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Abstract

We study the continuum limit of the motion of agents in the plane driven by competing short-

range repulsion and long-range attractive forces. At a critical parameter value, we find destabi-

lization of a trivial branch of uniformly distributed solutions and analyze bifurcating solutions.

Curiously, the bifurcating branch is vertical, leading to a reversible, non-hysteretic phase tran-

sition. Near the bifurcation point, we demonstrate scaling laws for the size of vacuum regions,

which can form fissures or bubbles. We also study the effect of small noise and the eventual

topological transition from vacuum bubbles to isolated particle clusters.

1 Introduction

We study the continuum limit of large numbers of particles moving in the plane with positions

xj ∈ R2, j = 1, . . . , N2 driven by an interaction potential Wµ,

ẋj = − 1

N2

N∑
j ̸=ℓ

∇Wµ(xℓ − xj). (1.1)

We assume that the interaction potential includes a strong, very short-range repulsive and an

intermediate-range attractive force, that we will assume depends on the parameter µ. In a limit

of large particle numbers, one approximates the distributions of particles by a density and finds

formally taking the limit of particle Dirac-δ distributions as measures, that the density evolves

according to a Vlasov-type equation,

ut = ∇ · (u · (∇Wµ ∗ u)) , x ∈ R2; (1.2)

see for instance [11] and references therein. Letting the range of the repulsive potential converge to

zero while increasing the strength appropriately, one can further approximate Wµ = δ−µV , which

leads to the nonlinear diffusion equation with nonlocal interaction,

ut = ∇ (u · (∇u− µ∇V ∗ u)) , x ∈ R2, (1.3)

where we also made the parameter dependence explicit by varying the strength of the attractive

potential V as a prefactor. We further simplify the setting by assuming particles are distributed

periodically with respect to a lattice spanned by lattice vectors e1,2 ∈ R2. In the continuum limit, we
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then restrict to the fundamental torus Ω = {x = τ1e1+ τ2e2|0 ⩽ τ1, τ2 < 1} = R2/(e1Z+e2Z), with
periodic boundary conditions. We then have to replace the interaction potential by the periodized

potential Vper(·) =
∑

k1,k2∈Z V (·+ k1e1 + k2e2), thus studying

ut = ∇ (u · (∇u− µ∇Vper ∗ u)) , x ∈ Ω, (1.4)

with periodic boundary conditions. We focus on the

(i) square lattice: e1 = (π, π)T , e2 = (π,−π)T ; and the

(ii) hexagonal lattice: e1 = (2π, 0)T , e2 =
(
−π,

√
3π
)T

.
(1.5)

The lattices have D4 and D6 dihedral symmetry generated by

reflection: S(x, y) = (−x, y), rotation: R(x, y) = ((cosφ)x+ (sinφ)y,−(sinφ)x+ (cosφ)y),

(1.6)

with φ = 2π/4 and φ = 2π/6, respectively.

We shall also consider (1.4) with an additional diffusion term

ut = ε∆u+∇ (u · (∇u− µ∇Vper ∗ u)) , (1.7)

and 0 < ε ≪ 1, reflecting the presence of noise in the particle dynamics (1.1).

We are interested in bifurcations from a constant distribution u ≡ 1. Clearly, this uniform density

is always an equilibrium solution to (1.2) or (1.7), and one expects this state to be stable for weak

attracting forces, 0 < µ ≪ 1. Increasing µ, one then indeed finds a destabilization and an ensuing

phase transition, where densities will no longer be uniform but evolve into distributions with peaks,

where particles cluster, and vacuum regions, where the density vanishes u = 0. This transition

curiously exhibits a vertical bifurcating branch, which leads to transitions that are reversible, that

is, the bifurcation diagram does not display hysteresis, and to bifurcating patterns that exhibit

vacuum regions at arbitrary small parameter distances from the bifurcation point; see for instance

[5, 1, 3, 13]. In fact, we analyzed this transition in quite some detail in [13], finding universal

expansions near the bifurcation point in quite general settings, as well as universal corrections for

0 < ε ≪ 1. The work there focused on one-dimensional arrangements of particles, and motivates

the study of the more complex two-dimensional arrangements that we are interested in here.

The vertical branch of bifurcating solutions is in fact explicit, determined by the kernel of the

linearized operator. Our results focus on three aspects of this transition:

(i) at the endpoint of the vertical branch, solutions with vacuum regions bifurcate supercritically:

we show existence of branches exhibiting vacuum regions that are roughly circular or form

bands, and give expansions for the size of the vacuum region in terms of the parameter µ;

(ii) we study the fate of the vertical branch with small diffusion ε ≳ 0 and derive stability

information in this scenario;

(iii) we investigate the fate of solution branches further away from the bifurcation point, pointing

towards, in the case of the square lattice, the presence of elliptical vacuum regions connecting

roughly spherical vacuum bubbles and fissures, and a topology change from vacuum bubbles

to isolated particle clusters.
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In all of our results we focus on very simple potentials. In fact, due to periodization, potentials

can be written as Fourier series over the fundamental domain, and we choose to keep only the

first terms in these Fourier series, while retaining the lattice symmetry. In fact, starting with a

radially symmetric potential V , the symmetrized potential Vper will have the lattice symmetries,

that is, with R,S from (1.6), Vper(R(x, y)) = Vper(x, y) and Vper(S(x, y)) = Vper(x, y), and of course

Vper(x, y) = Vper(x+ ej,x, y + ej,y), j = 1, 2. To be specific, we consider the potentials

square lattice: Vper(x, y) = cos(x+ y) + cos(x− y) = 2 cosx cos y;

hexagonal lattice: Vper(x, y) = cos

(
x+

y√
3

)
+ cos

(
x− y√

3

)
+ cos

(
2y√
3

)
=2 cos(x) cos

(
y√
3

)
+ cos

(
2y√
3

)
;

(1.8)

see Fig. 1.1 The functions in (1.8) are simply minimal Fourier polynomials with the dihedral sym-

metry and lattice periodicity. We demonstrated in the one-dimensional case [13] that results do

not depend on the addition of harmonics, that is, they are universal in this sense, but we will not

pursue such an analysis here.

The maxima of Vper correspond to preferred distances between particles and the minima correspond

to disfavored distances, when considering the long-range interaction Vper, only. Both potentials

exhibit unique maxima, up to lattice symmetries, at the origin, thus favoring clustering with zero

distance, which is however a forbidden distance due to the strong short-range repulsion. In the

square lattice case, Vper possesses a minimum at x = 0, y = π, making this an energetically

disfavored distance. Similarly, in the hexagonal case, minima and therefore energetically disfavored

distances occur at x = 0, y = π/
√
3 and, by reflection symmetry, at x = π, y = 2π/

√
3. In the

Figure 1.1: Contour plots of potentials Vper from (1.8) in the square case (left) and the hexagonal case (right) with

maxima yellow, minima blue. Note that the square potential is odd, but the hexagonal potential is not: level sets

near maxima and minima have square-like corrections to the leading-order round shape in the square potential; the

corrections are triangular near minima and hexagonal near maxima in the hexagonal potential case.

remainder of this paper, we drop the subscript and simply write V = Vper.

Outline. We derive expansions for the size of vacuum bubbles and fissures near the bifurcation

point in case of both square and hexagonal lattices in §2. The following section, §3, contains results
on diffusive corrections, ε ≳ 0 in (1.7). In this setting, we also connect our findings to a more

standard center-manifold analysis as for instance carried out in [4]. We study branches numerically

and identify a secondary bifurcation mediating a change in topology and a transition between
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fissures and clusters in §4. We conclude with numerical results in the discrete setting, N < ∞, in

§5 and a brief discussion, §6

Acknowledgments. The authors acknowledge support through grant NSF DMS-2205663 and

NSF DMS-2506837.

2 Vacuum Formation in Continuum Model

We identify bifurcation points, a global vertical branch, and continue solutions from the end of this

vertical branch as bubbles and fissures open up past the critical parameter value.

2.1 The Vertical Branch

Solving for equilibria of (1.4), we find that u · (∇u− µ∇V ∗ u) = ν, a constant, which must in turn

be 0. This is immediate when u is not strictly positive. When u > 0, we can divide by u and find

that the left-hand side is a gradient and non-zero, which is impossible for a periodic function. For

a solution without vacuum, that is, for u > 0, we then find

u− µ(V ∗ u) = ρ, (2.1)

for ρ a constant. Given our simple choices of repulsive potentials, one then has the explicit vertical

branches

µ∗ =
1

π2
, u = A0 +A1 cos(x) cos(y) +B1 sin(x) sin(y) (sq.), (2.2)

µ∗ =
1√
3π2

, u = A0 +A1 cos

(
x+

y√
3

)
+B1 cos

(
x− y√

3

)
+ C1 cos

(
2y√
3

)
. (hex.) (2.3)

Fixing the average density to, say, 1, we may set A0 = 1 and are left with two- and three-dimensional

subspaces of solutions, respectively. These subspaces contain one-dimensional subspaces with larger

symmetry (maximal isotropy) as follows. In the square symmetry case, A1 = B1 corresponds to

fissures, solutions depending on x− y, only, and B1 = 0 corresponds to bubble solutions invariant

under the 4-fold rotation R. Solutions are strictly positive, possessing no vacuum regions, as long

as max(|A1|, |B1|) < A0.

In the hexagonal symmetry case, A1 = B1 = C1 corresponds to bubble solutions with 6-fold

rotational symmetry R, while fissures correspond to solutions where only one of A1, B1, C1 is

nonzero. Bubble solutions are strictly positive if −1
3A0 < A1, B1, C1 < 2

3A0, fissure solutions for

|A1| < 1, B1‘ = C1 = 0.

