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Abstract

We describe a phase transition in continuum limits of interacting particle systems that exhibits

a vertical bifurcation diagram. The transition is mediated by a competition between short-range

repulsion and long-range attraction. As a consequence of the transition, infinitesimal parameter

variations allow switching between uniform distribution and clusters in single-species models, and

between mixed and sorted states in multi-species contexts, without hysteresis. Our main technical

contribution is a universal expansion for the size of vacuum bubbles that arise in this phase transition

and a quantitative analysis of the effect of noise.

1 Motivation and Setup

We present here results on a curious reversible phase transition in continuum limits of interacting-

particle systems. Motivation for this analysis stems from the apparent ability of biological systems

to easily but robustly switch back and forth between different functional states through only small

changes in the ambient environment. This switching is reversible, that is, the small change in the

environment can be undone so that the system then reverts to the original state. This absence of

hysteresis or memory in the system is unusual in more generic dynamical systems, where transitions

between qualitatively different states often are represented as symmetry-breaking bifurcations. Such

bifurcations usually incur hysteresis upon switching between states that differ by a magnitude of order

one, that is, parameter changes of order one are necessary to go through a cycle of changing the system

to a new state, and back; see Fig. 1. In this introduction, we first describe sorting and unsorting in lipid

rafts, a particular biological background that motivated this work, then introduce the general setup

of short-range repulsion and medium-range attraction, and finally describe the main mathematical

results.

Switching in lipid rafts. We are motivated by the concept of lipid-rafts in biological membranes [17].

The so-called “raft hypothesis” introduced there states that preferential interactions between sterols

Figure 1: Switching with finite hysteresis between states with difference of order one, and back, in the case of sub- (left)

and supercritical pitchfork bifurcations (center), as opposed to switching in the interacting particle systems (right) without

hysteresis in the infinite-size limit.
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and certain phospholipids can establish cellular membrane domains with distinctive protein and lipid

compositions compared to the surrounding membrane. So far, there is no conclusive evidence for the

existence of rafts in vivo, which might be explained by the fact that coexisting ordered and disordered

lipid phases in the membranes of living cells may have specific, very small time and length scales and

thus might be difficult to observe. Studies of giant plasma membrane vesicles [3] do support the lipid-

raft hypothesis though, at least to some extent. In these vesicles, a macroscopic phase separation into

ordered and disordered membrane parts can be observed; we refer to [15] for a review. Our interest here

is in how very basic mechanisms, namely attraction and repulsion among two species, can facilitate

such observed transitions between order and disorder. In our model, we are particularly concerned with

the robustness of the switching process: in a complex system with many unknown parameters and one

specific control parameter, do we expect first to find a critical switching value, and do we then expect

that switching is, as the name insinuates, reversible?

Our results do indeed point to such robust mechanisms that would enable fast and precise functional

change in biological membranes via the formation of ordered and disordered raft nanodomains, and

even gaps or channels, and their subsequent dissolution, all reversibly mediated by small manipulation

of parameters in the ambient environment.

Setup: short-range repulsion, long-range attraction, and the crystalline state. Our analysis

starts with the motion of N interacting particles at one-dimensional positions x “ pxjq1ďjďN P RN .

The interaction is described as an ℓ2-gradient flow to an interaction energy with pairwise interaction-

potential V ,

Epxq “
ÿ

1ďjďN

ÿ

1ďmďN

V pxj ´ xmq, (1.1)

that is,

x1
j “ ´∇xjEpxq “ ´

ÿ

m‰j

V 1pxj ´ xmq. (1.2)

To more naturally explain the setup, we assume that we can decompose V into an attractive and a

repulsive part V “ Vrep `µVatt, both even and differentiable away from the origin, so that V 1
reppξqξ ă 0

and V 1
attpξqξ ą 0. The parameter µą 0 measures the strength of attraction and will be our main

bifurcation parameter. We think of the repulsive potential as strong but short-range, and the attractive

potential as smooth but medium- or long-range; see Fig. 2. To fix ideas, assume that

Vreppξq “
1

2η
e´|x|{η, Vattpξq “ ´e´x2

, (1.3)

with η ! 1. The precise form of these potentials is not all that relevant for our analysis except for the

concavity of Vrep near the origin that precludes clustering at single points. In fact, one can easily see

that for narrowly spaced particles, the concavity of Vrep precludes occupation of the same position by

several particles: the energy of three equally spaced particles is strictly less than the energy of the same

configuration with the middle particle moved towards either one of the outer particles by concavity.

A particular solution to the particle evolution (1.2) is the crystalline equilibrium, albeit with infinitely

many particles N “ 8, where xj “ ρj, j P Z, and the spacing ρ ą 0 is arbitrary. Linearizing at this

state, we find

y1
j “ ´

ÿ

m‰j

V 2pρpj ´ mqqpyj ´ ymq, (1.4)

2



Figure 2: Schematics of repulsive (left) and attractive (right) potentials Vrep and Vatt together with their periodized

versions (top) obtained by adding all 2πZ-translates; Fourier transforms of potentials and their periodized version shown

in the next row, where periodization corresponds to sampling; Fourier transform of the second derivative that determines

stability is shown in the bottom row, illustrating how pV 2
rep ` µpV 2

att is positive precisely for |ℓ| “ 1 past some critical value

of µ Á µ˚, thus triggering the instability described in Hyp. 1.1.

or, after Fourier transform yj “
ş2π
0 eiσj ŷpσqdσ,

ŷ1pσq “ λpσqŷpσq, λpσq “
ÿ

k‰0

V 2pρkqpe´iσk ´ 1q “
2π

ρ

ÿ

j

ˆ

xV 2

ˆ

2πj ` σ

ρ

˙

´ xV 2

ˆ

2πj

ρ

˙˙

, (1.5)

where we used Poisson summation with the Fourier transform xV 2pℓq “ 1
2π

ş

V 2pξqe´iℓξdξ. Note that

we can allow for V 2 to be singular at the origin since the summation does not include k “ 0. For

small ρ and assuming that pV 2pℓq Ñ 0 for ℓ Ñ 8, sufficiently rapidly, possibly after renormalizing by

subtracting the singular part which does not appear in the summation, we see that the crystal is stable

when pV 2 ă 0.

