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Abstract

We consider the equation u” + Lu/ — f—ju = Au+ aulu|* on r € Ry with k € N,

a,A € C, Red >0 > Rea, and |[ImA| + |Ima| << 1. Bounded solutions possess an
interesting interpretation as rotating wave solutions to reaction-diffusion systems in
the plane. Our main results claim that there are countably many solutions which
are decaying to zero at infinity. The proofs rely on nodal properties of the equation
and a Melnikov analysis.



1 Introduction

The problem of finding spiral wave solutions in reaction-diffusion systems has been studied
intensively throughout the last fifteen years. In order to be able to address this prob-
lem, many authors assumed the reaction term to be in a specific form which allows for a
decoupling of Fourier modes. These reaction-diffusion equations

w = DAu + ug(|u]), uweC (1.1)

were called A-w systems and many interesting results on the existence of nonlinear waves
under various assumptions on the particular structure of the reaction term have been
derived [1, 2, 3, 4, 5, 6].

Recently, a systematic and mathematically rigorous procedure has been found, which al-
lows to prove the approximation property of A-w systems for general reaction-diffusion
equations [8]. The crucial assumption is that a homogeneous steady state is close to a Hopf
bifurcation point in the pure reaction system. The ODE describing the shape of spiral
wave solutions is the same as the one which can be derived from A-w systems. In a typical
example, it is shown in [8] that the equations are of the form

" 1 ! k‘2 2
v+ —u' - —u = Au + aulul (1.2)
r r
with ' = —;IT, a € C and the complex parameter A being close to zero. The spiral wave

solution to the original reaction diffusion equation is then approximately given by an ex-
pression of the form U(r, ¢,t) = u(r)e’*¢e'; see [8]. The speed of rotation ¢ of the spiral
wave — whose value must be found as a part of the problem — determines the imaginary
part of the parameter A. Indeed dA;/de # 0, which allows us to control the imaginary part
A7 by the wave speed c.

The equation (1.2) has been studied for small imaginary parts of the parameters A and a in
the case when A = —1 and ar = 1; see [2, 3,6]. As Ar < 0 corresponds to an unstable zero
state in the reaction-diffusion system (1.1), this case can be interpreted as a supercritical
bifurcation. Here we address our attention to the case of a subcritical bifurcation, that is
we suppose throughout this work that

ap =—1 and Ap=1.

Moreover we assume that the imaginary part of @ is small, quite as in the quoted references
on the supercritical bifurcation.

Solutions to (1.2) which are bounded at r = 0 actually satisfy the expansion u(r) =
ar® 4+ O(r**1). We are interested in localized solutions: we require that u(r) decays to zero
as r — 00.

The next propositions state that in the limit ay = A; = 0, there are countably many
solutions of this type.

Proposition 1 Suppose ay = A\; = 0. Then for all k € N, (1.2) possesses a solution ug(r)
such that ug(r) > 0 for all v € (0,00) and uo(0) = up(o0) = 0.

Proposition 2 Suppose a; = A\j = 0. Then for all k,n € N, (1.2) possesses a solution
un (1) such that u,(0) = u,(00) = 0 and u,(r) possesses exactly n simple zeroes in (0, 00).



The proofs are carried out in the next section exploiting the nodal structure of equation (1.2)
and of its linearization
o + L k—v = v — 3u’v, (1.3)
r r
restricted on the real subspace ur = u} = 0, In section 5 we give a completely different
proof using variational arguments. In order to be able to consider a; nonzero we need more
detailed information on the solution:

Proposition 3 The solutions u;(r), j = 0,1,2,..., are transverse in the real subspace.
The variational equation (1.3) with w = w;(r) does not possess a bounded solution on
(0,00).

Our last result concerns the existence of localized solutions when ay is close to zero.

Proposition 4 Fiz k,n € N and a neighborhood of the solution u,(r). Then there is a
smooth function Aj(ar) with Ar(0) = 0 such that eq. (1.2) possesses a bounded solution
un (7, ar) with u,(0,ar) = up(oo,ar) = 0. Moreover this solution is unique in the fized
neighborhoods of u,(r) up to multiplication with ¢'¢, ¢ € R.

In the next two sections we proof our propositions for the positive solution ug(r). We then
outline the necessary modifications for the solutions u;(r). In section 5 we then give an
alternative proof using variational methods. We conclude with a brief discussion on the
implication of the results presented here.

2 Proof of Propositions 1 and 3

The real system is given after a suitable rescaling by

1 k?
u” + ;u’— U= u—u®. (2.1)

Any solution which is bounded at r = 0 is of the form u(r) = ar® + O(rF+1).
We study in detail the variational equation of (2.1)

v — FU=v- 3uv. (2.2)

?]// _I_ l kz
;

Any solution of this equation which is bounded at » = 0 is proportional to the derivative
Ou/da and u(r;a) is the unique bounded solution of (2.1) growing like ar® for small r.