2.2 Vacuum Formation: Square Lattice Symmetry

We analyze solutions in the vicinity of the boundary of the vertical branch, when max(|A1|, |B1|) =
A0. We look for non-negative solutions with support in Ω0 ⊂ Ω that have average density 1. They
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therefore satisfy

u− µ(V ∗ u)− ρ = 0, for x ∈ Ω0 (McKean-Vlasov condition), (2.4)

1

Area(Ω)

∫∫
Ω0

u(x, y)dydx = 1 (average density condition), (2.5)

u(x, y) = 0 on ∂Ω0 (boundary condition). (2.6)

Here, (2.4) follows from the evolution equation (1.4) by first concluding that u · ∇(u− µV ∗ u) = 0

and then, when u ̸= 0, that u−µV ∗ u is constant. The continuity condition (2.6) follows from the

fact that u is a weak solution.

Theorem 1 (Vacuum region scaling — square lattice). Let V (x, y) = 2 cos(x) cos(y), and set

µ = 1
π2 + µ̃, with µ̃ sufficiently small. Then solutions u to (2.4)-(2.6) with vacuum regions, that is,

Ω0 ̸= Ω, are of the form

u(x, y) = (A0 +A1 cos(x) cos(y) +B1 sin(x) sin(y))+ , (2.7)

where f+ = max(f, 0). There are then two solution branches, both supercritical, locally unique up

to translations in x and y, parameterized by µ̃ ≳ 0 as A0 = A0(µ̃), A1 = A1(µ̃)), B1 = B1(µ̃):

(i) fissures: A1 = −B1,

A0 = 1− π

2
µ̃+O(µ̃2), A1 = 1 +

(
3

4
√
2
π3µ̃

)2/3

+O(µ̃).

The half-width ℓ of the fissures and area A of vacuum region inside Ω are

ℓ =
π

21/2

(
3

2
µ̃

)1/3

+O(µ̃
2
3 ), A = 4π2

(
3

2
µ̃

)1/3

+O(µ̃
2
3 ).

(ii) bubbles: We have B1 = 0,

A0 = 1− π2

4
µ̃+O(µ̃

3
2 ), A1 = 1 +

π
3
2

√
2
µ̃

1
2 − π2

4
µ̃+O(µ̃

3
2 ).

The inner radius ℓ and area A of the vacuum region inside Ω are

ℓ = (2π3µ̃)1/4 +O(µ̃
3
4 ), A = (2π5µ̃)1/2 +O(µ̃).

Proof. Throughout the following, we will use [−π, π]2 as a domain of integration, noting that it

contains exactly two fundamental domains Ω.

First, notice that (2.4) implies that for all (x, y) where u(x, y) > 0, we have

u(x, y) = ρ+ µ

∫∫
Ω0

cos(x− ξ) cos(y − η)u(ξ, η)dξdη,

which, using trigonometric addition theorems gives the form (2.7). Therefore, all solutions with

(or without) vacuum are found as solutions to a finite system of equations for A0, A1, and B1. We
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Figure 2.1: An illustration of vacuum bubbles (left) and fissures (right) in a square of width 2π, comprising two (!)

fundamental domains Ω of the square lattice. Blue regions represent areas of vacuum; u is positive in the green regions

Ω0. Note that there is one (complete) bubble and one fissure in each fundamental domain (boundaries of fundamental

domain indicated by dashed lines); fissures have width 2ℓ and total length
√
2π in a fundamental domain, bubbles

have radius ℓ.

find solutions using a perturbative approach, starting with bubbles, B1 = 0, A1 ∼ 0, and A0 ∼ 1.

Substituting the ansatz (A0 +A1 cos(x) cos(y))+ into (2.4)-(2.6), we find

A0 +A1 cos(x) cos(y)−
(

1

π2
+ µ̃

)∫∫
Ω0

cos(x− ξ) cos(y − η) (A0 +A1 cos(ξ) cos(η)) dξdη − ρ = 0

(2.8)

1

2π2

∫∫
Ω0

(A0 +A1 cos(x) cos(y)) dydx = 1 (2.9)

A0 +A1 cos(x) cos(y) = 0 on ∂Ω0, (2.10)

where

Ω0 =
{
(x, y) ∈ Ω

∣∣ A0 +A1 cos(x) cos(y) > 0
}
;

see Fig. 2.1. Assuming that there are vacuum regions, we have A1 > A0, so that we may scale

A0 = 1 + a0, A1 = 1 + a0 + z21 , a0 = a0(z1),

for a small parameter z1. Our explicit ansatz then allows us to write the free-boundary condition

(2.10) in polar coordinates about the centers {(0,±π), (±π, 0)} of the bubbles, as follows:

0 = A0 −A1

(
1− r2

2
+

r4 cos2(θ) sin2(θ)

4
+

r4 cos4(θ) + r4 sin4(θ)

24
+O(r6)

)
= (1 + a0)−

(
1 + a0 + z21

)(
1− r2

2
+ r4Q(θ) +O

(
r6
))

,

(2.11)

where Q(θ) := cos2(θ) sin2(θ)
4 + cos4(θ)+sin4(θ)

24 . The inner radius ℓ of the bubble can be identified at

leading order as the value of r which solves (2.11). We may now further scale ℓ = ℓ1z1, which

yields, after some algebraic manipulation,

0 = − 1

1 + a0 + z21
+

ℓ21
2

− ℓ41z
2
1Q(θ) +O(z41) =: F (ℓ1, z1, a0, θ). (2.12)
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We find by the implicit function theorem that there exists a unique ℓ1 = ℓ1(z1, a0, θ) for a0, z1
sufficiently small, with ℓ1(0, 0, θ) =

√
2. Furthermore, expanding in z1, a0, we calculate

ℓ1(z1, a0, θ) =
√
2− 1 + 4Q(θ)

2
z21 −

1√
2
a0 +O(z41 + a20). (2.13)

We can now use this expression for the boundary of the vacuum bubble to solve the mass constraint

(2.9) for a0. Substituting the expression from (2.13) into (2.9), we obtain

0 = 4π2a0 −
∫∫

Ωc

(
1 + a0 +

(
1 + a0 + z21

)
cos(x) cos(y)

)
dydx

= 4π2a0 − 4

∫ π
2

−π
2

∫ z1ℓ1(z1,a0),θ)

0

(
−z21 +

r2

2
+O(a0r

2 + r4 + r2z21)

)
r drdθ

= 4π2a0 − 2π

(
−1

2
z41

)
+O(a0z

4
1 + z61).

We can again solve for a0 = a0(z1) near a0 = z1 = 0 by the implicit function theorem, obtaining

a0(z1) = − 1

2π
z41 +O(z61).

Finally, we use (2.8) to relate these quantities to the parameter µ̃. Equating the coefficients of

cos(x) cos(y) in (2.8), we find

0 =A1 −
(

1

π2
+ µ̃

)
(A1π

2) +

(
1

π2
+ µ̃

)∫∫
Ωc

0

cos(ξ) cos(η) (A0 +A1 cos(ξ) cos(η)) dηdξ

=− µ̃A1π
2

+ 4

(
1

π2
+ µ̃

)∫ π

0

∫ z1ℓ1(a0,z1,θ)

0

(
−1 +

r2

2
+O(r4)

)(
A0 +A1

(
−1 +

r2

2
+O(r4)

))
rdrdθ

=− π2µ̃

(
1 + z21 −

1

2π
z41

)
+

(
1

π2
+ µ̃

)(
2πz41

)
+O

(
z61
)
.

We thus see that µ̃ scales like z41 . We solve for z1 as a function of µ̃
1
4 near z1 = µ̃

1
4 = 0 by the

implicit function theorem, obtaining

z1 =

(
π3

2

) 1
4

µ̃
1
4 +O(µ̃

1
2 ).

Recalling that ℓ = ℓ1z1 =
√
2z1 + O(z31), this gives the expansion for ℓ as desired. The case of

fissures is simpler and was studied in [13].

Remark 2.1 (Maximal Isotropy). Note that the theorem demonstrates existence of branches with

maximal isotropy, but does not explicitly exclude solutions with submaximal isotropy; see [10, 7] for

background. Here, the isotropy subgroup is understood as a subgroup G of the group Γ of translations

and rotations that map functions with lattice periodicty to functions with lattice periodicity, in this

case a semi-direct product of translations in x and y, S1×S1, and the lattice isotropy D4. In addition

to basic lattice translations, the isotropy of bubbles is D4, the isotropy of fissures is generated by

S1 and a reflection across fissures. Both are maximal subgroups of Γ. A rough calculation suggests

that solutions with isotropy subgroups G that are not maximal do not exist supercritically.
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Figure 2.2: Inner figures (blue and green): An illustration of the vacuum bubbles on the hexagonal lattice. Left,

triangles; right, hexagons. Blue regions represent areas of vacuum. In the case of triangles, bubbles are initially

approximately circular, as pictured here; the triangular corrections become more apparent as µ̃ increases. All bubbles

have (inner) radius ℓ. Outer figures (pink and blue): example boundaries of triangle and hexagon vacuum regions

from numerics, for various µ̃ (size not to scale). Triangles: µ̃ = 1e-5, 5e-5, 1e-4, 2.5e-4, 5e-4, 1e-3, 2e-3. Hexagons:

µ̃ = 5e-5, .001, .005, .01, .03, .07.

