. Linearizing at the trivial solution, we find

ct = Dccxx − κ2c , wt = Dwwxx +
1

2
c , |x| < L

d

dt
c± = − 1

γ
Dc∂νc|±L − κ2c± +

τ

ε
∂νw|±L ,

d

dt
w± = − 1

γ
Dw∂νw|±L +

1

2
c± .

After Laplace transformation, the associated eigenvalue problem can be con-

verted into a transcendental equation which is difficult to analyze. Numerically,

one readily finds instabilities in the relevant parameter regimes. We illustrate

here the basic instability mechanism with some formal simplifications.

Ignoring the right boundary condition by assuming for instance x ∈ (0,∞),

eigenfunctions are of the form c = c0e−ρx, w = w0e−ρ̃x + w1e−ρx, where ρ,

ρ̃ are determined by λ, Dcρ
2 = κ2 + λ, Dwρ̃

2 = λ, and w1 depends on c0.

Substituting into the equations on the boundary at x = 0 yields a generalized

(since ρ, ρ̃ depend on λ) eigenvalue problem.

λc0 = − 1

γ
Dc(−ρc0)− κ2c0 +

τ

ε
(ρ̃w0 + ρw1) , (4.8)

λw0 = − 1

γ
Dw(−ρ̃w0 − ρw1) +

1

2
c0 . (4.9)

Key are the off-diagonal terms: τ
ε ρ̃w0 from τ

ε∂νw in (4.8), and 1
2c0 in (4.9).

For λ > 0, these terms are positive hence causing a negative determinant and

instability. These off-diagonal terms encode a positive feedback mechanism. A

small increase of w− causes a positive normal derivative for w and hence an

increase in c− at the boundary from the equation for c−. The increase in c−
translates into a further increase of w− through 1

2c− in the equation for w−,

thus providing the positive feedback mechanism responsible for instability.

Here the importance of dynamic boundary conditions becomes obvious. Relax-

ing them by letting reaction rates at the boundary tend to infinity, we formally

obtain the mixed Robin boundary conditions: 0 = −κ2c±+ τ
ε∂νw|±L , 0 = c±.

As a consequence, the c-equation decouples as a simple diffusion equation

with decay −κ2c and homogeneous Dirichlet boundary from the dynamic w-

boundary condition (!). Setting c = 0 then results in a diffusion equation for

w with homogeneous Neumann boundary, which implies stability.

This mechanism also elucidates the failure of simpler models with instanta-

neous adaptation of tail and head cell concentrations, alias order parame-

ter c, to sign(∂νw) through nonlinear Robin (or mixed) boundary condition

c = sign(∂νw), with a possibly smoothed out sign-function. The idea here is to

link c± and fluxes ∂νw|x=±L instantaneously rather than through a time relax-

ation d
dtc± of the boundary data. However, the condition c = sign(∂νw) will not

enforce c to increase from 0 to 1, say, in a cutting experiment where ∂νw > 0.
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Instead, the boundary condition is instantaneously satisfied by slightly low-

ering the concentration of w in a region close to the boundary to achieve

∂νw = 0, which is compatible with c = 0 at the boundary (with the convention

sign(0) = 0). We tested such boundary conditions numerically and observed

this predicted decay of the w-gradient near the boundary, and eventual con-

vergence to c = 0, that is, failure of regeneration. Relating to the previous

discussion, the boundary condition c = sign(∂νw) fails to enforce regeneration

since it is not explicitly associated with a forced change in levels of c, but acts

rather as a nonlinear flux for the w-equation. Dynamic boundary conditions

provide precisely this association and therefore guarantee regeneration.

4.4 Recovery of the long-range signal gradient as organizing feature

In our final model simplification, we focus on experiments with only head and

tail at the respective extremity, excluding in particular grafting experiments

and states with multiple head and tail regions. Assume therefore that the order

parameter c mostly vanishes in the domain, that is, head- and tail-cells are

confined to the boundary regions. Then the kinetics for w vanish inside the

bulk |x| < L, and we are left with a simple diffusion equation for w. It is then

sufficient to only track boundary values c± of the order parameter. Assuming

further that c± adjust rapidly according to (4.5), we can eliminate the order

parameter completely setting c± ∼ sign ∂νw and obtain

wt = Dwwxx, |x| < L,
d

dt
w± = − 1

γ
Dw∂νw|±L + Ψ±w , (4.10)

with Ψ±w = τ
[
χε<−θ(∂νw)(−w) + χε>θ(∂νw)(1− w)

]
.