For large a, solutions of (2.1) are approximated by an autonomous equation as follows. We
set att = u, ar = s and obtain

which is close to the homogeneous equation

I T 5
u55+—u5——2u:—u .
S S
Rescaling time s = ¢! and setting e'@ = @ yields @y — k%@ = —e**4® and
Uy — 24 — (1 + k*)a = —a°. (2.3)
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Without the negative damping —2i; the phase portrait of this system is the well-known
double homoclinic loop to the origin, filled and surrounded by periodic orbits.

If u(r) is bounded as r — 0, then u ~ ark, @ ~ r% = (1/a)ks*, i@ ~ (1/a)reltt1t — 0
as t — —oo. Therefore (u, ') belongs to the unstable manifold of the origin in (2.3) and
different parameter values a now correspond just to a time shift.

Lemma 2.1 Let « be sufficiently large. Then there exists R,(«) > 0 such that u(r) > 0 on
(0, Ry(a)) and w(R,()) = 0. Furthermore there is R,(a) < R,(«) such that the solution
of the variational equation (2.2) satisfies

v(r) >0 on (0, R,(a)), v(r) < 0 on (R,(a), R,(a)] and v' < 0 on [R,(a), Ry(a)].

Moreover, this implies that dR,/da < 0.

Proof. We solve the scaled autonomous equation (2.3). Global existence is ensured as
the function 2&% + 4% can grow at most linearly with time. Level lines of the autonomous
system, given by 4 — (1 + k?)a® + %&4 = const are always crossed outwards. One can
easily check that for positive energy values the solution @ cannot stay positive (otherwise
% would have to get unbounded but for large values of & the rotational component —a> of
the vector field becomes dominant). Shooting with the unstable manifold yields the desired
positive solution @ with some R,(a), where 4(¢(R,(a))) = 0 and 4(a) < 0.

The transverse intersection with the axis 4@ = 0 persists for finite o« when adding the
perturbation term /a2

The claim on the sign of v = du/da is a claim on the sign of 4; in the limit & = oo and an
immediate consequence of the phase portrait.

The derivative of R, is calculated from

_du(Ry(a))  Ou Jdu dR,(a) Ay
0= ——"— = g (Rula)) + o (Ru(a))—— = v+ u'R
and v < 0, v’ <0, because 4; < 0 at R,(a). ]

For « close to zero, we can show that the solution u(r) does not possess any zero.

Lemma 2.2 Suppose a is sufficiently small. Then the solution u(r) is strictly positive for
all r > 0.

Proof. We use a shooting argument. Let M C R? x R denote the manifold of solutions
(u,u')(r;a) bounded at 7 = 0. Then the tangent space of M along v = v’ = 0 is calculated
from the linear equation

v"—l—lv'—(k—z—l—l)v—o v(0)=0
T r? - -

The solutions are multiples of the modified Bessel functions of the first kind /5 (r); see [10].

v'(r) 1

1
o =1- > + O(T_Q) In particular, for

Asymptotic expansions for these functions yield

large r, we see that v'/v / 1.

Next we construct a forward invariant region close to r = oo where u > 0 and we show that
a part of M gets trapped in this region, excluding zeroes of the corresponding solutions.



We consider the original equation, extended by the equation 3’ = —3% with 3 = 1/r to
make out of it an autonomous equation. At 3 = 0, u = v/ = 0, we have an equilibrium
with a uniquely defined two-dimensional center-stable manifold. The intersection of this
manifold with the plane g = 0 is the homoclinic curve ¢(r) > 0 (and its symmetric). The
tangent space of the center-stable manifold along this solution evolves under the linearized
equation

u' =t 3¢ (r)ut Be'(r) =
po=

The positive damping term G¢'(r) forces solutions to the equation for fixed 3 > 0, which
are bounded for r — oo, to cut the axis u = 0 at »’ > 0 at a finite time r = R(f3).

The invariant region S we were looking for is now constructed as being bounded by:

the interior of the homoclinic (¢,¢") in 5 =0,

the plane u = 0,

e the center-stable manifold and

the plane 3 = By > 0 sufficiently small.