2.3 Vacuum Formation: Hexagonal Lattice Symmetry

We next consider the case of hexagonal symmetry. For convenience of notation, we define the scaled

lattice vectors and dual lattice vectors

e1 = (1, 0) , e2 =

(
−1

2
,

√
3

2

)
, e⋆1 =

(
1,

1√
3

)
, e⋆2 =

(
0,

2√
3

)
, (2.14)

such that for i, j ∈ {1, 2},

⟨ei, e⋆j ⟩ =

{
0, i ̸= j

1, i = j
, ⟨ei, ej⟩ =

{
0, i ̸= j

1, i = j
. (2.15)

The potential from (1.8) can then be written in the short form

V (x, y) = cos (e⋆1 · (x, y)) + cos (e⋆2 · (x, y)) + cos ((e⋆1 − e⋆2) · (x, y)) . (2.16)

Reasoning equivalent to the case of squares will show that solutions can be found in a 3-dimensional

reduced equation for the amplitudes of Fourier modes. Among those, we shall again find fissures and,

similar to the bubbles in the square case, bubbles with dihedral isotropy D6. Those bubbles arise in

the form u(x, y) = (A0+A1V (x, y))+. Different from the case of square lattices, however, the cases

of A1 > 0 and A1 < 0 are different, leading to bubbles located in the corners of hexagons, taking

an asymptotic shape of triangular corrections to circles, and bubbles with hexagonal corrections to

circular shapes, located at the centers of hexagons; see Fig. 2.2. We refer to the former patterns as

triangles and to the latter ones as hexagons.

Theorem 2 (Vacuum region scaling — hexagonal lattice). Let V (x, y) as in (2.16), and µ =
1√
3π2 + µ̃, with µ̃ sufficiently small. Then solutions u to (2.4)-(2.6) with vacuum are of the form

u(x, y) =

(
A0 +

1

3
(A1 cos (e

⋆
1 · (x, y)) +B1 cos (e

⋆
2 · (x, y)) + C1 cos ((e

⋆
1 − e⋆2) · (x, y)))

)
+

, (2.17)
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where f+ = max(f, 0). There are three solution branches, all supercritical, and parameterized by

µ̃ ≳ 0 as A0 = A0(µ̃), A1 = A1(µ̃)), B1 = B1(µ̃), C1 = C1(µ̃), locally unique up to translations in

x and y:

(i) fissures: B1 = C1 = 0,

A0 = 1− π

2
µ̃+O(µ̃2), A1 = 3

(
1 +

(
3

4
√
2
π3µ̃

)2/3
)

+O(µ̃).

The half-width of the fissures ℓ = and area A of vacuum region are

ℓ =
35/6

24/3
πµ̃1/3 +O(µ̃

2
3 ), A =

35/6

21/3
π2µ̃1/3 +O(µ̃

2
3 )

(ii) triangles: A1 = B1 = C1 > 0,

A0 = 1− 2
√
3π2

3
µ̃+O(µ̃

3
2 ), A1 =

2

3
+

4π
3
2

3
√
3
µ̃

1
2 − 4π2

3
√
3
µ̃+O(µ̃

3
2 ).

The inner radius of bubbles ℓ and area A of vacuum region are

ℓ = (12π3µ̃)1/4 +O(µ̃
3
4 ), A = 2

√
3π5/2µ̃1/2 +O(µ̃).

(iii) hexagons: A1 = B1 = C1 < 0,

A0 = 1− π2

18
√
3
µ̃+O(µ̃

3
2 ), A1 =

1

3
+

√
2π3

9
µ̃

1
2 − π2

18
√
3
µ̃+O(µ̃

3
2 ).

The inner radius of bubbles ℓ and area A of vacuum region are

ℓ = (6π3µ̃)1/4 +O(µ̃
3
4 ), A =

√
6π5/2µ̃1/2 +O(µ̃).

Remark 2.2 (Vacuum area, hexagon versus triangle). Accounting for the number of vacuum bubbles

per unit hexagon (see Fig. 2.2), one can compare the areas of vacuum in the triangles and hexagon

cases, to find

(hexagons) Ahex =
√
6π

5
2 µ̃

1
2 ,

(triangles) Atri = 4
√
3π

5
2 µ̃

1
2 = 2

√
2Ahex

The triangle solutions thus possess not only a greater maximum density than the hexagons, but a

greater area of vacuum.

We shall prove existence and establish expansions for triangles and hexagons in the next two

sections. Existence and expansion for fissures again follows from the one-dimensional case [13].

Similar to the square case, Remark 2.1, the branches found here have maximal isotropy. There do

not appear to be solution branches with submaximal isotropy.

Remark 2.3 (Polygonal shapes). One can easily plot the sublevel sets of the potential V and its

negative to identify the shape of vacuum regions; compare Fig. 1.1. In the case of square lattices,

the vacuum bubbles are asymptotically discs with small square-symmetric corrections. This is also

apparent from the formula (2.11). In the case of the hexagonal lattice, the corrections to the shape

are triangular and hexagonal, respectively; see again Fig. 1.1 and 2.2).
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2.3.1 Proof of Theorem 2 (ii) — triangles

We begin with the case A1 > 0 and proceed analogously to the proof of Theorem 1. We scale

A0 = 1 + a0, A1 =
2

3
(1 + a0 + z21), a0 = a0(z1),

for a small parameter z1. The free-boundary condition (2.6), expanded in polar coordinates about

the centers of the bubbles, gives

0 = 1 + a0 +
2

3

(
1 + a0 + z21

)(
−3

2
+

r2

2
± 1

6
sin(3θ)r3 − r4

24
+O(r5)

)
, (2.18)

where the minus sign is taken for bubbles labeled B1 and the plus sign is used for bubbles labeled B2

(see Fig. 2.2). We identify the bubble radius ℓ as the solution to (2.19), and further scale ℓ = ℓ1z1.

In this scaling, after some algebraic manipulation, (2.18) becomes

0 = − 3

2(1 + a0 + z21)
+

ℓ21
2

− z21ℓ
4
1

24
+O(r5) +Q(θ), (2.19)

with Q(θ) = ±1
6 sin(3θ). The implicit function theorem then yields a unique ℓ1 = ℓ1(z1, a0, θ), for

z1, a0 sufficiently small and for arbitrary θ. Expanding in z1, a0, we find

ℓ1(z1, a0, θ) =
√
3− 1√

3
z21 −

√
3

2
a0 +O

(
z41 + a20

)
.

Again, we can use this expression for ℓ(z1, a0, θ) to solve for a0 using the average-density condition

(2.5). Substituting, we obtain

0 = 2
√
3π2 · a0 −

∫∫
Ωc

0

(
(1 + a0) +

2

3
(1 + a0 + z21)

(
2 cos(x) cos

(
y√
3

)
+ cos

(
2y√
3

)))
dydx

= 2
√
3π2 · a0 − 2

∫ 2π

0

∫ z1ℓ1(z1,a0,θ)

0

[
(1 + a0)

r2

3
+ z21

(
−1 +

r2

3

)
+O(r4)

]
r drdθ

= 2
√
3π2 · a0 + 3π(1− a0)z

4
1 +O

(
z61
)
,

and solve by the implicit function theorem to find, for z0 sufficiently small,

a0 = −
√
3

2π
z41 +O

(
z61
)
. (2.20)

Lastly, we use (2.4) to relate these quantities to µ̃, using polar coordinates for the integral over the

bubbles:

0 =V (x, y)

(
A1 −

(
1√
3π2

+ µ̃

)
(A1

√
3π2)

)
+

(
1√
3π2

+ µ̃

)∫∫
Ωc

0

V (x− ξ, y − η) (A0 +A1 · V (ξ, η)) dξdη

=−
√
3µ̃π2A1 + 2

(
1√
3π2

+ µ̃

)∫ 2π

0

∫ z1ℓ1

0

(
1

2
z21 −

1

6
r2 +O(r4, r2z21)

)
r drdθ

=− 2√
3
µ̃π2

(
1 + z21 −

√
3

2π
z41

)
+

(
1√
3π2

+ µ̃

)(
3π

2
z41 +O(z61)

)
.
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As in the square symmetry case for bubbles, we find that z1 scales like µ̃
1
4 , and we obtain a unique

z1 = z1(µ̃
1
4 ), for µ̃

1
4 sufficiently small, by the implicit function theorem, with

z1 =

(
4π3

3
µ̃

) 1
4

+O(µ̃
1
2 ). (2.21)

Using the relation ℓ =
√
3z1 +O(z31), this gives us the expression in Theorem 2 as desired.