Cutting — numerical experiments. With parameter values Dw = 1, pw = 10,

ε = 0.002, τ = 50, θ = 3, γ = 0.3, L = 10, Figure 4.4 shows regeneration

of small fragments cut from center- or head regions. Recovery is slightly less

robust for fragments cut near head or tail. For increasing values of ε, that

is, for decreasing sensitivity of gradient sensing at the boundary, we see a

transition to a system state which fails to recover; see Figure 4.5. One first

observes oscillatory decay toward w ≡ 0.5, then sustained oscillations emerge

in a weakly subcritical Hopf bifurcation. The unstable periodic orbit separates

initial conditions that lead to the trivial, trunk-only state w ≡ 0.5 from initial

conditions converging to large-scale oscillations. The large oscillations eventu-

ally appear to terminate in a heteroclinic bifurcation for larger values of ε. A

similar transitions could be observed, for a decreasing mass fraction γ instead

of increasing ε.

Analysis — equilibria and stability. For simplicity we assume that 1
γDw = 1

and θ = 0 such that the characteristic function takes value 1/2 at w = 1/2.
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Fig. 4.4: Simulations of (4.10). Initial conditions correspond to cutting experiments, i.e.

linear w with small slopes. Top row: robust recovery for a 0.1% fragment from center region.

Middle row: recovery for a 4% fragment from head region. This cut is reflected to demonstrate

independence of orientation. Bottom row: failure of recovery for a smaller fragment cut from

head region. Note the slightly different time instances to see rapid failure of preservation of

sign∂νw near the boundary. Right column: corresponding time series of w− .

At the boundary, equilibria then satisfy one of the three conditions,

• w = 1 , ∂νw > 0 ; • w = 0 , ∂νw < 0 ; • w =
1

2
, ∂νw = 0 .

For moderately sized domains, 1� L� ε−1, three equilibria result, w ≡ 1/2,

w = (x + L)/(2L), and w = (−x + L)/(2L), corresponding to only trunk,

head-tail, and tail-head solutions. Linearizing at these equilibria, we find

wt = wxx, |x| < L,
d

dt
w± = −τw + µ

τ

ε
∂νw , (4.11)

where µ = 1 for the trunk solution w ≡ 0, and µ = 0 for the head-tail and tail-

head solutions. The head-tail and tail-head solutions are always stable. To an-

alyze stability of the trunk-only solution, µ = 1, consider the semi-unbounded

domain x > 0, set w = eλt+ρx, with λ = ρ2, to find the characteristic equation

ρ2 +
τ

ε
ρ+ τ = 0, ρ± = − τ

2ε
±
√

τ2

4ε2
− τ , λ± = −τ

ε
ρ± − τ.

For ρ to be an eigenvalue, we need Re ρ < 0. This holds since τ, ε > 0. We find
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Fig. 4.5: Simulations of (4.10) with initial conditions corresponding to a cutting experiment

and sensitivity ε−1 = 15. An unstable oscillation separates initial conditions that decay

to w = 0.5 (top row) from initial conditions with sustained large-amplitude oscillations

(middle row) when changing α. Note the different scales for w here. Large stable oscillations

disappear in a saddle-node of periodic orbits for smaller ε and in a heteroclinic bifurcation

for larger ε, when ε−1 ∼ 12.5 (bottom row). Also shown are corresponding time series of

w− (right column); see text for predictions of Hopf bifurcations and implications for model

corroborations and supplementary materials scalar oscillations.mp4 for oscillations.

– real instability: τ > 4ε2 gives two real roots ρ± < 0 and two associated real

unstable eigenvalues λ± > 0;

– complex instability: 2ε2 < τ < 4ε2 gives two complex conjugate roots with

Reρ± < 0 and two complex conjugate unstable eigenvalues Reλ± > 0;

– Hopf bifurcation: 2ε2 = τ gives two complex conjugate roots with Reρ± < 0

and two purely imaginary eigenvalues Reλ± = 0, Imλ± = ±2 i ε2;

– stability: τ < 2ε2 gives complex conjugate eigenvalues λ± with Reλ± < 0.

Incorporating Dw/γ gives more complicated formulas with similar transitions.