The limit of infinite particle numbers. Letting N Ñ 8 and rescaling time, one finds at least

formally a continuum description for the density of particles upt, xq, the Vlasov equation, which in our

case reads

ut “ pu ¨ pV 1 ˚ uqqx, pV ˚ uqpxq “

ż

y
V px ´ yqupyqdy; (1.6)

we refer to [13] for a review,

The crystalline state now corresponds to a state of uniform density, which we can normalize as upxq ” 1.

The linear stability of this uniform density is determined by the linearization

vt “ V 2 ˚ v, or, after Fourier transform, v̂t “ xV 2 ¨ v̂. (1.7)

The crystalline state then is stable precisely when the Fourier transform of xV 2 is non-positive, similar

to our findings for the crystal.
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Instabilities in periodic geometry. Assuming periodic particle arrangements, say xj`M “ xj `L

for all j, one can effectively reduce the dynamics to M ordinary differential equations for xj , 0 ď j ď

M ´ 1, with periodized potentials Vperpξq “
ř

jPZ V pξ ` jLq,

x1
j “ ´

ÿ

m‰j,0ďmăM

V 1
perpxj ´ xmq. (1.8)

Similarly, one finds the Vlasov equation (1.6) and its linearization at the crystalline state (1.7) with

periodic boundary condition on the domain x P p0, Lq, with the periodized potential Vp. Since the

Fourier transform of V 2
p is simply the Fourier transform of V 2, sampled on the dual grid ℓ P 2π

L Z, we
can readily determine stability.

In the example of short-range repulsion and medium-range attraction V “ Vatt ` µVrep, the Fourier

transform of Vatt decays slowly, pVatt „ 1
1`η2k2

, while the Fourier transform of the smooth attractive

potential decays rapidly, in the example (1.3) as e´k2 so that we expect an instability when µ increases

past a finite value µ˚; see again Fig. 2. In the following, we choose L “ 2π, absorbing the possibly

different period into the potential V by scaling.

Multi-species systems of particles. The above discussion can be readily repeated for systems with

different particle types, or species, choosing positions xp,j for all particle types 1 ď p ď P , interaction

potentials Vpq between particles of type p and type q, all split into a short-range repulsion and a smooth,

potentially attracting long-range term. In the Vlasov-limit, we obtain again (1.6), where now V 1 is a

P ˆ P -matrix and u P RP denotes densities of the different species. Multiplication is understood as

pu ¨ pV 1 ˚ uqqp “ up ¨ pV 1 ˚ uqp. Stability is determined by the eigenvalues of the matrix xV 2pξq: negative

eigenvalues lead to instability. We will focus on an example of two species, with strong intraspecies

repulsion Vrep,jj , j “ 1, 2, and slightly weaker cross-species repulsion Vrep,12, allowing for particles of

different species to cross each other; see §2 for details.

The reversible phase transition. To formulate our setup, fix a base state and hence total average

concentrations as u ” 1P “ p1, . . . , 1q P RP . We also focus on the setting with 2π-periodic boundary

conditions and drop the subscript referring to the periodization of the potential. We shall focus on

the simplest case of a one-dimensional kernel of the linearization, dominated by the first component.

Therefore, write L “ pV pℓq P CPˆP and decompose

L “

˜

L11 L1h

Lh1 Lhh

¸

, acting on C ˆ CP´1.

Hypothesis 1.1 (Minimal kernel and crossing at bifurcation). We assume that the Fourier transform

L “ pV pℓq P CPˆP of V has a 1d-kernel at Fourier wavenumber |ℓ| “ 1 for µ “ 0, with eigenvector

e0, normalized so that |e0|8 “ 1, and trivial kernel for |ℓ| ‰ 1. Without loss of generality, we may

assume that the maximal amplitude in the kernel is attained in the first component, that is, e0,1 “ 1,

and |e0,j | ă 1 for 2 ď j ď P . We also assume a crossing condition,

d

dµ

`

L´1
11 L1hL´1

hhLh1

˘

“ 1, at µ “ 0. (1.9)

Clearly, reparameterizing µ we can satisfy (1.9) provided the left-hand side is nonzero.
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Hypothesis 1.2 (Regularity of interaction potentials). We assume that for the interaction potential

V we have

V̂ pℓq “ V8ℓ´2βp1 ` Opℓ´2qq, for ℓ Ñ 8,

for β P r0, 1s and some V8 ą 0.

For β “ 0, this implies that we can write V pxq “ V8δpxq ` V1pxq with V 1
1 being Hölder continuous.

For β “ 1, we can write V pxq “ V8Gpxq ` V1pxq, where Gpxq is the resolvent kernel of Bxx, that is,

Gpxq “
e

2π´|x|

η ` e
|x|

η

2
´

e
2π
η ´ 1

¯

η
, η “ V

´1{2
8 , (1.10)

and V 3
1 pxq is Hölder continuous. Alternatively, in this latter case, V possesses a |x|-singularity at x “ 0

and is otherwise smooth.

Our next main results considers equilibrium solutions to (1.6),

u ¨ pV 1
µ ˚ uq “ 0, upxq “ upx ` 2πq for all x. (1.11)

We will construct weak solutions to this equation, under the smoothness assumption on the kernel V ,

that are continuous and satisfy

upxq “ 0, or pV 1
µ ˚ uqpxq “ 0. (1.12)

We also shall fix the average mass, that is, we require
ş2π
0 u “ 2π1P .

Theorem 1.3 (Vertical branch and gap formation). Assume Hypothesis 1.1 and 1.2 for the interaction

potential. We then have, for 0 ď µ ! 1, a branch of even solutions of average mass 1P consisting of

• a “linear branch” upxq “ 1P ` ρe0 cospxq, 0 ď ρ ď 1;

• a “small-vacuum branch” upx;µq, continuous in 0 ď µ ! 1, uniformly in x, upx; 0q “ 1P `

e0 cospxq, and u1px;µq ą 0 for x in p´π, πq precisely when |x| ă Lpµq with Lp0q “ π, L continu-

ous; in the case of Dirac repulsion, we have the universal expansion

Lpµq “ π ´

ˆ

3π2

2

˙1{3

µ1{3 ` Opµ2{3q. (1.13)

All other components ujpx;µq, 2 ď j ď P are strictly positive, by continuity.

Sample bifurcation diagrams that illustrate the result are shown in Fig. 3. We emphasize that the

exponent 1{3 enhances the effect of switching: even very small changes of µ open vacuum regions of

considerable size „ µ1{3.

