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Characterizing the Effect of Boundary Conditions on Striped Phases∗

David Morrissey† and Arnd Scheel†

Abstract. We study the influence of boundary conditions on stationary, periodic patterns in one-dimensional
systems. We show how a conceptual understanding of the structure of equilibria in large domains can
be based on the characterization of boundary layers through displacement-strain curves. Most promi-
nently, we distinguish wavenumber-selecting and phase-selecting boundary conditions and show how
they impact the set of equilibria as the domain size tends to infinity. We illustrate the abstract
concepts in the phase-diffusion and the Ginzburg–Landau approximations. We also show how to
compute displacement-strain curves in more general systems such as the Swift–Hohenberg equation
using continuation methods.
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1. Introduction. Stripe patterns are arguably the simplest nontrivial patterns observed
in nature. Stripes form in numerous contexts, ranging from classical fluid experiments such as
Taylor vortices in the Taylor–Couette flow and convection rolls in Rayleigh–Bénard convection,
over bilayers in diblock copolymers, to granular media and reaction-diffusion systems. A
well-studied context of stripe formation is an instability of a spatially homogeneous state
in a spatially extended medium. A linearized analysis can then predict wavenumbers as
linearly fastest growing modes. While known for more than a century in fluid dynamics, the
occurrence of patterned states as fastest growing modes was conjectured by Turing in 1952
[20] for reaction-diffusion systems and experimentally realized in 1991 [5].

The arguably simplest example for the formation of stripes is the celebrated Swift–
Hohenberg equation

ut = −(Δ + 1)2u+ μu− u3.

Considered on x ∈ R, for instance, the linearization at the trivial state u ≡ 0,

ut = −(Δ + 1)2u+ μu,

can be readily analyzed using the Fourier transform,

d

dt
û(k) = (−(1− k2)2 + μ)û(k).
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Figure 1. Boundary layers selecting different wavenumbers and phases of the periodic pattern ust (top
left); boundary layers for the left and right boundaries, ul/r, matched at x = 0 (bottom left). Schematic plot of
boundary manifold B, strong stable fiber W ss intersecting B and thus yielding a boundary layer, the family of
periodic orbits, and the unstable fibers (right).

For μ > 0, wavenumbers with |k2 − 1| < √
μ are unstable. The fastest growing wavenumber

is |k| = 1. In fact, for all μ < 1, only wavenumbers with k �= 0 are unstable, so that for small
amplitude only spatially patterned perturbations are amplified.

A nonlinear analysis readily reveals that together with the linear instability, nonlinear
patterns bifurcate from the trivial state. For μ > 0 small, one finds 2π/k-periodic “striped”
solutions ust(kx; k, μ), ust(ξ; k, μ) = ust(ξ+2π; k, μ), for all unstable k-vectors, |k2− 1| < √

μ.
Many of those periodic solutions are compatible with the boundary conditions in large but
finite systems. With, say, periodic boundary conditions and system size L, we need to require
k ∈ (2π/L)Z, which yields O(L

√
μ) different k-values.

For boundary conditions other than Neumann, Dirichlet, or periodic, equilibria are diffi-
cult to characterize completely. In fact, bifurcations diagrams tend to be very complex and of
little help when trying to “describe” typical dynamics. Interestingly, different types of bound-
ary conditions can provoke quite different types of dynamics. For instance, heated walls in
Rayleigh–Bénard convection are known to favor parallel alignment of roll solutions with the
boundary, as opposed to the otherwise typical perpendicular alignments. Slow drift of rolls
has also been observed in contexts of Rayleigh–Bénard convection.

The purpose of this work is to study the role of boundaries in such pattern forming systems
in a systematic fashion. The key idea is to decompose the problem of describing equilibria in
large finite domains into two steps (see Figure 1 for an illustration):

(i) describe equilibria in semi-infinite domains x ∈ R+ and x ∈ R−;
(ii) patch equilibria from semi-infinite domains at x = 0 to obtain equilibria in bounded

domains x ∈ (−L,L).
The boundary conditions in step (ii) at x = L should be studied as boundary conditions at
x = 0 in step (i) for x ∈ R−; boundary conditions at x = −L give boundary conditions for
x ∈ R+.