2.3.2 Proof of Theorem 2 (iii) — hexagons

We now turn to the case A1 > 0. and proceed analogously. We scale

A0 = 1 + a0, A1 =
1

3

(
1 + a0 + z21

)
, a0 = a0(z1)

for a small parameter z1. Setting the solution equal to 0 in the free-boundary equation (2.6),

expanding in polar coordinates, yields

0 = 1 + a0 −
1

3

(
1 + a0 + z21

)(
3− r2 +

r4

12
+O(r6)

)
, (2.22)

where r in (2.22) will be the radius ℓ of the bubble. Scaling ℓ = ℓ1z1, and simplifying, we find

0 =
3

1 + a0 + z21
− ℓ21 +

ℓ41z
2
1

12
+O(ℓ61z

4
1), (2.23)

which we can solve by the implicit function theorem to obtain ℓ1 = ℓ1(z1, a0, θ), for z1, a0 small,

and for arbitrary θ. Expanding in z1, a0, we find

ℓ1 =
√
3− 3

√
3

8
z20 −

√
3

2
a0 +O(a20 + z41). (2.24)

We substitute this expression for ℓ(z1, a0, θ) to solve for a0 in the average-density condition (2.5),

0 = −2
√
3π2 · a0 +

∫∫
Ωc

0

(
(1 + a0)−

1

3
(1 + a0 + z21)

(
2 cos(x) cos

(
y√
3

)
+ cos

(
2y√
3

)))
dydx

= −2
√
3π2 · a0 +

∫ 2π

0

∫ z1ℓ1(z1,a0,θ)

0

[
(1 + a0)

r2

3
+ z21

(
−1 +

r2

3

)
+O(r4)

]
r drdθ

= −2
√
3π2 · a0 −

3π

2
(1− a0)z

4
1 +O

(
z61
)
,

and solve by the implicit function theorem to find, for z0 sufficiently small,

a0(z1) = −
√
3

4π
z41 +O

(
z61
)
. (2.25)
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Lastly, we use (2.4) to relate previous quantities to µ̃:

0 =V (x, y)

(
−A1 +

(
1√
3π2

+ µ̃

)
(A1

√
3π2)

)
+

(
1√
3π2

+ µ̃

)∫∫
Ωc

0

V (x− ξ, y − η) (A0 −A1V (ξ, η)) dxdy

=
µ̃π2

√
3

(
1 + z21 −

√
3

4π
z41

)
+

(
1√
3π2

+ µ̃

)∫ 2π

0

∫ z1ℓ1

0

(
−z21 +

r3

3
+O(r4, r2z21)

)
r drdθ

=
µ̃π2

√
3

(
1 + z21 −

√
3

4π
z41

)
+

(
1√
3π2

+ µ̃

)(
−3π

2
z41 +O

(
z61
))

.

Again, we find that z1 scales like µ̃
1
4 , and we obtain a unique z1 = z1(µ̃

1
4 ), for µ̃

1
4 sufficiently small,

by the implicit function theorem, with

z1 =

(
2π3

3
µ̃

) 1
4

+O(µ̃
1
2 ). (2.26)

Using the relation ℓ =
√
3z1 +O(z31), this gives us the expression in Theorem 2 as desired.

3 Diffusive Corrections: Almost-Vertical Branches

In this section, we consider the system with small diffusion,

ut = ε∆u+∇ · (u (∇u− (µ̃∗ + µ̃)V ∗ ∇u)) , (3.1)

representing small noise in the particle dynamics. We study the fate of the vertical solution

branches, and find that in the presence of noise, as in [13], the vertical bifurcation branches become

almost-vertical branches, with deviation from the vertical branch depending on the strength of ε.

Different from the one-dimensional case, we find that the direction of bending from the vertical

branch depends on the solution. The argument is perturbative and allows for the calculation of

expansions of solutions. It also predicts O(ε) noise-induced hysteresis. In addition, the perturbed

bifurcation diagram allows for a direct stability analysis, which then lets us analyze the competition

between bubbles and fissures for small ε through a center-manifold expansion.

3.1 Square lattice symmetry

We begin with the case of the square lattice.

Proposition 3.1 (Diffusive corrections — square bubbles). For ε ≳ 0, the McKean-Vlasov equation

ut = ε∆u+∇ ·
(
u∇

(
u−

(
1

π2
+ µ̃

)
V ∗ u

))
, (3.2)

possesses an almost-vertical branch of solutions u∗(x, y;A, ε), 0 < A < 1, D4-symmetric and peri-

odic, for µ̃ = µ̃∗(A, ε). Normalizing average density to 1, it has the expansion

µ̃∗(A, ε) = εµ̃1(A) +O(ε2), u∗(x, y;A, ε) = 1 +A cos(x) cos(y) +O(ε), (3.3)
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where

A =
1

π2

∫ π

−π

∫ π

−π
u∗(x, y) cos(x) cos(y)dxdy, (3.4)

and, explicitly,

µ̃1(A) =
2

π3A2

(
2π − 2

(
E[A2] +

√
1−A2E

(
A2/(−1 +A2)

)))
, (3.5)

where E(k) is the complete elliptic integral, E(k) =
∫ π

2
0

√
1− k2 sin2 θdθ. The limits of µ̃1(A) are

µ̃1(0) =
1
π2 , µ̃1(1) =

4
π2 − 8

π3 .

Remark 3.2 (Diffusive corrections — square fissures). For fissures, µ̃ = µ̃1ε+O(ε2),

µ̃1(A) =
4π2

(
1−

√
1−A2

A2

)
2π4

=
2

π2

(
1−

√
1−A2

A2

)
, with limits µ̃1(0) =

1

π2
, µ̃1(1) =

2

π2
.

The proof in this case is analogous to the proof in [13].

Proof. Noting that ∆u = ∇ · (u · ∇ log u), we can write the fixed point equation in the form

0 = ∇ ·
(
u∇
(
ε log u+ u−

(
1

π2
+ µ̃

)
V ∗ u

))
. (3.6)

Restricting to strictly positive solutions u, this is equivalent to

ε log u+ u−
(

1

π2
+ µ̃

)
V ∗ u = ρ, (3.7)

for ρ a constant. We append normalization conditions, solve for ρ, and find a system of equations

F (u, µ̃, ε) := F̃ (u, µ̃, ε)− ρ, F̃ (u, µ̃, ε) = ε log u+ u−
(

1

π2
+ µ̃

)
V ∗ u, ρ =

1

4π2

∫∫
Ω
F̃

F0(u) :=

∫ π

−π

∫ π

−π
u(x, y)dxdy − 4π2

F1(u) :=

∫ π

−π

∫ π

−π
u(x, y) cos(x) cos(y)dxdy −Aπ2,

(3.8)

where the parameter A is fixed, |A| < 1. The system (3.8) defines a map

G(u, µ̃, ε) = (F, F0, F1)(u, µ̃, ε) :
(
H2

e,p

)
× R2 →

◦
L2
e,p × R2,

where the subscripts {e, p} indicate the restriction of function spaces to D4-symmetric, periodic

functions, and
◦
L2 indicates the restriction to zero average. One verifies that G is well-defined and

smooth, and

G(u0∗(·, ·;A), 0, 0) = 0, for u0∗(x, y;A) = 1 +A cos(x) cos(y).

The derivative at (u0∗, 0, 0) is given by

A =

 L ∂µ̃F∗ ∂εF∗
⟨1, ·⟩ 0 0

⟨cos(x) cos(y), ·⟩ 0 0

 ,
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where

Lu = u−
(

1

π2
+ µ̃

)
V ∗ u, ∂µ̃F∗ = −π2A cos(x) cos(y), ∂εF∗ = log(1 +A cos(x) cos(y)).

The operator L is strictly elliptic since |A| < 1, and self-adjoint with domain H2
e,p. It is therefore

Fredholm index 1 due to the restriction of the codomain to average 0 functions. Bordering lemmas

for Fredholm operators then imply that A is also Fredholm of index 1, so that we expect a 1-

dimensional family of solutions.

We turn ourselves to showing that the map Du,µ̃G(u0∗(·, ·;A), 0, 0), that is, the first two columns

of A, is invertible. Clearly, the kernel of L is spanned by {1, cos(x) cos(y)}, and the cokernel, by

restriction to average zero functions, is spanned by {cos(x) cos(y)}.

As a consequence, we find that ∂µ̃F∗ /∈ Rg(L), since

⟨π2A cos(x) cos(y), cos(x) cos(y)⟩ = π4A ̸= 0.

We can thus see that A(u, µ̃, 0) = 0 if and only if u = 0, µ̃ = 0, since the second and third

components of A imply u /∈ ker(L), and therefore Lu ̸= ∂µ̃F∗µ̃, unless u = 0, µ̃ = 0. We therefore

have that Du,µ̃G(u0∗, 0, 0) is invertible, and we can solve for u, µ̃ as functions of ε. We then obtain

the leading order expansion of µ̃ by projecting the first equation onto the cokernel. We evaluate

⟨∂εF∗, cos(x) cos(y)⟩ =
∫ π

−π

∫ π

−π
cos(x) cos(y) · log (1 +A cos(x) cos(y)) dxdy

=
2π

A

(
2π − 2

(
E[A2] +

√
1−A2E[A2/(−1 +A2)]

))
̸= 0

and thus find

µ̃ = µ̃1ε+O(ε2),

µ̃1 = − ⟨∂εF∗, cos(x) cos(y)⟩〈
∂µ̃F∗, cos(x) cos(y)

〉 =
2

π3A2

(
2π − 2

(
E
(
A2
)
+
√
1−A2E

(
A2/(−1 +A2)

)))
.

Remark 3.3 (Diffusive corrections — no elliptical bubbles). If one were to attempt to repeat the

argument with u0∗ = 1+A cos(x) cos(y)+B sin(x) sin(y), for B ̸= A, A,B ̸= 0, one would not find

nontrivial solutions for ε > 0. The corresponding nonlinear function

F̃ (u, µ̃, ε) := ε log u+ u−
(

1

π2
+ µ̃

)
V ∗ u− ρ

F̃0(u) :=

∫ π

−π

∫ π

−π
u(x, y)dxdy − 4π2

F̃1(u) :=

∫ π

−π

∫ π

−π
u(x, y) cos(x) cos(y)dxdy −Aπ2

F̃2(u) :=

∫ π

−π

∫ π

−π
u(x, y) sin(x) sin(y)dxdy −Bπ2,

(3.9)

where ρ is the average of the other terms, defines a map G̃(u, µ̃, ε) : H2
s,p × R2 →

◦
L2
s,p × R2 ,

where we now can restrict function spaces to D2-symmetric, periodic functions, only, generated by
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reflections x ↔ y and rotations by π, denoted by subscripts s,p. It has linearization

Ã =


L ∂µ̃F∗ ∂εF∗

⟨1, ·⟩ 0 0

⟨cos(x) cos(y), ·⟩ 0 0

⟨sin(x) sin(y), ·⟩ 0 0

 ,

which is no longer Fredholm index 1, but Fredholm index 0 due to the additional normalization

condition.