Remark 1.4 (Universality of expansion). The expansion is universal in the sense that the exponent

1{3 and the precoefficient do not depend on the attractive potential. Of course, reparameterization

of µ would change the precoefficient, so that the precise form here depends on the speed of crossing,

normalized to 1 in (1.9). One may wish to compare this to say a pitchfork bifurcation where the

amplitude scales with
?
µ and a precoefficient that depends on the speed of crossing of the eigenvalue
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Figure 3: Bifurcation of stationary solutions to (1.6) with viscous regularization εBxxu: bifurcation diagram (left), bubble

size expansion compared with asymptotics (center), and sample profiles (ε “ 0.001, right). In all cases Vattpxq “ pµ ´
1
π

q cospxq ` 3
20

cosp2xq ` 1
10

cosp3xq and Vreppxq “ δpxq.

and, crucially, the coefficient of a cubic term, sometimes referred to as a Landau coefficient. In our

case, the expansion does not depend on such a nonlinear term. We do note however that we noticed

a strong dependence of the gap size on the regularity of the repulsive potential; see Fig. 5, below. It

would be interesting to describe more generally the power law asymptotics of bubble sizes for different

regularity classes of Vrep.

Comparison with prior work. There is an extensive literature on competing attraction and repul-

sion in interacting particle systems, although little from the perspective of dynamics and bifurcation

taken here. The early work [18] identifies a transition to patterned states with vacua as found here. The

specific bifurcation diagram we show here was noted in the particular situation of a Dirac-δ repulsive

potential and a Bessel-repulsive potential, motivated by one-dimensional chemotaxis in [4] and again

in [7]. Existence of a linear branch at the transition in the qualitative shape of energy minimizers much

more generally was noted in [9]. The systems case was, at least for two species, analyzed for instance

in [6, 5], establishing existence of clustered and segregated minimizers, albeit not from the bifurcation

perspective taken here. Our results demonstrate that the observations for the specific chemotaxis set-

ting are much more generally valid, for systems and for weaker repulsive potentials, at least locally

near the bifurcation point, where we also give a more detailed description of the vacuum compared to

[4, 7].

Turning back to the question of spatial organization on lipid rafts, we also mention here [12], where

a mathematical model that couples bulk-diffusion to a Cahn-Hilliard type equation on the membrane.

The latter model is well established as a thermodynamically valid description of phase transitions and

possesses a macroscopically, “built-in” tendency to separate phases. We emphasize however that phase

transitions modeled in this fashion are typically not reversible, with generic sub- and supercritical

bifurcations that exhibit hysteresis.
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supported by the DFG (German Research Foundation) under Germany’s Excellence Strategy EXC
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2 The linear branch and examples

Solving for equilibria of (1.6) in a periodic geometry x P r0, 2πq, we integrate the right-hand side, find

that the constant of integration is necessarily zero, to obtain

u ¨ pV 1 ˚ uq “ 0. (2.1)

For equilibria without vacuum, that is, upxq ą 0 for all x, this is equivalent to

ż 2π

0
V px ´ yqupyq “ ρ, (2.2)

for some ρ P RP . With V pξq “
ř

ℓPZ
pVℓe

iℓx, a basis of solutions to this equation is given by functions

eiℓxeℓ,j , where ℓ is such that pVℓ is not invertible and the eℓ,j span its kernel, up to the trivial constant

elements. Our assumptions then guarantees that at the bifurcation point, µ “ 0, there is a one-

dimensional space of even solutions with average density 1P , upxq “ 1P ` ρ cospxqe0, ρ P R; see

Hypothesis 1.1. Clearly, requiring upxq ě 0 restricts |ρ| ď 1, recalling that we normalized |e0|8 “ 1.

Note also that changing the sign of ρ amounts simply to shifting the solution by π and we therefore

have, up to translations, a unique interval of solutions ρ P r0, 1s. The analysis in the next sections

explores a vicinity of the solution at ρ “ 1, u˚pxq “ 1P ` cospxqe0.

Examples. The simplest examples arise for scalar equations, P “ 1, with for instance Dirac-δ repul-

sive potential and a cosine attractive potential,

ut “ pupu ` Vµ ˚ uqxqx, Vµpxq “ ´

ˆ

1

π
` µ

˙

cospxq.

Here, the cosine is just the simplest periodic attractive potential and the model can be thought of as

neglecting harmonics. We shall see below that in this case solutions with vacuum are given explicitly as

the positive part of the sum of constants and a multiple of cospxq. Smoothed versions of the repulsive

potential lead to the generalization

ut “ pupp1 ´ η2Bxxq´βu ` Vµ ˚ uqxqx, Vµpxq “ ´pµ˚ ` µq cospxq, µ˚ “
1

πp1 ` η2qβ
.

For P “ 2, with species u1 and u2, we focus on Dirac-repulsion and cosine attractive potentials,

pVrep ˚ uqpzq “

˜

a11 a12
a21 a22

¸ ˜

u1pzq

u2pzq

¸

, pVatt ˚ uqpzq “ ´

˜

b11 b12
b21 b22

¸ ˜

c1pzq

c2pzq

¸

, (2.3)

where cjpzq “
ş

ξ cospz ´ ξqujpξqdξ, resulting in

u1,t “ pu1pa11u1 ` a12u2 ` b11c1 ` b12c2qxqx,

u2,t “ pu2pa21u1 ` a22u2 ` b21c1 ` b22c2qxqx.
(2.4)
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We assume repulsion aij ą 0 and strict ellipticity for positive masses, that is

a11a22 ą a12a21.

Inter-species repulsion then is weaker than intra-species repulsion, on average. The attractive potential

is actually attractive if bjm ą 0 for all j,m. Linearizing at constant mass 1 in all species, when u “ 12,

and using Fourier transform, we find stability for all Fourier modes |ℓ| ‰ 1, and criticality at ℓ “ 1

when

det

˜

a11 ´ πb11 a12 ´ πb12
a21 ´ πb21 a22 ´ πb22

¸

“ 0.

To interpret two relevant cases, assume that a11 ´πb11 ą 0, and a22 ´πb22 ą 0, that is, ignoring effects

of the other species, a species alone would not cluster. There are then two cases,

(JC) joint clustering: a12 ´ πb12 ă 0,

(S) segregation: a12 ´ πb12 ą 0.