All boundaries are flow invariant, except the planes v = 0 and 3 = g, where the vector
field is pointing strictly inwards. By the calculations on the tangent spaces of the center-
stable manifold and the shooting manifold M, there are bounded trajectories u(r) entering
5. These trajectories do not possess any zeroes of w in 5. Making a sufficiently small, we
can guarantee that such a solution u is close to I(r), the modified Bessel function of the
first kind [10] as long as it stays outside of S and thereby does not possess any zeroes at
all. "

Now we want to decrease a, preserving the sign structure from Lemma 2.1. Suppose
that v would achieve its minimum on (0, R,(a)) and suppose it would be negative. For
a sufficiently large v does not achieve its minimum in the interior of the interval by the
previous lemma. A minimum could appear in the interior of the interval if either at a point
r = Rop we had v = 0 and v = 0 — which is excluded because then necessarily v = 0 — or,
a minimum could become negative — but then again v = v = 0 would imply » = 0 — or,
alternatively, a minimum could enter through the boundary, at R,(«). But then at R,(a)
we would have " > 0, v =0, v < 0 and u = 0. Using the equation for » this would imply

0<v"—l—lvl—(k—2+1)v—3u2v—(k—2—|—1)v<0
- ro 2 e ’

a contradiction. Thereby v is strictly decreasing on the interval (R,(«), R,(«)) as long as

Ru(a) < Ry(a).

Lemma 2.3 For all « > 0 we have R,(a) < Ry (« ) and R,(a) < R for all o with R, (o) <
00. In particular there is ag > 0 such that R,(og) = 0o and R,(« ) < 0.

Proof. We argue by contradiction. Suppose R,(a) = R,(a) = R. Then u,v > 0 on (0, R)
and u = v = 0on {0, R}. As both u,v ~ r* at 0 and «/,v" < 0 at R, there is a A such that
Av > won (0, R). We define

=inf{A\| Av > w on (0, R)}.



This implies A*v—u > 0 forall » € (0, R) and at some Ry € [0, R] we have A*v(Rg)—u(Ro) =
0, N*v'(Ro) — w/(Ro) = 0 and A*v"(Rg) — u”(Rg) > 0. But from (2.1) and (2.2) we can
deduce that (A*v” — u")(Rg) = —2u’(Ro) < 0 with strict inequality, in case Rg € (0, R),
which is thereby ruled out.

Now suppose that Ry = R. From the equation for w = A*v — u

" 1 7 kz 2 2
w—l——w:(—2+1—u)w—2uv,
r r

and from the condition w = w’ = 0 at r = R we can get expansions of w at R, equating
the lowest order terms w” = —2u?v; then w(® = —12(«/)* > 0 and, for r < R but r close
to R, w is negative which contradicts \*v — u > 0.

If R =0, we can conclude that both, A*v and u are at leading order given by ar* for some
a > 0. Then w” = —2ar** < 0 at leading order and thereby again w(r) < 0 for small
enough 7.

This proves dR,(«)/da < 0 for all @ > ag > 0, and R,(ap) = co. By Lemma 2.2, we know
that ag > 0.

In order to prove the lemma, we have to exclude that R,(ag) = co. This follows for the
same reasons as for the finite interval above. We can similarly define A = inf{\| Av >
won (0,00)} because u and v possess at leading order the same exponential decay property
~ e " as r — oo. Then again u # A v on [0,00) by the same arguments as above. The
last possibility we have to rule out is that Ry = oo. Then actually w(r) is given by the
variation of constants formula

w(r) = /00 ®(r, 5)2u?(s)v(s)ds

with the linear evolution operator ® given by

o(r, s) = LHEErr) = I(r) Kils)
s Ik(S)YkI(S) — IIQ(S)Yk(S) .

Here the I, and K are the modified Bessel functions of the first and second kind. The
expression in the numerator is the Wronski determinant and strictly positive, whereas

the expression in the denominator is negative for large 7, as Ix(r) ~ €’ /r'/? and Ky(r) ~
e_T/rl/z; see [10] . Thereby again w(r) < 0, for large r, and we have reached a contradiction.
This proves the lemma. [

Together with the previous lemmata the proof of Proposition 1 and Proposition 3 for ug(r)
is now easy. We define ug(r) = u(r;ap) with a = ap > 0 from the previous lemma. This
solution is bounded, converges to zero at infinity and is transverse, again by Lemma 2.3.