Outline. We study a general class of equations in section 2. In particular, we characterize
stripes, introduce spatial dynamics, define boundary layers, and discuss displacement-strain
relations for boundary layers. We also present our main general matching result for bounded
domains. Section 3 illustrates the concepts at the hands of the (somewhat trivial) example
of the phase-diffusion equation. In section 4, we study the specific (integrable) example of
the Ginzburg–Landau equation, which arises as a modulation equation for small-amplitude
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striped patterns. Section 5 outlines an effective numerical procedure for the computation of
displacement-strain relations and illustrates results for the Swift–Hohenberg equation. We
conclude with a discussion in section 6.

2. Boundary layers for striped phases: Wavenumber and phase selection. We define
families of stable stripes in section 2.1 and introduce spatial dynamics in section 2.2. We
introduce boundary layers in section 2.3. We briefly explore stability in section 2.4. Section
2.5 is concerned with gluing boundary layers to obtain equilibrium configurations in large but
finite domains. Section 2.6 formalizes the gluing process as a subtraction of curves followed
by quantization. Section 2.7 contains a list of conceptual examples.

2.1. Families of stripes. We consider a general semilinear parabolic system on the real
line,

(2.1) ut = −(i∂x)
2mu+ f(u, ∂xu, . . . , ∂

2m−1
x u), u ∈ R

N , x ∈ R,

where f is smooth and reflection symmetric:

f(u, u1, u2, . . . , u2m−1) = f(u,−u1, u2, . . . ,−u2m−1).

Such systems may possess even, periodic solutions ust, which we refer to as stripes. The
linearization at such stripes,

Lstv = −(i∂x)
2mv +

2m∑
j=1

∂jF (u, ∂xust, . . . , ∂
2m−1
x ust)∂

j−1
x v,

defines an elliptic operator on L2(R,RN ). The spectrum of L is the union of the point spectra
of the associated Bloch operators,

Lst,�v = −(i(k∂ξ + i�))2mv +
2m∑
j=1

∂jf(u, ∂xust, . . . , ∂
2m−1
x ust)(k∂ξ + i�)j−1v,

where the operators Lst,� are defined on L2((0, 2π),RN ) with periodic boundary conditions.
Since u′st(kx; k) contributes to the kernel of L0, one always finds a band of eigenvalues λ(�),
λ(0) = 0, to L�. Symmetry shows that λ(�) = λ(−�) ∈ R. We therefore say that a periodic
pattern is stable if the spectrum of L is contained in Reλ < 0, except for the critical branch
of eigenvalues λ(�), for which we require λ′′(0) < 0. Such spectral stability has been shown to
imply nonlinear stability with respect to localized perturbations, and we will henceforth refer
to this criterion simply as “stability”; see [19, 10, 18]. Instabilities can occur due to other
bands of the spectrum crossing the imaginary axis, or due to an Eckhaus instability, when
λ′′(0) changes sign [13].

Hypothesis 2.1 (families of stripe solutions). We assume that there exists a bounded family
of stable stripes ust(kx; k); for wavenumbers k ∈ Jk = (kmin, kmax), 0 < kmin < kmax <∞,

ust(ξ; k) = ust(ξ + 2π; k), ust(ξ; k) = ust(−ξ; k), ust(·; k) ∈ C2(Jk, C
2m
per(0, 2π)).
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We emphasize that the interval Jk is not assumed to be small. In the examples that we
consider below, the boundaries kmin/max are determined by Eckhaus instabilities. Most of our
analysis is insensitive to oscillatory instabilities, λ ∈ iR \ {0}, so that in this case the effective
range of wavenumbers could be further extended.

Lemma 2.2 (robustness). Given a stable stripe, there exists a family of stripes nearby.
Moreover, families of stripes depend smoothly on system parameters.

Proof. The kernel of the Bloch-wave operator L0 is trivial in L
2
even, so that one can continue

a stable periodic pattern smoothly in the period. Since the condition λ′′(0) < 0 is open, all
members in the local family will be stable. One similarly establishes the persistence of global
families with respect to parameters.