For joint clustering, the eigenvector e0 “ pe0,1, e0,2qT in the kernel has e0,1 ¨ e0,2 ą 0, that is, concentra-

tions in the kernel u1 “ 1 ` ρe0,1 cosx and u2 “ 1 ` ρe0,2 cosx exhibit maxima at the same location.

In the case of segregation, e0,1 ¨ e0,2 ă 0 and maxima of concentrations of u1 and u2 are located at

maximal distance π. This is of course intuitively plausible since a12 ´ πb12 ă 0 indicates inter-species

effective attraction, beating out intra-species effective repulsion, whereas the other sign indicates strong

inter-species repulsion overcoming the intra-species repulsion.

Remark 2.1 (Vacuum formation). The relative size of |e0,1| and |e0,2| determines which species forms a

vacuum near criticality. Clearly, this relative size also depends on the size of the constant concentrations

u1 and u2 which we normalized both to 1. Our assumptions guarantee that these magnitudes differ,

|e0,1| ‰ |e0,2|, so that we only analyze vacuum regions in one species.

Remark 2.2 (Sorting in one space dimension). Inspecting the paths of particles in the discrete case N ă

8, the ordering of particles is preserved in scalar equations, P “ 1. Clearly, sorting and segregation for

systems cannot preserve order and necessitates switching of position between different species. How such

change of positions is effectuated in higher-dimensional systems is studied in some simple situations

probabilistically, see for instance [16]. If and how a one-dimensional model or a higher-dimensional

generalization as the one studied here can capture this process does not seem to be understood.

3 Vacuum bubbles — scalar rank-one potentials

We wish to solve for equilibria of (1.6) allowing for regions where u vanishes. We therefore start with

a very simple scalar case, where

Vreppxq “ δpxq, Vattpxq “ ´

ˆ

1

π
` µ

˙

cospxq.
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The equation for even equilibria with support in ´rL,Ls then becomes

upxq ´

ˆ

1

π
` µ

˙

cospxq

ż L

´L
cospyqupyqdy ´ ρ “ 0, |x| ď L,

1

2π

ż L

´L
upyqdy ´ 1 “ 0,

upLq “ 0.

(3.1)

for some ρ P R. This integral operator is of rank 1 and we find from the first equation that upxq is

necessarily given explicitly as pA0 ` A1 cospxqq` “ maxp0, A0 ` A1 cospxqq. This form of u implicitly

defines the boundary of the vacuum region as L “ arccosp´A0{A1q, thus solving the third equation in

(3.1).

Resolving the square root singularity of arccosp´A0{A1q near A0{A1 “ 1, we scale

A0 “ 1 ` a3z
3
1 , A1 “ 1 ` z21 ` z31 ,

for z1 small and a3 “ Op1q, to be determined as functions of the parameter µ.

The first equation consists of terms constant in x and a multiple of cospxq. We then evaluate the

constant terms in the first equation of (3.1) to find ρ in terms of the remaining variables. The coefficient

of cospxq in the first equation of (3.1), and the second equation in (3.1) evaluate to

ˆ

4
?
2

3
` 2a3π

˙

z31 ` Opz41q “ 0, (3.2)

µπ ´
4
?
2

3π
z31 ` Op|µz31 | ` z41q “ 0, (3.3)

respectively. Dividing (3.2) by z31 and solving with the implicit function theorem for a3, and then

solving (3.3) for µ with the implicit function theorem, we find the expansion

a3 “ ´
4

?
2

6π
` Opz1q, µ “

4
?
2

π2
z31 ` Opz41q. (3.4)

In particular, using that the boundary of the vacuum region is given by L “
?
2z1 `Opz31q, and solving

(3.3) for z1 as a function of µ, we obtain

L “ π ´

ˆ

3π2

2

˙1{3

µ1{3 ` Opµ2{3q. (3.5)

Remark 3.1 (Large µ). Trying to solve the effectively 4 equations (3.1) pA0, A1, L, ρq for finite µ, non-

perturbatively, is difficult due to the presence of the transcendental term arccosp´A0{A1q. Nevertheless,

they can be solved numerically in a straightforward fashion. Results are illustrated in Fig. 4. The graph

shows in particular that the asymptotics yield good predictions until the size of the vacuum is roughly

half the size of the domain. It would be interesting to establish qualitative properties of this diagram

analytically. One finds numerically that at leading order A0 „ ´A1 „ µ and L „ µ´1{3 as µ Ñ 8. We

emphasize that the expansion and shape of solutions for small µ is universal, roughly independent of the

choice of the potential, so that the rank-one approximation from this section yields excellent predictions.

For large µ, however, this is of course not true and harmonics cospmxq, m ą 1, are relevant, leading

potentially to secondary bifurcations.
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Figure 4: Global bifurcation diagram in the rank-one case V pxq “ δpxq ´ µ cospxq, computed by numerically solving for

pA0, A1q at fixed µ. Size of the support p´L,Lq versus µ (left), comparison with asymptotic theory for small µ (center)

and sample profiles (right).

Remark 3.2 (Finite rank). The procedure here can in principle be adapted to solve for kernels V given

as finite Fourier polynomials since in this case the integral operator again has a finite-dimensional range.

We may therefore choose u inside this range parameterized by amplitudes of harmonics Aj cospjxq,

before taking the positive part. This gives a finite-dimensional system of equations which one can

again solve perturbatively or numerically. In the next section, we outline a somewhat more robust and

functionally analytic sound approach for cases when V is not simply a Fourier polynomial.

4 Vacuum bubbles — general scalar potentials and a free-boundary

formulation

We first introduce a free-boundary formulation to solve for equilibria in the case where Vrep “ δ is the

Dirac-δ, and then show modifications for more general repulsive kernels.

4.1 Free boundary formulation of bubble-formation

We rescale space to x “ Lz{π, write vpzq “ upLz{πq, and introduce the rescaled potential

V L
µ pzq “

L

π
Vµp

L

π
zq.

The equation for equilibria in (1.6) then reads

0 “ Fvpv, L, ρ, µqrzs :“ vpzq ´

ż π

´π
V L
µ pz ´ ξqvpξqdξ ´ ρ, (4.1)

0 “ Fbcpvq :“ vpπq, (4.2)

0 “ Fmpv, Lq :“
L

2π2

ż π

´π
vpξqdξ ´ 1. (4.3)

We consider this as an equation with variables pv, L, ρ, µq P C0pr´π, πsq ˆ R3,

F “ pFv, Fbc, Fmq : C0pr´π, πsq ˆ R3 Ñ C0pr´π, πsq ˆ R2.
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One easily checks that the equation is smooth in all variables given sufficient smoothness in V .