The dynamics are quite different if the boundary conditions are relaxed to

Robin boundary conditions, for instance

τ
[
χε<−θ(∂νw)(−w) + χε>θ(∂νw)(1− w)

]
= 0, x = ±L.

Again neglecting the flux term − 1
γDw∂νw, that is, with sufficiently large mass

fractions γ, equilibria for dynamic and Robin boundary conditions coincide.

Stability of equilibria is however quite different: the linearization with Robin
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boundary conditions is a Sturm-Liouville eigenvalue problem

λw = wxx , x ∈ (−L,L) ,
µ

ε
∂νw − w = 0 , |x| = L ,

with real eigenvalues λ0 > 0 > λ1 > . . ., λ0 ∼ ε2/µ2 for L � 1. The dynam-

ics generally do not allow for oscillations as observed for periodic boundary

conditions. Nevertheless, the trivial trunk-only solution is unstable in this ap-

proximation and we see robust recovery of small w-gradients. One can attribute

the appearance of oscillations to an effective distributed delay in the otherwise

scalar equation for the boundary dynamics of w− caused by the coupling to

the diffusive field w(t, x) which acts as a buffer that stores a blurred history

of boundary data.

The transitions discussed here occur when sensitivity w.r.t. the gradient at

the boundary is not sufficient, i.e. when ε is too large, or when boundary re-

laxation τ or the mass fraction γ are too small. This prediction is specific to

this model, occurring to some extent also in the full system and the system

with order parameter. We are not aware of experimental observations of os-

cillations in cases where recovery and regeneration are severely impeded. Any

such observation would clearly corroborate our basic modeling assumptions.

5 Mathematical models in the literature

Alan Turing, [76] studied the impact of diffusion on pattern formation in

reaction-diffusion systems, including also vanishing diffusion. He analyzed the

selection of long-, finite-, and short-wavelength patterns, as well as oscilla-

tory, traveling-wave patterns, depending on reaction constants. His key ob-

servation was that the spatially extended system can be unstable even when

simple kinetics do not exhibit instability, hence the terminology of diffusion-

driven instabilities and pattern formation. He also modeled the development

of tentacles in hydra [76] but could not finish several follow-up manuscripts

on developmental processes in biology [77] due to his untimely death.

Turing’s model of two reaction-diffusion equations, especially his ’proof of

principle’ system, has been tremendously influential, and was used and built

upon by others to model, for instance regeneration in hydra, see [20] where the

notion of activator-inhibitor system was introduced. For other models based on

such kind of dynamics see [44], [45]. The main feature of Turing’s mechanism,

the selection of a preferred finite wavelength for a fixed domain size, like for

the tentacles of hydra, turns into a drawback for the regeneration of hydra’s or

the planarian body axis. The patterns developing during its regeneration are

robust over several orders of magnitudes in body size. Attempts to address this

conundrum typically built on additional species that evolve dynamically and
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affect reaction constants in Turing’s mechanism in ways that change selected

wavelengths. In well designed contexts scaling invariance of patterns can be

covered for large changes in domain size [49,79,78,83]. For such models on

scale-independent patterning in zebra fish see [3].

In planarians, regeneration necessitates establishing a monotone signaling gra-

dient. Generation of such monotone structures has been studied mathemati-

cally quite extensively in the context of phase separation [17] and cell polar-

ization [43]. In the reaction-diffusion context, the simplest formulations lead

to 2-species mass-conserving systems, which can exhibit patterns, albeit with

a wavelength proportional to the domain. Patterns of smaller wavelength are

unstable against coarsening although coarsening can be slow or even arrested

for small or vanishing diffusivities.

Motivated by a receptor-ligand binding system [68], regeneration of hydra was

modeled in [33] via diffusion driven instabilities. Introduction of hysteresis

allowed to correctly recover grafting experiments in simulations of six coupled

ODEs and PDEs [34]. Intuitively, hysteresis or multistability are well suited

to describe the outcome of grafting experiments, as higher values of variables

for head identities, are stabilized, independent of position or domain size.

The absorption of very small transplants might also be explainable. In fact,

our model contains some features of the associated multistability. The above

models though do typically not generate patterns corresponding to cutting and

dissociation experiments robustly. Systems of ODEs (vanishing diffusivities)

coupled to PDEs have been studied more recently w.r.t. their pattern-forming

capabilities [36,35,22,37,30,38], like stable patterns and unbounded solutions

developing spikes. The role of hysteresis in diffusion-driven instabilities and de

novo formation of stable patterns was investigated in [23,29].