Remark 2.3 (minimal period). We may assume throughout that the period 2π is the min-
imal period. We may choose the period to be minimal for a fixed member in the family.
Changes of the minimal period always imply a bifurcation; hence they would imply an addi-
tional spectrum at λ = 0 and contradict our assumption on stability. As a consequence, the
stripes have precisely two reflection symmetries, x→ −x and x→ 2π − x.

2.2. Spatial dynamics. The steady-state equation

0 = −(i∂x)
2mu+ f(u, ∂xu, . . . , ∂

2m−1
x u)

can be rewritten as a first-order system,

(2.2) Ux = F (U), U = (u, ∂xu, . . . , ∂
2m−1
x u) ∈ R

2mN ,

which possesses a reversibility symmetry,

F (RU) = −RF (U), R(u0, u1, . . . , u2m−1) = (u0,−u1, . . . ,−u2m−1).

Stripes correspond to reversible periodic solutions RU(kx; k) = U(−kx; k). Purely imaginary
Floquet exponents of the linearization at such a periodic solution give rise to kernels of the
operators L� in a straightforward fashion. Moreover, the algebraic multiplicity of the simple
zero-exponent is given by the order of tangency of the curve of critical spectrum λ(�); see, for
instance, [16, Lemma 2.1]. The family of stripes therefore forms a two-dimensional normally
hyperbolic manifold S in R

2mN . Reversibility implies that both center-stable and center-
unstable manifolds W cs/cu are (mN +1)-dimensional and mapped into each other by R. Both
are smoothly fibered by (mN − 1)-dimensional strong (un)stable fibers W ss/uu.

2.3. Boundary layers. We consider (2.1) on x ∈ R+, supplemented with mN boundary
conditions, which we write in the form U(x = 0) ∈ B, where B is an mN -dimensional smooth
manifold in R

2mN . Natural examples are the following:
• Dirichlet, ∂2jx u = aj , 0 � j < mN ;

• Neumann, ∂2j+1
x u = aj , 0 � j < mN ;

• clamped, ∂jxu = aj , 0 � j < mN ;

• free, ∂jxu = aj, mN � j < 2mN .
The terms clamped and free allude to the plate equation. Of course, many mixed and nonlinear
variations are possible, and not all guarantee well-posedness of the parabolic equation (2.1).
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Equilibria of (2.1) in BC2m(R+,R
N ) that satisfy the boundary conditions B are bounded

solutions U(x) to the ODE (2.2), with U(0) ∈ B, where B is now considered as a natural
mN -dimensional submanifold of the phase space of R2mN of (2.2). In other words, equilibria
are naturally identified via a multiple shooting problem; see Figure 1. Equilibria of interest
to us converge to stripes as x → ∞. They therefore lie in the intersection B ∩W cs. Thom
transversality guarantees that this intersection is transverse for generic manifolds B. Simple
dimension counting then implies that this intersection is a one-dimensional manifold. More-
over, the intersection projects smoothly along the fibers onto a curve in S. Parameterizing S
naturally by k ∈ Jk and an angle ϕ, we can now characterize boundary layers through curves
in the cylinder ϕ, k ∈ S1 × Jk.

Definition 2.4 (boundary layers and displacement-strain relations). We say a boundary layer
Ubl(ξ) is transverse if TUbl(0)B∩TUbl(0)W

cs is one-dimensional, and not contained in TUbl(0)W
ss,

so that in particular TUbl(0)B + TUbl(0)W
cs = R

2mN . We refer to the base point of the fiber
W ss that contains Ubl(0) as the asymptotic phase ϕ and wavenumber k. If all boundary layers
are transverse, we refer to the collection of base points as displacement-strain (k, ϕ) curves γ.
Unless otherwise noted, we parameterize displacement-strain curves by arc length γ(s). We
refer to a relation d(k, ϕ) which vanishes precisely at γ as a displacement-strain relation; see
(2.3) for a more direct characterization of convergence.

Remark 2.5.
• The terminology displacement-strain refers to the fact that the asymptotic stripes are

“displaced” by ϕ relative to a fixed, even stripe pattern on x ∈ R. Strain refers to the
intuitive compression and expansion of the stripe relative to a fixed wavenumber.