To further refine the analysis, we also introduce the projections

P0v “
1

2π

ż π

´π
vpξqdξ, P1v “

1

π

ż π

´π
cospξqvpξqdξ cospzq, Phv “ id ´ P0 ´ P1, (4.4)

the associated functionals P̄0v “ 1
2π

şπ
´π vpξqdξ and P̄1v “ 1

π

şπ
´π cospξqvpξqdξ, and decompose our

solution to

vpzq “ A0 ` A1 cos z ` vh, A0 “ P̄0v, A1 “ P̄1v, vh “ Phv. (4.5)

Substituting this form of v into (4.1)–(4.3) and decomposing (4.1) with the projections P0,1,h, we obtain

a system

F 0
v pA0, A1, vh, L, ρ, µq “ 0

F 1
v pA0, A1, vh, L, ρ, µq “ 0

F h
v pA0, A1, vh, L, ρ, µq “ 0

FbcpA0, A1, vhq “ 0

FmpA0, Lq “ 0 (4.6)

where we slightly abused notation for the new functions Fbc and Fm. We find explicitly

FbcpA0, A1, vhq “ A0 ´ A1 ` vh,

FmpA0, Lq “
L

π
A0 ´ 1, (4.7)

and,

F 1
v pA0, A1, vh, L, ρ, µq “ A1 ´

1

π

ż π

´π

ż π

´π
cospzqV L

µ pz ´ ξqpA0 ` A1 cos ξ ` vhpξqqdξdz,

F h
v “ Fv ´ F 1

v cos z ´ F 0
v . (4.8)

We have the trivial solution, at the edge of the vertical branch,

A˚
0 “ 1, A˚

1 “ 1, v˚
h “ 0, L˚ “ π, ρ˚ “ 1, µ˚ “ 0.

Writing Xh “ Rg Ph, and reordering variables and components of the nonlinear function, we have a

map

F “ pF h
v , F

1
v , Fm, Fbcq : Xh ˆ R5 Ñ Xh ˆ R4

pvh, ρ, µ, L,A1, A0q Ñ pF h
v , F

1
v , Fm, Fbcq, (4.9)

and F p0, 1, 0, π, 1, 1q “ 0. The linearization can be written as a 5ˆ6-matrix, with first row and columns

assumed to have range and domain in Xh, respectively:

DF p0, 1, 0, π, 1, 1q “

¨

˚

˚

˚

˚

˚

˝

Lh 0 0 gpzq 0 0

0 ´1 0 1
π 0 1

0 0 ´π 0 0 0

0 0 0 1
π 0 1

δp¨ ´ πq 0 0 0 ´1 1

˛

‹

‹

‹

‹

‹

‚

, (4.10)
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where δp¨q is the Dirac-δ in the dual of Xh,

rLhvspzq “ vpzq ´ rPh

ż π

´π
V L
µ p¨ ´ ξqvpξqdξspzq “ vpzq ´

ż π

´π

8
ÿ

k“2

vk cospkpz ´ ξqqvpξqdξ,

and

gpzq “ ´

ż π

´π
BL|L“πV

L
0 pz ´ ξqp1 ` cospξqqdξ. (4.11)

In the specific case of V0pzq “ 1
π cospzq, we find Lh “ id, and gpzq “ 1

2π pcos z`2z sin z´2q, gpπq “ ´ 3
2π .

By the assumption that vk ă 1
π , we have that Lh has a trivial kernel and thereby, as a compact

perturbation of the identity, is bounded invertible.

Next, we wish to mimic row elimination to transform (4.10) into an upper triangular matrix. We

therefore define the functional

b˚ :“ pL˚q´1δp¨ ´ πq P pXhq˚

and confirm that b˚Lh “ δp¨ ´ πq. We then redefine the last component of F in (4.9) through

F̃bc :“ Fbc ´ xb˚, F h
v y ` πxb˚, gyFm, (4.12)

which yields the new linearization in upper triangular form,

DF̃ p0, 1, 0, π, 1, 1q “

¨

˚

˚

˚

˚

˚

˝

Lh 0 0 gpzq 0 0

0 ´1 0 1
π 0 1

0 0 ´π 0 0 0

0 0 0 1
π 0 1

0 0 0 0 ´1 1 ` xb˚, gy

˛

‹

‹

‹

‹

‹

‚

, (4.13)

with invertible diagonal entries. We conclude that Dpvh,ρ,µ,L,A1qF̃ is invertible at p0, 1, 0, π, 1, 1q and we

may therefore apply the implicit function theorem to find a unique solution

pvh, ρ, µ, L,A1q “ pvh, ρ, µ, L,A1qpA0q, (4.14)

for |A0 ´ 1| ! 1 sufficiently small. Note that, of course, the solution is only relevant when L ă π. We

therefore notice that, from Fm, L “ π{A0, so that our solution is meaningful for A0 Á 1.

The expansion of the solution can now be found as usual with the implicit function theorem, although

calculations are somewhat elaborate. We give some details in the following.

We define ν through A0 “ 1 ` ν, ν Á 0, and expand formally

pvh, ρ, µ, L,A1q “ p0, 1, 0, π, 1q `

3
ÿ

j“1

pvh,j , ρj , µj , Lj , A1,jqν
j ` Opν4q,

substitute into F “ 0, and expand in ν. At zeroth order we confirm that the base solution solves the

equation. At first order, we recover the linear equation DF̃ p0, 1, 0, π, 1, 1qpvh,1, ρ1, µ1, L1, A1,1, 1q “ 0,

with solution

A1,1 “ ´
1

2
, L1 “ ´π, µ1 “ 0, ρ1 “

1

2
, vh,1pξq “ ´1 `

1

2
cos ξ ` ξ sin ξ.
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At second order, we find a linear equation in pvh,2, ρ2, µ2, L2, A1,2q with right-hand side given by eval-

uating nonlinearities at order ν2. Solving, we find

A1,2 “
1

12
p3 ` 4π2q, L2 “ π, µ2 “ 0, vh,2pξq “

1

12

`

´6ξ2 cospξq ´ 12ξ sinpξq ` 2π2 cospξq ´ 3 cospξq
˘

.