In order to determine whether Ã possesses a kernel, we need to check whether the two vectors ∂µ̃F∗ =

A cos(x) cos(y)+B sin(x) sin(y) and ∂εF∗ = log(1+A cos(x) cos(y)+B sin(x) sin(y)) span a comple-

ment of the range, that is, if their orthogonal projections on the basis {cos(x) cos(y), sin(x) sin(y)}
are linearly independent.

Evaluating the scalar products and changing integration variables leads to the condition∫ 2π

η=0

∫ 2π

ξ=0
(A cos ξ −B cos η) log(1 +A cos η +B cos ξ)dξdη ̸= 0,

which after partial integration simplifies to

AB

∫ 2π

η=0

∫ 2π

ξ=0

cos2 ξ − cos2 η

1 +A cos η +B cos ξ
dξdη ̸= 0.

This integral clearly vanishes when A = B. We evaluated the integral numerically and found that

it is strictly monotone on lines A+B = const, hence nonzero for A ̸= B. As a consequence, Ã is

invertible and the solution branch at ε = 0 is unique, that is, there are no solutions with submaximal

isotropy for ε ≳ 0. This is a notable difference from the ε = 0 case, where the vertical branch does

contain mixed-mode solutions.

3.2 Hexagonal Lattice Symmetry

We now turn to the case of the hexagonal lattice.

Proposition 3.4 (Diffusive corrections — triangles and hexagons). For ε ≳ 0, the McKean-Vlasov

equation

ut = ε∆u+∇ ·
(
u∇

(
u−

(
1√
3π2

+ µ̃

)
V ∗ u

))
(3.10)

possesses an almost-vertical branch of solutions with D6 isotropy and average 1, u∗(x, y;A, ε),−1
3 <

A < 2
3 , A ̸= 0, for µ̃ = µ̃∗(A, ε) with expansion

µ̃∗(A, ε) = εµ̃1(A) +O(ε2), u∗(x, y;A, ε) = 1 +AV (x, y) +O(ε), (3.11)

where

A =
1

3
√
3π2

∫∫
Ω
u∗(x, y)V (x, y)dxdy, (3.12)

and, explicitly,

µ̃1(A) =
1

3π3A2

∫ √
3π
2

−
√
3π
2

1−

√(
1 +A cos

(
2y√
3

))2

− 4A2 cos2
(

y√
3

) dy. (3.13)

The limits of µ̃1(A) are µ̃1(0) =
1√
3π2 , µ̃1(

2
3) =

2√
3π2 − 3

2π3 , µ̃1(−1
3) =

5√
3π2 − 6

π3 .
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Figure 3.1: Numerical agreement and comparison for the almost-vertical branches. Dots are numerical; curves are

the O(ε) predictions from (3.5) and (3.13); square symmetry (left) and hexagonal symmetry (right) shown. Bubble

branches are in green; fissure branches are in blue.

Remark 3.5 (Diffusive corrections — hexagonal fissures). For fissures in this setting, we find

µ̃1 =
2(1−

√
1−A2)√

3A2π2
, with limits µ̃1(0) =

1√
3π2

, µ̃1(1) = µ̃1(−1) =
2√
3π2

,

simply adapting the results in [13].

Proof. Noting that ∆u = ∇· (u · ∇ log u), we can again write the fixed point equation in the form

0 = ∇ ·
(
u∇
(
ε log u+ u−

(
1√
3π2

+ µ̃

)
V ∗ u

))
. (3.14)

Restricting to strictly positive solutions u, this is equivalent to

ε log u+ u−
(

1√
3π2

+ µ̃

)
V ∗ u = ρ, (3.15)

for ρ a constant, which we necessarily choose as the average of the left-hand side. We consider the

nonlinear functions

F (u, µ̃, ε) := ε log u+ u−
(

1√
3π2

+ µ̃

)
V ∗ u− ρ

F0(u) :=

∫∫
Ω
u(x, y)dxdy − 2

√
3π2

F1(u) :=

∫∫
Ω
u(x, y)V (x, y)− 3

√
3Aπ2,

(3.16)

where A is fixed, A ̸= 0,−1
3 < A < 2

3 . These functions (3.16) define a map

G(u, µ̃, ε) : H2
e,p × R2 →

◦
L2
e,p × R2,

where the subscript {e,p} refers to the fact that functions are lattice-periodic and invariant under

D6, the symmetry of the fundamental hexagon and
◦
L2
e,p refers to the space of symmetric, mean-zero

functions. One verifies that G is well-defined and smooth, and

G(u0∗(·, ·;A), 0, 0) = 0, for u0∗(x, y;A) = 1 +AV (x, y).
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The derivative at (u0∗, 0, 0) is given by

A =

 L ∂µ̃F∗ ∂εF∗
⟨1, ·⟩ 0 0

⟨V (x, y), ·⟩ 0 0

 ,

where

Lu = u−
(

1√
3π2

+ µ̃

)
V ∗ u, ∂µ̃F∗ = −

√
3π2AV (x), ∂εF∗ = log(1 +AV (x)).

The operator L is strictly elliptic since 1
3 < A < 2

3 , and self-adjoint with domain H2
e,p. It is therefore

Fredholm index 1 due to the restriction to average 0 functions in the codomain. Bordering lemmas

for Fredholm operators then imply that A is Fredholm of index 1, so that we expect a 1-dimensional

family of solutions.

We now turn to showing that the map Du,µ̃G(u0∗(·, ·;A), 0, 0) consisting of the first two columns of

A, is invertible. We first notice that the kernel of L is explicitly the span of {1, V (x, y)}, and the

cokernel is the span of {V (x, y)}. As a consequence, we find that ∂µ̃F∗ /∈ Rg(L), through

−⟨
√
3π2AV (x, y), V (x, y)⟩ = −9π4A ̸= 0.

We can thus see that A(u, µ̃) = 0 if and only if u = 0, µ̃ = 0, since the second and third components

of A imply u /∈ ker(L), and therefore Lu ̸= ∂µ̃F∗µ̃, unless u = 0, µ̃ = 0. We therefore have that

Du,µ̃G(u0∗, 0, 0) is invertible, and we can solve for u, µ̃ as functions of ε. We then obtain the leading

order expansion of µ̃ by projecting the first equation onto the cokernel. We evaluate

⟨∂εF∗, V (x, y)⟩ =
∫ √

3π
2

−
√
3π
2

∫ π

−π
V (x, y) · log (1 +AV (x, y)) dxdy

=

∫ √
3π
2

−
√
3π
2

3π

A

1−

√(
1 +A cos

(
2y√
3

))2

− 4A2 cos2
(

y√
3

) dy

=

∫ √
3π
2

−
√
3π
2

3π

A

1−

√(
1 +A cos

(
2y√
3

))2

− 4A2 cos2
(

y√
3

)
+A cos

(
2y√
3

) dy

> 0,

since the integrand is nonnnegative and not identically equal to 0. We thus find

µ̃ = µ̃1ε+O(ε2),

µ̃1 = − ⟨∂εF∗, cos(x) cos(y)⟩〈
∂µ̃F∗, cos(x) cos(y)

〉
=

∫ √
3π
2

−
√
3π
2

1

3π3A2

1−

√(
1 +A cos

(
2y√
3

))2

− 4A2 cos2
(

y√
3

) dy,

with explicit limits µ̃1(0) =
1√
3π2 , µ̃1(

2
3) =

2√
3π2 − 3

2π3 , µ̃1(−1
3) =

5√
3π2 − 6

π3 .
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3.3 Stability near onset: Center manifold expansions

The characterization of the almost-vertical branches also encodes information about the stability

of the solutions. The explicit dependence of the solutions on µ̃, along with the symmetries of the

system, allow one to compute the coefficients in the center manifold expansion for small µ̃.

Square lattice. We take ε > 0 fixed, small, and let µ̃c = µ̃∗(0, ε) defined in Prop. 3.1. We

can then perform a parameter-dependent center manifold reduction in the space of functions that

are invariant under the reflections x ↔ y and x ↔ −y. We decompose u = uc + uh, uc =

A cos(x−y)+B cos(x+y) parameterizing the center eigenspace, and uh ⊥ uc. The center manifold

is then given as a graph uh = h(uc), with h(0) = 0 and h′(0) = 0, where we suppress parameter

dependence. Within the space of even functions, we have the action of the dihedral group D4

generated by the rotation of order 4 in the plane and the reflection x ↔ −x, as well as translations

by π in x and y. On the center eigenspace, and therefore on the reduced vector field, we find they

induce a standard action of D2, generated by A ↔ B and A → −A; see for instance [10]. This

enforces a Taylor expansion of the reduced vector field of the form,

A′ = (µ̃− µ̃c)A+A(αA2 + βB2) +O((µ̃− µ̃c)
2(|A|+ |B|) + |A|5 + |B|5)

B′ = (µ̃− µ̃c)B +B(αB2 + βA2) +O((µ̃− µ̃c)
2(|A|+ |B|) + |A|5 + |B|5).

(3.17)

Fissure solutions correspond to B = 0, and bubbles correspond to A = B, both one-dimensional

invariant lines in this reduced phase plane description, enforced by symmetry. Thus steady-state

solutions have, for small µ̃− µ̃c, leading-order amplitudes

A = ±
√

−(µ̃− µ̃c)

α
(fissures); and B = ±

√
−(µ̃− µ̃c)

α+ β
(bubbles) .