3 Proof of Proposition 2

We mimic the proof for n = 0. Asin Lemma 2.1, we can guarantee that for large a there are
solutions bounded at r = 0 with infinitely many zeroes, winding around the two homoclinic
curves of the autonomous problem (r = oo). They possess a sequence of non-degenerate
zeroes R7(a). Similarly the solution to the variational equation (1.3) possesses a sequence
of non-degenerate zeroes R”(«a) and we have RO(a) < R%(a) < Ri(a) < Rl(a) < .... We
have to continue this pattern for decreasing a. As in the previous section, we can conclude

that dﬁ? < 0 if we can ensure that R}(a) < R(a) < RI'(a). Arguing as in the case




n = 0, we can show that v(r; a) cannot achieve its local minimum on (R} («a), R} («a)). It is
therefore sufficient to prove an analogue of Lemma 2.3. Proceeding by induction on n, we
compare u and v on (R?7!(a),(R?(a)). By the induction hypothesis, sign v( R~ 1(a)) =
(—1)"*!. Now assume that o(R”(a)) = 0 and, to fix signs, v < 0 on (R (a),(R(a))
(n is supposed to be even, the case of n odd being similar). Then there is a A* such that
w=MNv—u<0on (R (a),(Ra)) and w(R) = 0 for some R € (R} a),(RYa)].
Then w achieves its local maximum in R which is however forbidden from (1.2) and (1.3),
because w” > 0 where w' = w = 0 and v < 0. Thus we have reached a contradiction
showing that there is a,, > 0 such that R} (a,) = co. Arguing as above and in Lemma 2.3,
it is easy to see that R}(w,) < oo, which shows that the solutions are transverse. This
proves Proposition 2 and Proposition 3 for w,(r).

4 Proof of Proposition 4

The proof requires a Melnikov type calculation. In the phase space extended by the equation
for 3 = 1/r, our solutions are transverse intersections of a shooting manifold M (the set of
solutions bounded at » = 0) and the center-stable manifold W (0) of the origin v = v’ =
(3 = 0. The intersection is transverse only when restricted to the real subspace u = v’ = 0.
The complex problem, a; # 0, possesses an additional S'-symmetry (u,u’) — (e*u,e*u’)
for ¢ € R. Due to this symmetry, there is one direction orthogonal to the sum of the tangent
spaces of M and W (0) at the heteroclinic orbits u,(r). This direction is orthogonal to the
generator of the rotational symmetry at the heteroclinics i(w,(7), ul,(7), and therefore given
as t(ul(r), —uy(r)). The derivative of the vector field with respect to A7, our perturbation
parameter, points in the direction (0, ¢u, ). The scalar product with the direction orthogonal
to the sum of the tangent spaces has a definite sign for all » and gives a nonzero contribution
to the Melnikov integral. In other words, the two manifolds intersect transversely if the
phase space is extended by the equation A} = 0. This transverse intersection persists at a
point Ar(ay) for small perturbations ay. This proves Proposition 4.

5 Variational approach

Proposition 1 might be proved using variational methods. We have to consider

1, ¥
u” + ;u’— U= u—u®. (5.1)

We want to apply mountain-pass lemma to a variational formulation of the equation
LS 2 14 1,2
Huw)= [ [ul+ (5 + e = gullrdr, we HARY),
Ry r

Of course, any critical point of the functional I gives a solution of the above equation on
R,.

We next apply the mountain pass lemma to our functional. First of all zero is a non-
degenerate local minimum: the kernel of the linearization are the Bessel functions of the
first kind which however do not lie in H?(R, ) as they grow exponentially at r — oc.

On the other hand, the functional decays to —oc along any ray s - u, u € HYV*(R,) fixed,
s € R+.

It remains to establish convergence of a Palais-Smale sequence, a non-trivial task due to
non-compactness at 0 and +o00. We do not carry out details here.



This would then establish the existence of a heteroclinic orbit as claimed in Lemma 1.
Transversality does not follow from this construction.

We suspect that one could prove as well the existence of infinitely many critical points,
using the Zy-symmetry of the functional, v — —u, see for example [9, Chapter II, Theorem

6.5 and 6.6].

6 Discussion

As already pointed out in the introduction, the solutions proved to exist in Proposition 4
have an interesting interpretation as localized rotating wave solutions of reaction-diffusion
equations. A particular equation undergoing a Hopf bifurcation and exhibiting such spatio-
temporal phenomena was given in [8].

The solutions are, in contrast to the ones found for supercritical bifurcations, localized,
that is, along rays emanating from the origin, the amplitude and derivative of the phase
of the solutions decay exponentially to zero. In particular for the solutions ug(r), regions
of constant phase form arcs which run from the origin to infinity, asymptotic to a straight
line through the origin. The solutions with zeroes of the amplitude form more complicated
patterns: there are n circles, where the amplitude gets close to zero. The phase changes
sign, when crossing these circles.

We suspect that the localized solutions of Proposition 1 and Proposition 2 are unique as
localized solutions with a prescribed number of zeroes.

We did not try to prove stability or instability of the solutions for the full reaction-diffusion
system. The considerations on a variational approach in Section 5 suggest that all waves are
unstable, with Morse index increasing with n (which is well defined because the continuous
spectrum of the linearization is bounded away from the imaginary axis, see [7, Lemma

5.4]).
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