Finally, substituting into the nonlinearity, evaluating at order ν3, we can directly solve for µ3 and find

µ3 “ 2π
3 . Since then L “ π ´ πν ` Opν2q and µ “ 2π

3 ν3 ` Opν4q, we find the desired expansion (1.13).

Remarkably, all the coefficients computed here only depend on the first harmonic in the potential so

that the expansion is indeed universal.

4.2 Vacuum formation with continuous repulsive potentials

We now turn to the case of a general repulsive potential. Unfortunately, a simple cosine ansatz is not

possible in this case since the repulsive potential is not rank-one, that is, it does not map in the space

spanned by constants and cosines. We therefore return to the free-boundary formulation involving

a rescaling of potentials. Absorbing a smooth part of the potential into the attractive potential, we

may assume without loss of generality that the kernel Vrep is given by the Green’s function kernel to

p1 ´ η2Bxxq´β. Our free-boundary formulation (4.1)–(4.3) then becomes

0 “ Fvpv, L, ρ, µqrzs :“

ż π

´π
V L
reppz ´ ξqvpξqdξ ´

ż π

´π
V L
µ pz ´ ξqvpξqdξ ´ ρ, (4.15)

0 “ Fbcpvq :“ vpπq, (4.16)

0 “ Fmpv, Lq :“
L

2π2

ż π

´π
vpξqdξ ´ 1. (4.17)

The rescaled kernel satisfies, in the case β “ 1,

ˆ

1 ´
η2L2

π2
Bxx

˙

V L
rep “ δ0 ` αpL, ηqδπ,

where αpπ, ηq “ 0 stems from the discontinuity from truncating the potential at L ă π due to scaling.

For β ă 1, the correction to the Dirac-δ at the origin is more regular, a distribution with Fourier

coefficients „ |k|2pβ´1q. We may therefore apply
´

1 ´
η2L2

π2 Bxx

¯β
to (4.15) and obtain

0 “ F̃vpv, L, ρ, µqrzs :“ vpzq ` pDpη, L, βqvqrzs ´

ż π

´π
Ṽ L
µ pz ´ ξqvpξqdξ ´ ρ, (4.18)

with Dpη, L, βq continuous in η and L as an operator on C0. The modified potential Ṽ is continuous

with our assumptions on smoothness of Vatt. From hereon, we simply follow the reasoning in §4.1,
including the parameter η.

The expansion for µ still vanishes at second order, but the third-order coefficient is no longer universal

and depends on both η and β. Fig. 5 shows the resulting change in the asymptotics and the formation

of different cluster shapes as µ increases. In fact, the cubic expansion holds for all values of η, but we

were not able to determine the direction of branching, in general. As a general rule, we confirm that

weaker, that is, smoother repulsion modeled by increasing β and/or η gives larger vacuum regions as

it allows for easier clustering.
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Figure 5: Computational results for vacuum formation with smoothed repulsive potential p1 ´ η2
Bxxq

´β with small

regularizing viscosity 10´3. The size of vacuum bubbles still scales with µ1{3 but coefficients depend on η and β (left);

asymptotics for the case of Dirac-potential are also shown for reference. The shape of clusters changes significantly, with

much steepened drop-off of concentrations near the boundary of the cluster and, for larger µ, a dip at the center of the

cluster (right).

5 Vacuum bubbles — systems

For systems, we write u “ pu1, uhq with uh P RP´1 collecting all components that do not form vacuum

near µ “ 0, and find the steady-state equations

u1 ¨ pV11 ˚ u1 ` V1h ˚ uhqx “ 0,

pVh1 ˚ u1 ` Vhh ˚ uhqx “ 0,

where we omitted the factor uh in the second equation since uh is nonzero. As a consequence, we

can solve the second equation by inverting convolution with Vhh, which is possible since the Fourier

transform of Vhh is invertible. We write V ´1
hh for the kernel of the inverse. Substituting the result in

the first equation, we find

u1 ¨

´

Ṽ11 ˚ u1

¯

x
“ 0, Ṽ11 “ V11 ` V1h ˚ V ´1

hh ˚ Vh1.

The resulting equation is thus precisely the same equation as in the one-dimensional case. When the

repulsion is given by Dirac-δ potentials, we can again compute the expansion of the critical branch

explicitly.

In the case when the principal part of V pxq “ aδpxq ` b cospxq for P ˆ P -matrices a and b, one can

under certain conditions again find profiles of the form pu0 ` u1 cospxqq` with vectors u0 “ pu01, u
0
hq

and u1 “ pu11, u
1
hq. For consistency, we need to require that a is block-diagonal, that is, aj1 “ a1j “ 0

for j ą 1. Writing the matrices in block form with blocks a11, a1h, ah1, ahh, and analogously for b, we

find the reduced equation

u11 “ a´1
11

`

b11 ` πb1hpahh ´ πbhhq´1bh1
˘

ż L

´L
cos ypu01 ` u11 cos yqdy ´ ρ,

which is analogous to the first equation in (3.1). Adding the mass constraint and boundary condition

at x “ L, one can easily solve the resulting equations for u11 and u01. As expected, the agreement with

the asymptotics is very similar to the scalar case shown in Fig. 4. We emphasize however that this

rank-one approximation breaks down quickly as other species develop vacua as well.
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Figure 6: Numerically computed bifurcation diagrams for (2.4) with coefficients (5.1). For κ ă 0 decreasing, the inter-

species repulsion leads to segregation (left two panels), while increasing κ ą 0 leads to joint clustering (right two panels).

First species is always shown as solid lines, second as dashed lines. Sample profiles are shown at the marked points with

increasing amplitude as the branch is followed. Throughout, we added diffusion with strength ε “ 0.03.

We also studied (2.4) numerically, using numerical continuation with artificial viscosity ε “ 0.03. We

chose strong short-range repulsion between all particles, aij ą 0 for i, j P t1, 2u and long-range self-

repulsion b11, b22 ă 0. We then chose the strength and sign of the inter-species long-range interaction

as a parameter κ, b12 “ b21 “ κ so that κ ą 0 corresponds to mutual attraction and κ ă 0 to mutual

repulsion. Specifically, we let
˜

a11 a12
a21 a22

¸

“

˜

0.8 1

1 1

¸

,

˜

b11 b12
b21 b22

¸

“

˜

´0.3 κ

κ ´0.3

¸

. (5.1)

One finds the bifurcation points κjc “ 0.8403 where joint clustering sets in for κ ą κjc and κseg “

´0.3310 where segregation sets in for κ ă κseg. Note that segregation is facilitated with a much

weaker mutual interaction strength than clustering as it needs to overcome significantly less short- and

long-range repulsion.