We can compare these expressions to the asymptotics of µ̃1 derived above in §3.1. Starting with

fissure solutions, we expand µ̃1(A) = 2
π2

(
1−

√
1−A2

A2

)
about A = 0, and find

µ̃1 − µ̃1(0) =
1

4π2
A2 +O(A4).

This implies that α = −1
4π2 ε+O(ε2).

Similarly, we expand the expression for µ̃1(A) from §3.1 for the bubble solutions, noting that in the

coordinates used there, A corresponds to 2B here. We then obtain

µ̃1 − µ̃1(0) =
3

4π2
B2 +O(B4),

from which we deduce α+ β = −3
4π2 ε+O(ε2), so β = −1

2π2 ε+O(ε2). Summarizing, we have

α =
−4

2π2
ε+O(ε2), β =

−1

2π2
ε+O(ε2), (3.18)

in (3.17). Notably, these dynamics for A and B near onset correspond to strong competition

favoring the fissure branch. In other words, near onset, the fissure equilibria with B = 0 (and the

ones with A = 0) are stable while the A = B bubble equilibria are unstable.
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Hexagonal lattice. We proceed in an analogous fashion. We restrict to a function space with

reflection symmetry y 7→ −y and sixfold rotation in the plane. The center subspace is 3-dimensional,

parameterized via uc = A cos(x + y√
3
) + B cos(x − y√

3
) + C cos( 2y√

3
). On the center-subspace,

symmetries are generated by rotations of π/3, A → B → C → A, reflections in y, A ↔ B, and

translations in x by π, (A,B) 7→ −(A,B) and give the reduced equation, at leading order,

A′ = (µ̃− µ̃c)A+ αBC +A(βA2 + γ(B2 + C2)

B′ = (µ̃− µ̃c)B + αAC +B(βB2 + γ(A2 + C2)

C ′ = (µ̃− µ̃c)B + αAB + C(βC2 + γ(A2 +B2)).

(3.19)

Fissure solutions correspond to B = C = 0, and bubbles to |A| = |B| = |C|, with amplitudes,

A = ±

√
−(µ̃− µ̃c)

β
+O(µ̃− µ̃c) (fissures),

µ̃− µ̃c = −αA− (β + 2γ)A2 +O(A4) (bubbles).

In order to determine β, we expand our analytical expression for the fissure coefficient µ̃1(A) =
2
π2

(
1−

√
1−A2

A2

)
at A = 0, and find

µ̃1 − µ̃1(0) =
1

4
√
3π2

A2 +O(A4),

thus β = −1
4
√
3π2 ε + O(ε2). Next, to find α, γ, we expand our analytical expression for the bubble

coefficient µ̃1(A) at A = 0 to find

µ̃1 − µ̃1(0) = − 1

2
√
3π2

A+
5

4
√
3π2

A2 +O(A3),

which, when comparing, gives α = 1
2
√
3π2 ε+O(ε2) and γ = −1

2
√
3π2 ε+O(ε2).

Investigating stability in this reduced ODE, we find that at small amplitudes all solutions are un-

stable, as is common in the generic bifurcation scenario on hexagonal lattices [2]. The triangles

stabilize at finite amplitude and parameter value µ̃− = −1
20

√
3π2 ε +O(ε2) in a saddle-node bifurca-

tion. We compared predictions from center-manifold with the perturbative analysis, also indicating

stability of solutions with good agreement away from vacuum formation; see Fig. 3.2.

4 Numerical continuation and a second vertical branch

We explore branches away from µ̃ = 0, including in particular the growth of vacuum regions and

their eventual change of topology. We use two complementary numerical approaches, both relying

on numerical secant continuation of stationary solutions to the deterministic limit

ut = ∇ · (u · (∇u− µ∇V ∗ u)) , (4.1)

and the diffusive regularization

ut = ε∆u+∇ · (u · (∇u− µ∇V ∗ u)) . (4.2)
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Figure 3.2: Center manifold predictions vs. numerical values, for ε = 10−4 (square symmetry, left) and ε = 2.510−3

(hexagonal symmetry, right). The parameter is shifted relative to the bifurcation point at ε = 0. Center manifold

predictions are in lighter colors. Fissures are in blue; bubbles are in green and black. Black represents branches found

to be stable in center manifold predictions and in numerical continuation, respectively.

We solve the regularized problem (4.2) using a spectral discretization, §4.1, and the limiting (4.1)

problem via the finite-dimensional reduction permitted by the specific potential supported on

finitely many Fourier modes, §4.2. Both methods allow us to explore solution branches and their

stability far from the bifurcation point µ̃ = 0; see §4.3. Curiously, we find a change of stability in

the case of square symmetry due to a secondary bifurcation with a vertical branch (almost vertical

for ε > 0) which coincides with a change of topology in solutions; see §4.4.

4.1 Numerical Continuation: Full Equation with Small Diffusion

We implement secant continuation for the potentials in (1.8) on both square and hexagonal lattices.

In the case of the hexagonal lattice, we transform coordinates mapping the basis lattice vectors e1
and e2 from the hexagonal lattice onto the canonical basis and then computing on a square domain,

with suitably transformed differential operators and potential. We impose phase conditions in x and

y with reference solution u(0) to exclude the family of translations of the solution (see for instance

[12]), and a mass condition to select a branch with fixed average density. Mass and positional

constraints are compensated for by a dummy variables, adding a mass loss term αu and drift terms

sxux and syuy to the equation. Numerically, we found α = sx = sy = 0 to numerical precision as

expected. When solving for fissure branches, only one of the phase conditions is used and the drift

in the y-direction is omitted. Together, we solve

ε∆u+∇ · (u · (∇u− µ̃∇V ∗ u))− αu+ sxux + syuy = 0 (evolution equation) (4.3)

1

4π2

∫ π

−π

∫ π

−π
u(x, y)dydx = 1 (mass condition) (4.4){∫ π

−π u
(0)
t (x, y)(u(0)(x, y)− u(x, y))dx = 0∫ π

−π u
(0)
t (x, y)(u(0)(x, y)− u(x, y))dy = 0

(phase conditions) (4.5)

in the case of square lattice periodicity, with suitably transformed differential operators in the case

of hexagonal lattice periodicity. For continuation, we add the usual secant condition. The solution
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Figure 4.1: Numerical continuation of branches forming vacuum bubbles in case of square lattice periodicity (left)

and hexagonal lattice periodicity (right, triangle branch), for different values of ε. Plotted is the square of the size

of the vacuum area, computed as the area where u < ε, together with the theoretical predictions from Theorems 1

and 2, respectively.

u is discretized to u using N2 Fourier modes in the two-dimensional domain. A Newton method is

implemented in Matlab using its gmres linear solver for the N2+4 variables (u, sx, sy, α, µ̃) (resp.

N2 + 3 variables for fissures). The diffusion term ε serves as a regularizer and preconditioner for

the linear solver.

Results are displayed in Fig. 4.1 and Fig. 4.2. Fig. 4.1 gives a quantitative comparison to the theory,

displaying convergence of numerically computed branches to the explicit prediction. As predicted,

the square of the vacuum area for bubbles grows linearly in the parameter, with slope matching our

explicit calculation for the growth of vacuum bubbles, in both square and hexagonal periodicity

(here for the triangle branch). Convergence in ε is linear as predicted. Different branches, for both

the square lattice and the hexagonal lattice periodicity are shown in Fig. 4.2. Calculations include

stability information which agrees with the information obtained from the center-manifold analysis.

4.2 Numerical Continuation: Finite Rank System, No Diffusion

In order to continue solutions of (4.1), we use the somewhat explicit form of solutions as in §2, and
numerically solve equations (2.4)-(2.5) for the coefficients of Fourier modes.

Square Symmetry. In order to find bubble and fissure solutions, we set

u =
(
A0 +A1 cos(x) cos(y) +B1 sin(x) sin(y)

)
+
,

where f+ denotes the positive part of f . Bubble branches correspond to B1 = 0, while fissure
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branches will have A1 = B1 ̸= 0. We then numerically solve the system

0 = 2π2 −
∫∫

Ω0

(A0 +A1 cos(x) cos(y) +B1 sin(x) sin(y)) dxdy

0 = A1 −
(

1

π2
+ µ̃

)∫∫
Ω0

2 cos(x) cos(y) (A0 +A1 cos(x) cos(y)) dxdy

0 = B1 −
(

1

π2
+ µ̃

)∫∫
Ω0

2B1 sin
2(x) sin2(y)dxdy,

(4.6)

where the domain Ω0 is the subset of [−π, π]2 on which u is positive.

Hexagonal Symmetry. For the case of hexagonal symmetry, we make the ansatz

u = max
(
A0 +A1 cos(x− y√

3
) +B1 cos(x+

y√
3
) sin(y) + C1 cos(

2y√
3
), 0
)
.