The emphasis on separating boundary and bulk dynamics in our approach

relates to recent efforts in understanding the the role surface reactions and

bulk-to-surface coupling in morphogenesis [16,14,28,58,59]. In such a setup,

species that react and diffuse with similar diffusion constants on a surface

would not form patterns. If, however, one of the species diffuses rapidly into,

within, and back from the bulk, an effective large diffusivity for this species

ensues, which in turn enables a diffusion driven instability towards stable pat-

terns; see for instance [75] for a more in-depth discussion and a model related

to ours, but differing w.r.t. the boundary dynamics and gradient sensing.

We emphasize however that our model is very different in essential features

from models in the literature described here, arguably simpler, at least in the

reduced forms of §4, and possibly more versatile in regard to the experimental

phenomenology that can be robustly reproduced.
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6 Discussion

We presented a mathematical model for robust regeneration of planarians

which reproduces most cutting and grafting experiments. Our system preserves

polarity after cutting and yields robust results over organism scales differing

by factors of 100. Central are two strong indications from experiments:

(i) sharply increased activity including stem cell proliferation near wounds;

(ii) global gradients of chemical signals, related to the wnt-signaling pathway.

The first observation is translated into dynamic boundary condition, modeling

changed reaction kinetics in a boundary compartment at the body edges. The

second observation has often been discussed in connection with the regulation

of tissue size, expanding on the idea of the French-flag model. In contrast

to this, we postulate that the gradient itself, rather than absolute levels of

the signal are relevant for the stem cell population and, at wound sites, is

translated into directed differentiation. We suspect that within a rather general

modeling context, effective gradient sensing is necessary in order to reproduce

robust preservation of polarity in cutting experiments, suggesting that such

processes may indeed be relevant also in real planarians.

We incorporate these ingredients into a comprehensive model of 3 cell type

populations and 3 chemical signals. Through model reduction to one order

parameter for cell types and one long-range chemical signal, only, we exhibit

how the regeneration process is organized. One can point to regeneration as

an instability mechanism for a trivial, unpatterned state and identify analyti-

cally limits of robust regeneration. The process is fundamentally different from

Turing type mechanism, and driven by boundary dynamics.

Outlook. There are several ways in which our model could be refined. First,

a head over tail bias, which is observed in experiments, could be introduced

for instance through different sensing thresholds θ at body edges, or differ-

ent differentiation and proliferation kinetics. We are, however, not aware of a

causal rather than a phenomenological justification of this bias. Second, we did

not attempt to model regulation of the size of the head and tail regions. Our

model relies essentially on establishing a global signaling gradient. Thus cells

could in principle obtain positional information by reading out absolute levels

of the wnt-related signal. Postulating such a w-dependence for differentiation

or apoptosis in the {s, h, d, uh, ud}-subsystem, one could influence the trista-

bility. Front motion as described in §4.1 would then depend on w levels, and

stationary interfaces would lock into fixed w-levels, thus regulating a fixed size

of head or tail as a percentage of the full body length. In the order parameter

model, this could for instance be accomplished by

ct = cxx + c(1− c2)
(
c− χε>0.85(w)

) (
c− χε<−0.85(w)

)
,
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which would regulate the size of head and tail to regions where w > 0.85

and w < −0.85, respectively, about 15% of body size, each. Such effects could

also model the spontaneous formation of head cell clusters when suppressing

the wnt-signaling pathway. Lastly, one could address directed motion of stem

cells or progenitors. Migratory stages of progenitors from their place of birth

to their site of terminal differentiation are discussed in [63]. Taking such ef-

fects into account could potentially improve further, both qualitatively and

quantitatively on the results presented here.
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65. E. Saló, J. Baguñà. Cell movement in intact and regenerating planarians. Quantitation

using chromosomal, nuclear and cytoplasmic markers. Development, 89(1):57–70, 1985.

66. F. V. Santos. Studies on transplantation in Planaria. Biol. Bullet., 57(3):188–197, 1929.

67. M. L. Scimone, S. W. Lapan, and P. W. Reddien. A forkhead transcription factor is

wound-induced at the planarian midline and required for anterior pole regeneration.

PLoS Genet, 10(1):e1003999, 2014.
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