We confirmed the asymptotics for the size of vacuum regions from Thm. 1.3. Bifurcation diagrams and

sample profiles are shown in Fig. 6.

6 The effect of diffusion — a scalar case study

A natural question in light of applications such as the lipid rafts discussed in the introduction is the

robustness of the non-hysteretic switching when the system is subjected to noise. Adding small noise

to particle dynamics, one finds in a continuum limit an additional diffusion term,

ut “ εuxx ` pu ¨ pu ´ p
1

π
` µqV ˚ uqxqx, V pxq “ cospxq, (6.1)

with ε Á 0. At µ “ 0 and ε “ 0, (6.1) has a vertical branch of steady-states u˚ “ 1 ` ρ cospxq. The

next result is that noise induces an Opεq-hysteresis, that is, the vertical branch is weakly slanted into

a supercritical pitchfork bifurcation.

Proposition 6.1 (Diffusive corrections). The diffusive Vlasov equation (6.1) possesses an almost ver-

tical, 2π-periodic, even branch of solutions u˚px; ρ, εq, 0 ă ρ ă 1, for µ “ µ˚pρ, εq with expansion

µ˚pρ, εq “ εµ1pρq ` Opε2q, u˚px; ρ, εq “ 1 ` ρ cospxq ` Opεq, (6.2)
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and normalization
ż π

´π
u˚pxqdx “ 2π,

ż π

´π
cospxqu˚px; ρ, εqdx “ ρπ. (6.3)

Explicitly, we have

µ1pρq “
2

πρ2

´

1 ´
a

1 ´ ρ2
¯

, (6.4)

with limits µ1p0q “ 1{π and µ1p1q “ 2{π.

The results predict very accurately the numerically computed almost vertical part of the bifurcation

branches in Fig. 3, left panel. Detailed comparisons are shown in Fig. 7.

One can of course analyze the pitchfork bifurcation for fixed ε and then finds, in addition to the shift

of the bifurcation point to µ˚ “ ε, an Opεq cubic coefficient in the pitchfork bifurcation of the form

εµ2
1p0q{2. For fixed ε ą 0, bifurcations of this type have been studied in the literature; see for instance

[8]. We emphasize that the bifurcation results obtained in this fashion only allow for |ρ| ! 1, however,

thus do not capture the effectively more dramatic almost-absence of hysteresis when ε ! 1.

Proof. We write the steady-state equation abstractly as

F pu, µ, εq :“ εuxx ` u ¨ pu ´ p
1

π
` µqV ˚ uqxqx “ 0,

F0puq :“

ż π

´π
upxqdx ´ 2π,

F1puq :“

ż π

´π
cospxqupxqdx ´ ρπ.

(6.5)

Altogether, this defines a map

Gpu, µ, εq : H2
e,p ˆ R2 Ñ L̊2

e,p ˆ R2,

where the subscripts te,pu recall the fact that we are working in even, periodic functions, and L̊2

denotes functions with zero average. Here and in the following we think of ρ fixed with |ρ| ă 1. One

easily verifies that G is well-defined and smooth, and

Gpu0˚p¨; ρq, 0, 0, ρq “ 0, u0˚px; ρq “ 1 ` ρ cospxq.

The derivative at this zero is given through

A “

¨

˚

˝

L BµF˚ BεF˚

x1, ¨y 0 0

xcosp¨q, ¨y 0 0

˛

‹

‚

,

where

Lu “ pu0˚ ¨ pu ´
1

π
V ˚ uqxqx,

BεF˚ “ ´ρ cosp¨q,

BµF˚ “ πρ cosp¨q ` ρ2π cosp2xq,

(6.6)

and x1, ¨y and xcosp¨q, ¨y are continuous linear functionals on H2
e,p.
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The operator L is an strictly elliptic operator due to the fact that we restrict to |ρ| ă 1, and therefore

Fredholm with index 1 due to the restriction of the codomain to average zero functions. Bordering

lemmas for Fredholm operators then give that A is Fredholm of index 1, so that we expect a one-

dimensional set of solutions, which turns out to be the branch described in the result with ρ fixed. We

next move on to identify kernel and cokernel of A.

The kernel of L is spanned by t1, cosp¨qu, thus implying a one-dimensional cokernel. In order to identify

the cokernel explicitly, note that

L “ ML0, Mv “ Bxpu0˚Bxvq, L0u “ u ´
1

π
V ˚ u,

so that the adjoint is L˚ “ ML0 due to the fact that both M and L0 are self-adjoint. Solving

Mv “ cosp¨q, we find the kernel of the adjoint

e˚
0pxq “ ´

1

ρ
logp1 ` ρ cospxqq.

As a consequence, we find that BµF˚ R Rg pLq, through

xe˚
0 , BµF˚y “

ż π

´π

´1

ρ
logp1 ` ρ cospxqq

`

πρ cosp¨q ` ρ2π cosp2xq
˘

“ ´π2ρ ‰ 0. (6.7)

Inspecting the first two columns of A, we find that Apu, µ, 0q “ 0 if and only if u “ 0 and µ “ 0, as the

second and third component of A imply u R Ker L and therefore Lu ‰ 0, Lu ‰ BµF˚µ unless u “ 0

and µ “ 0. We can therefore solve for u, µ as functions of ε and obtain the leading order expansion of

µ by projecting the first equation onto the cokernel. Evaluating also

xe˚
0 , BεF˚y “

ż π

´π

´1

ρ
logp1 ` ρ cospxqq p´ρ cospxqq “

2π

ρ

´

1 ´
a

1 ´ ρ2
¯

‰ 0, (6.8)

this gives

µ “ µ1ε ` Opε2q, µ1 “ ´
xe˚

0 , BεF˚y

xe˚
0 , BµF˚y

“
2

πρ2

´

1 ´
a

1 ´ ρ2
¯

. (6.9)

Clearly, the analysis so far is not reliant on the specific form of the potential and could also be carried

out for more general repulsion kernels and systems. In the remainder of this section, we exploit more

explicitly the fact that the potential is rank-one to extract asymptotics in the case where the solution

possesses a vacuum region.

We can write the stationary form of (6.1) after integrating as

εux ` u ¨ pu ´ p
1

π
` µqA cospxqqx “ 0, A “

ż π

´π
cospxqupxqdx.