Here, a bubble branch satisfies A1 = B1 = C1 ̸= 0, while a fissure branch branch has A1 ̸= 0, B1 =

C1 = 0. We solve the system

0 = 2
√
3π2 −

∫∫
Ω0

(
A0 +A1 cos(x− y√

3
) +B1 cos(x+

y√
3
) sin(y) + C1 cos(

2y√
3
)

)
dxdy

0 = A1 −
(

1√
3π2

+ µ̃

)∫∫
Ω0

cos(x− y√
3
)

(
A0 +A1 cos(x− y√

3
)

)
dxdy

0 = B1 −
(

1√
3π2

+ µ̃

)∫∫
Ω0

cos(x+
y√
3
)

(
A0 +B1 cos(x+

y√
3
) sin(y)

)
dxdy

0 = C1 −
(

1√
3π2

+ µ̃

)∫∫
Ω0

cos(
2y√
3
)

(
A0 + C1 cos(

2y√
3
) sin(y)

)
dxdy

(4.7)

numerically, where Ω0 is the subset of the domain on which u is positive. Integrals are evaluated

numerically in case of both square and hexagonal lattice periodicity, using a square grid of N2 grid

points, N = 3000.

4.3 Branches and Stability

In the case of square lattice symmetry, numerical continuation, both with and without diffusion,

reveals a secondary bifurcation where the solution branches exchange stability. Such a bifurcation

is accompanied by a branch of mixed-mode solutions connecting the bubble and fissure branches.

In the case of no diffusion, this occurs at exactly µ = 2µ̃∗. In this case, the branch is again vertical,

and its existence is explicit; see §4.4. With diffusion, similarly to the primary vertical branch, this

branch is almost-vertical and slightly shifted in parameter space. The mixed-mode branch consists

of solutions with elliptical bubbles which interpolate between bubbles and fissures. Modulations

of fissures or more generally striped patterns have been observed in many other pattern-forming

scenario, for instance in the Taylor-Couette problem, where they are known as wavy rolls [6]. Again,

the situation here is particular as the exchange of stability between fissures and bubbles does not

display hysteresis at ε = 0.

In addition to being curiously vertical, this secondary bifurcation also occurs precisely at the

parameter value where the bubble branch changes topology, that is, where vacuum bubbles merge
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Figure 4.2: Bifurcation diagrams from secant continuation for the full equation with diffusion, ε = 0.05 (square

symmetry, left), ε = 0.01 (hexagonal symmetry, right). The color along the fissure and bubble branches represents

the size of the largest numerically computed eigenvalue of the Jacobian at that equilibrium, so that lighter branches

are more unstable. Black represents a stable branch, where the largest computed eigenvalue is 0 due to translational

symmetry.

and confine the support of the solution Ω0 to disconnected clusters. In the finite-rank case, this

change of topology happens precisely when A0 = 0. At this secondary bifurcation, stability at both

fissures and bubbles changes from what emerged from the local bifurcation and the primary vertical

branch. Prior to the transition, fissure solutions are stable; afterwards, clusters (the continuation

of bubbles) are stable. For square symmetry, then, the only stable solutions are fissures, first, and

clusters, later; solutions with true vacuum bubbles are unstable; see Fig. 4.2 for the bifurcation

diagram with numerically computed eigenvalues.

We did not find such secondary bifurcation for hexagonal symmetry. In this case, the only stable

solutions are triangles both near the bifurcation point and for larger values of µ̃; fissure and hexagon

solutions are always unstable. This was confirmed both in the numerical continuation of the PDE

solution with small diffusion and in the finite-rank continuation: the computed Morse index remains

constant along all three solution branches for µ̃ > 0.

4.4 Vertical Branch II: The Connecting Branch

For (4.1), without diffusion and with square symmetry, we find an explicit vertical mixed-mode

branch at µ = 2µ̃∗. These solutions all have A0 = 0.

Proposition 4.1. Let µ̃ = 2
π2 , V (x, y) = 2 cos(x) cos(y). For each τ ∈ [0, 1], there exists a solution

u to equations (2.4)-(2.6) of the form

u(x, y) = (A1 cos(x) cos(y) + τA1 sin(x) sin(y))+ = max(A1 cos(x) cos(y) + τA1 sin(x) sin(y), 0),

for a unique A1 = A1(τ) > 0.
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Figure 4.3: Bifurcation diagrams from finite rank continuation, with corresponding states along the branches, showing

square symmetry (left) and hexagonal symmetry (right). In the left panel, one sees in purple the interpolating branch

of mixed-mode solutions. For hexagonal symmetry, we find no such branch. The computed Morse index remains

constant along all 3 solution branches, with no observed crossing which would indicate a bifurcation.

Proof. Let Ω′
0 =

{
(x, y) ∈ [−π, π2]

∣∣ A1 cos(x) cos(y) +B1 sin(x) sin(y) > 0
}
. Substituting the

ansatz µ̃ = 2
π2 , u = (A1 cos(x) cos(y) + τA1 sin(x) sin(y))+ into (2.4)-(2.6), we obtain the system

0 = 4π2 −
∫∫

Ω′
0

(A1 cos(x) cos(y) + τA1 sin(x) sin(y)) dxdy (4.8)

0 = A1 −
2

π2

∫∫
Ω′

0

A1 cos
2(x) cos2(y)dxdy (4.9)

0 = τA1 −
2

π2

∫∫
Ω′

0

τA1 sin
2(x) sin2(y)dxdy. (4.10)

We note two key facts:

(i) the complement (Ω′
0)

c is exactly equal to Ω′
0, shifted by π in the x-direction (or, equivalently,

by π in the y-direction). This follows immediately from the symmetries cos(x+π) = − cos(x),

and sin(x+ π) = − sin(x);

(ii) the functions cos2(x) cos2(y) and sin2(x) sin2(y) are both π-periodic in x.

These facts imply that∫∫
Ω′

0

cos2(x) cos2(y)dxdy =
1

2

∫ π

−π

∫ π

−π
cos2(x) cos2(y)dxdy,∫∫

Ω′
0

sin2(x) sin2(y)dxdy =
1

2

∫ π

−π

∫ π

−π
sin2(x) sin2(y)dxdy.

Then (4.9) and (4.10) are automatically satisfied no matter the value of A1, τ . Considering (4.8),

we note that for fixed τ , the regions Ω0,Ω
′
0 do not depend on A1. Then the quantity∫∫

Ω′
0

(cos(x) cos(y) + τ sin(x) sin(y)) dxdy
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is simply a number, independent of A1, and we can solve as

A1(τ) =
4π2∫∫

Ω′
0
(cos(x) cos(y) + τ sin(x) sin(y)) dxdy

.

Along the bubble branch, we note that such a solution with A0 = 0 corresponds exactly to the

transition between vacuum bubbles and isolated clusters.

5 Comparison with evolution of finitely many particles

We also compared predictions from the continuum limit with direct simulations and numerical

continuations of finite-size particle systems. We find that finite particle dynamics largely reflect

predictions from the continuum model, with some hysteretic effects due to the finite size of the

system. Notably, on the square lattice, continuum model dynamics predict patterns well despite

the fact that particles tend to prefer a hexagonal microstructure.

Finite-Particle ODEs. In two dimensions, we consider interactions between N2 agents driven

by the following gradient flow,

ẋℓ = − 1

N2

N∑
j ̸=ℓ

∂1W (xℓ − xj , yℓ − yj) (5.1)

ẏℓ = − 1

N2

N∑
j ̸=ℓ

∂2W (xℓ − xj , yℓ − yj) (5.2)

where ℓ = [ℓ1; ℓ2] is the label for a particle at some position (x, y) in the plane. Modeling repulsion

by a Dirac-δ is no longer meaningful for the ODE and we therefore model the repulsive interaction

by a potential Kζ(x, y) = (2πζ)−2K0(

√
x2+y2

ζ ) = F−1( 1
4π2(1+ζ2(k2+l2))

), for ζ fixed, small. Here K0

represents the modified Bessel function of the second kind. For the attractive part of the potential,

we again take V = 2 cos(x) cos(y) for the square lattice, and V = cos(x+ y√
3
)+cos(x− y√

3
)+cos( 2y√

3
)

for the hexagonal lattice.

The counterpart here to the uniform density state in the continuum model is the crystal solution,

where particles are equally spaced in their respective lattice. Such a solution (x̄ℓ, ȳℓ), is given for

the square lattice by

x̄ℓ = (ℓ1 + ℓ2) ·
π

N
, ȳℓ = (ℓ1 − ℓ2) ·

π

N
,

and for the hexagonal lattice by

x̄ℓ =
2πℓ1
N

− πℓ2
N

, ȳℓ =

√
3πℓ2
N

.

Onset of Bifurcation: Effect of Repulsive Potential. In addition to finite size corrections,

the bifurcation point also changes due to the change in repulsive potential. Replacing the Dirac-δ
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Figure 5.1: Periodic domain for hexagonal lattice (left) and crystal states for the hexagonal and square lattices,

respectively (right).

by Kζ , and linearizing at the constant state, we find a linearized operator Lv = ∆(Kζ + V ) ∗ v.

The continuum bifurcation points with this potential are thus µ∗ = 1
π2(1+2ζ2)

(square), and µ∗ =
1√

3π2(1+2ζ2)
(hexagon), and we do find these in large-N limits in the discrete model below.

5.1 Numerical Continuation

We implement secant continuation to find parameter values where non-trivial branches bifurcate

from the crystalline state in (5.1) and track branches of steady states. The Bessel potential is of

course not periodic and needs to be replaced by its periodization, that is, the sum over all lattice

translates. Since this sum is not explicit, we approximate the periodized potential by the sum of

nine translated copies of Kζ . The translates are centered at all combinations of the respective

lattice’s basis vectors around and including the origin (i.e. (0, 0),±e1,±e2, etc.).