The first equation can be explicitly solved setting v “ ε log u ` u, or

u “ εW0p
1

ε
ev{εq, (6.10)

where W0 is the first, positive branch of the W -Lambert function. The resulting differential equation

for v then gives

vpxq “ ´Ap
1

π
` µq cospxq ` m. (6.11)
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Figure 7: Corrections from diffusion to bifurcation diagram and solutions to (6.1): the vertical branch bends with an

Opεq-correction as in (6.9), ρ as in (6.3) (left, computed circles, predicted solid line); shift µ of the branch at fixed ρ for

varying ε (center, computed circles, predicted solid line); profiles with amplitude }u}8 “ 2.5 at ε “ 0.1, compared with

the prediction from (6.10) and (6.11) and asymptotics (6.12) (right; fitted A1 from curvature at minimum).

Exploiting asymptotics of the W -Lambert function, or simply asymptotics on the equation for v in

terms of u, we find that

upxq “

#

vpxq ` Opεq, when vpxq ą 0,

e´|vpxq|{εp1 ` Ope´|vpxq|{ε{εq.
(6.12)

As a consequence, profiles of the form pA0 ` A1 cospxqq` inherit Opεq corrections in the regime where

they are positive, and they are exponentially small in ε away from the boundary of the vacuum region.

Summarizing, in this scenario we have an almost explicit shape given through the W-Lambert function,

(6.10) and (6.11), with expansions for the profile away from the boundary of the vacuum (6.12). The

results give excellent predictions for numerical computations as demonstrated in Fig. 7.

7 Discussion

We discussed a curious vertical bifurcation in limits of many-particle systems. Key to the phenomenon

is a destabilization of a crystalline, uniform state due to a long-range attractive force that outcompetes

a strong short-range attraction at intermediate distances, leading to the formation of clusters and gaps,

and also to segregation when several particle species interact with each other. Quite illuminating is the

study of a special rank-one case of periodized attractive potentials being simply a multiple of a cosine.

We also discussed the effects of noise by adding a diffusive term to the equation. Technically, our main

result describes the opening of a vacuum bubble with a universal scaling in the parameter.

There are clearly numerous questions that arise from this work.

Dynamics. We only describe the bifurcation diagram, here. It would be interesting to describe

additional features, starting with linear stability, and hopefully covering, more interestingly, the exis-

tence of slow manifolds in the sense of Fenichel’s geometric singular perturbation theory [11] for µ „ 0.

Our analysis of robustness under addition of small diffusion exploited the fact that the vertical branch

has an invertible linearization, up to the tangent vectors induced by the vertical branch, translations,
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Figure 8: Bifurcation diagram of maximal density versus bifurcation parameter in case of finite particle sizes N “ 25, 251

(top left and top right) in equation (1.8) with repulsive potential from (1.3), δ “ 0.3, and an attractive cosine potential

´p 1
π

` µq cospxq. Bottom panels show position of particles at marked parameter values plotted together with the inverse

distance to the neighboring particle as a proxy for the local density.

and changes in total mass. Given the gradient-flow structure of the equation, we suspect that this

invertibility is equivalent to normal hyperbolicity of the vertical branch of equilibria in the sense of

[11]. Before vacuum formation, this hints at the presence of an asymptotically attracting slow manifold

that mediates the slow formation of vacuum for µ Á 0 and the collapse of vacuum bubbles for µ À 0.

The main technical difficulty here appears to overcome the lack of normal hyperbolicity at the moment

of vacuum formation. Clearly, this result would more conclusively establish the absence of hysteresis

that we infer here only statically.

Finite-size effects. The Vlasov-limit is usually obtained only in a weak sense as N Ñ 8. Never-

theless, one may hope for a more detailed description, at least in one space-dimension. We performed

numerical continuation in finite-particle interaction with the repulsive potential from (1.3) and a cosine

attractive potential, finding bifurcation diagrams with several branches, which nevertheless display

striking closeness to the continuum limit.

Higher space-dimension. We study higher-dimensional particle interaction in a forthcoming paper

[10]. In addition to essentially one-dimensional vacuum regions, given as stripes in a periodic grid,

we then find roughly spherical bubbles, also with universal expansions for the size in terms of the

parameter, with an interesting competition between vacuum bubbles and stripes. One would expect

finite-size effects to be significantly more complex to the non-monotonicity of rearrangements in cluster

and vacuum formation.

Reversible switching elsewhere. We noted in the introduction that the absence of hysteresis is

rather unusual when starting from generic low-dimensional bifurcations. It does not appear to arise near

generic low-codimension bifurcation points, even in the presence of symmetry. Bifurcation branches

similar to the finite-size diagrams shown in Fig. 8 arise in singular Hopf bifurcations, known there as
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canard explosions; see for instance [14, 2], and references therein.

In a quite different context, almost reversible bifurcations arise with generic instabilities in large do-

mains: the instability is mediated by a front that moves into the domain for µ ą 0 and out of the

domain for µ ă 0. Weak interaction with the boundary then leads to almost vertical bifurcation

diagrams; see [1].

We emphasize that there is no apparent link with these different settings other than that they all

permit an almost reversible switching.

Lipid rafts revisited. Circling back to our motivation by biological switching, we identified here

possible mechanisms and suitable mathematical models that can describe fast and robust switching,

back and forth between different functional patterns, particularly in biological settings. The example we

discussed in the introduction are so-called lipid rafts. Individual lipid molecules are able to diffuse two-

dimensionally within the cellular lipid bilayer, and in artificial lipid bilayers one can observe domains of

different lipid composition. Such specialized domains are thought to be involved in signal transduction

across the cell membrane and in organizing membrane trafficking, as well as in the organization and

regulation of membrane proteins. One major driver for this segregation phenomenon could be the

selective association between certain lipids. Our analysis isolates this selective association in the study

of a continuum limit for interacting particle systems, driven solely by attraction, repulsion, and possibly

diffusion. We do then indeed demonstrate that near parameter values of balance between inner- and

intra-species attractive and repulsive forces, made precise in an explicit linear analysis near a perfectly

mixed state, reversible switching is possible: small changes in parameter values, for instance sensitivity

of particles to interaction forces, can drive the system from perfectly mixed states to almost perfectly

sorted states or states exhibiting vacua — and reverting the small parameter change will restore the

perfectly mixed state.
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