Adding phase conditions in both x- and y-directions, similarly to §4, we solve

0 = − 1

N2

N∑
j ̸=ℓ

∂1W (xℓ − xj , yℓ − yj) + sx1,

0 = − 1

N2

N∑
j ̸=ℓ

∂2W (xℓ − xj , yℓ − yj) + sy1, (evolution equations)

0 =
1

N2

∑
j

xj − xj ,

0 =
1

N2

∑
j

yj − yj , (phase conditions)

where 1 = (1, 1, ...1), and sx, sy are dummy variables associated with the phase conditions. There is

clearly no mass constraint necessary, here. We solve the system in 2N2+3 variables (x, y, , sx, sy, µ̃)

using Newton’s method and a secant normalization. All results described in the following were

obtained with a fixed ζ = 0.3.

Fig. 5.2 shows numerically calculated onset of instability of the crystalline state depending on the

particle number, compared to the prediction from the continuum limit. We find convergence propor-

tional to the inverse of the total particle number in both square and hexagonal lattice configuration.

Fig. 5.3 shows a numerically computed bifurcation diagram in the case of the hexagonal lattice.
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Figure 5.2: Onset of instability of the pure crystalline state found using secant continuation for fixed ζ = 0.3 and

varying total numbers of particles N2 on the square lattice (left) and the hexagonal lattice (right). The finite-N

corrections to the bifurcation point appears to be O(N−2).

We find triangle, hexagonal, and fissure branches. As predicted in the continuum limit, triangle

branches are stable after an initial saddle-node bifurcation, while hexagon branches are unstable.

Fissure branches are stable only for subcritical parameter values. The discreteness notably causes

the bifurcation of fissures to be weakly subcritical, as opposed to the weak supercriticality caused

by small noise ε in §3, a phenomenon also observed in the one-dimensional case [13]. We noted

that during continuation there are several secondary bifurcations, and we do not claim at all that

this bifurcation diagram is complete. An intuitive reason for secondary bifurcations are possible

rearrangements and emergence of defects in the particle configuration, an effect which is notably

absent in the one-dimensional case [13]. In fact, such rearrangements and secondary bifurcations
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Figure 5.3: Bifurcation diagram obtained using secant continuation on the hexagonal lattice for N2 = 49 particles,

with sample particle configurations observed in direct simulations. Triangle branch and hexagon branch are in green

and dark green, respectively, fissure branch in blue. Hexagons are not observed in direct simulations. On the vertical

axis, we show the inverse of minimal distances between particles as a proxy for the maximal density.

prevented us from creating the analogous figure in the case of a square lattice using numerical
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Figure 5.4: Bifurcation on the square lattice, N2 = 144 particles. States observed at t = 10000 in direct simulations

for various values of µ, from left to right: µ = 0.075, 0.1, 0.125, 0.15, 0.16, 0.2. Initial conditions were given by

perturbing the crystal state with random noise at t = 0, in all cases except µ = 0.075. In that case, the initial

perturbation was in the direction of the unstable eigenvector cos(x) cos(y), due to the fact that random perturbations

favored the instability of the square lattice toward a uniform state with hexagonal lattice microstructure.

continuation. We therefore now turn to direct simulations, which do, in the case of square lattice

symmetry, show a striking similarity to our results in the continuum limit.

5.2 Direct Simulations and Observed States

We collect here some observations from direct simulations.

Square lattice. On the square lattice, as in the continuum, we find that for a range of µ̃ values

above onset, perturbations from the crystal state lead to particles forming into fissures. Past a

secondary bifurcation point, particles organize only transiently into fissures, which give way into

single clusters. In all cases observed, although the crystal state has square particle microstructure,

the vacuum states exhibit hexagonal lattice microstructure (with occasional defects as expected

in finite-particle simulations). In other words, in the supercritical pattern-forming regime, the

predictions from the macrostructure of the problem appear to hold independently of particle mi-

crostructure.

Square lattice: hysteresis near bifurcation points. Near both the initial and secondary

bifurcation points, the discrete structure induces hysteresis, more pronounced for small numbers of

particles. In the subcritical region where the branches bend backwards, both fissures and bubbles

can be seen at the same values of µ, depending on whether the system evolves from a fissure or

cluster state. In each case, the selected state appears stable to small perturbations in the direction

of the other. We note that for square symmetry of the potential, neither of the continuum models

(the original system (2.4)-(2.6) or the corresponding system with diffusion) has a backward-bending

branch – this form of hysteresis is an intrinsically discrete phenomenon.

Similarly, for a range of µ near the secondary bifurcation point where fissures and bubbles exchange

stability, both fissures and clusters can be seen at the same values of µ, depending on initial

conditions.

Hexagonal lattice. On the hexagonal lattice, in the supercritical range of µ, only clusters are

observed. Fissures and hexagons are not seen in direct simulations. This corroborates findings

from §3 and §4 concerning stability.

All states observed in the supercritical regime were single connected clusters; true bubble solutions

were seen only in the subcritical backward-bending part of the branch. It is worthwhile to note,

however, that in the continuum model, the topology change from bubbles to clusters happens at

quite a small value µ̃ ≈ 0.003. It is therefore likely that a very high number of particles, larger than
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Figure 5.5: Hysteresis near initial bifurcation in discrete model (square lattice), N2 = 324 particles. Bubble and

fissure states can be observed at the same µ values in the subcritical region where the branches bend backwards (2nd

and 4th panels). The states in the 2nd and 4th panels were obtained by first increasing µ to produce the states seen

in the 1st and 3rd panels, and then decreasing µ to 0.078, which is in the subcritical region for N2 = 324.

Figure 5.6: Hysteresis near secondary bifurcation in discrete model (square lattice), N2 = 324 particles. Both bubble

and fissure states can be observed after long times for a range of µ values near the secondary bifurcation, depending

on the initial condition. Left two panels: µ = 0.155. Right two panels: µ = 0.175. For N2 = 324, the interval

(0.155, 0.177) appears to be the approximate range of bistability.

the maximal number N2 ∼ 400 considered here, would be needed to observe true bubble solutions

supercritically. In the subcritical region, similarly to the square lattice, both fissures and bubbles

can be observed, depending on initial conditions.

Fig. 5.7 shows a hysteresis loop on the hexagonal lattice, where µ is initially increased past the

bifurcation point, then decreased, so that the solution travels back along the upper bifurcation

branch. Once the saddle-node is reached, when µ is decreased just a bit more, the solution“falls

off” this branch and returns to a crystal-like formation.

6 Discussion

We studied clustering in interacting-particle systems in the presence of competing short-range

repulsion and long-range attraction. Most of our results are concerned with a continuum limit

that we study in two-dimensional, periodic geometry. We focus on a transition from uniform

distribution of particles to states with vacuum regions which is curiously reversible, that is, it

does not display hysteresis in the parameter governing the strength of long-range attraction. Our

results give expansions for sizes of vacuum regions, shapes of vacuum regions, and even changes in

topology. Sizes of vacuum regions differ significantly depending on their shape, as our asymptotics

demonstrate. We did not find an apparent simple connection between, say, comparative sizes

of vacuum regions, maximal densities, and stability of states. Analyzing the effect of diffusion,

we found weakly bent branches. Notably, the strength and even direction of bending depend on

the type of branch. Bubbles with hexagonal symmetry bifurcate subcritically, which contradicts a

naive intuition that diffusion tends to destroy clusters and therefore necessitates stronger attractive
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Figure 5.7: Hysteresis loop on the hexagonal lattice, N2 = 49 particles.

potentials for the transition to clustered states. We also demonstrate relevance of our observations

for dynamics of finitely many interacting particles.

We left open some questions concerning the completeness of the bifurcation diagrams we construct.

There is strong evidence that the scenario here is rigid in the sense that the diagram does not

depend on the specific shape of the attractive potential and diagrams do not exhibit branches with

submaximal isotropy, although we do not prove this rigorously. Similarly, noise appears to destroy

the presence of solutions with submaximal isotropy even without vacuum regions.

There are clearly numerous generalizations one might wish to consider. Generalizing to potentials

that are not of finite (minimal) rank would be a first step. While the vertical branch still persists

and the perturbation argument in §3 should go through, finding solutions with vacuum regions

now requires the solution of a free-boundary problem. One may also wish to consider the effect of

smoothed repulsive potentials, as used for instance in the discrete setting and analyzed in [13] in

the one-dimensional setting.

Beyond these more immediate questions, one may wish to consider more general lattices, rhombic in

2-dimensional configuration space, or 3-dimensional configurations. A rough calculation suggests

that the radius of spherical bubbles grows as µ̃
1

n+2 in n-dimensional space. As analyzed in the

one-dimensional setting [13], the arguments here should also give valid predictions for sorting in

multiple-species particle mixtures.

Lastly, it would be interesting to study the dynamics beyond the somewhat artificially imposed pe-

riodic geometry. In more generic pattern-forming systems, such as for instance the Swift-Hohenberg

equation [8], periodic boundary conditions give good predictions for the basic crystallographic struc-

tures, while an analysis of x ∈ Rn can capture information on defects, such as grain boundaries.

In other settings, for instance phase separation processes modeled with the Cahn-Hilliard equation

[9], periodic boundary conditions fail to capture instabilities of initial patterns formed in spinodal

decomposition and ensuing coarsening processes. In our setting, one might expect that periodic

boundary conditions give good predictions when the interaction potential inherently selects a finite
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wavenumber, as does the linearization in the Swift-Hohenberg equation. To make this more precise,

one might choose periods L different from 2π and assume that the now L-dependent bifurcation

point µ∗(L) has a minimum for some finite L, which one would then choose as a system-selected

period in the periodized analysis pursued here. There may of course also be very interesting sit-

uations where µ∗(L) has a minimum at L = ∞, as one finds for instance in the Cahn-Hilliard

equation, in which case we expect that periodic boundary conditions have limited predicitve value.
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