• The definition of ϕ in S is unique with the convention S = {Ust(kx − ϕ; k), k ∈ Jk}
when requiring Ust(·, k) to be even and after fixing Ust(·; k0) (which rules out a shift
by π). We then have

(2.3) |U(x)− Ust(kx− ϕ; k)| � Ce−ηx

for some positive constants C, η.
• In a completely analogous fashion, one can define boundary layers for right-bounded

domains, x ∈ R−, U(0) ∈ B+, and

(2.4) |U(x)− Ust(kx− ϕ; k)| � Ceηx.

Note that boundary layers in left-bounded domains give boundary layers in right-
bounded domains via reflection, but for reflected boundary conditions RB+ = B−,
replacing ∂x by −∂x.

• We emphasize that the curve γ may have self-intersections, stemming from the pro-
jection of a smooth nonintersecting curve along the strong stable fibration.

Given the (generic) transversality in Definition 2.4, we can envision families of boundary
layers, globally in k, ϕ. Note, however, that even when all boundary layers lie in a bounded
set in phase space R

2mN , the resulting displacement-strain curves may still terminate, for
instance when the (ϕ − k)-curve approaches the boundary of Jk or when the “length” of the
heteroclinic diverges; see [8] for some context on homoclinic and heteroclinic continuation.



1392 DAVID MORRISSEY AND ARND SCHEEL

We will in fact encounter both possibilities in the example of the Ginzburg–Landau equation
in section 4.

Definition 2.6 (phase and wavenumber selection). A displacement-strain curve γ ⊂ S1 × Jk
encodes

• wavenumber selection if Pkγ �= Jk and
• phase selection if Pϕγ �= S1.

Here, Pϕ/k denote projections onto the ϕ- or k-component, respectively. If γ is a closed curve,
we write i(γ) for the winding number of the curve Pϕγ in S1.

We will commonly encounter winding numbers 0 and 1 but also an example with winding
number 2 in the Ginzburg–Landau example.

We will explore a definition of boundary layers not based on spatial dynamics in section
5. This definition will prove useful when constructing boundary layers numerically.

2.4. Stability of boundary layers. Without any further assumptions, little can be said
about the stability of boundary layers. Given the stability of the asymptotic stripe pattern, we
can say that the essential spectrum is contained in the negative half plane with the exception
of a branch of the essential spectrum touching the imaginary axis; see [7]. The mere existence
does, of course, not give information on possible oscillatory instabilities, but we do have
information on possible zero eigenvalues. We therefore count the parity of unstable eigenvalues
of the linearization at a boundary layer Ubl = (ubl, . . . , ∂

2m−1
x ubl),

Lblv = −(i∂x)
2mv +

2m∑
j=1

∂jF (u, ∂xubl, . . . , ∂
2m−1
x ubl)∂

j−1
x v, x > 0,

equipped with boundary conditions (v, ∂xv, . . . , ∂
2m−1
x v) ∈ TB. In other words, p = 1 refers

to an even (or zero) number of unstable eigenvalues of Lbl and p = −1 to an odd number.
The following lemma relates the infinitesimal displacement-strain relations to stability.
Lemma 2.7 (parity and displacement strain). For any family of boundary layers and corre-

sponding displacement-strain curve γ(s), there exists a parity e ∈ {±1} so that

p = e · signPk
(
dγ

ds

)
.

Proof. We need to show that λ = 0 belongs to the extended point spectrum precisely
when the derivative k′ := dk

ds = 0 along a family of boundary layers and that we have a strict
crossing whenever k′ changes sign.

Under our assumption on the symmetry and stability of periodic patterns, the essential
spectrum in the neighborhood of the origin is given by the negative real axis λ � 0. We
consider the linearized equation at a boundary layer, with spectral parameter λ = γ2. Since
coefficients converge exponentially, there is a complex linear change of variables, analytic in
γ and smoothly depending on x, so that the strong stable ((Nm − 1)-dimensional), strong
unstable ((Nm− 1)-dimensional), and center (two-dimensional) subspaces are independent of
x and γ. In these coordinates, the (linearized) boundary conditions at x = 0 define an Nm-
dimensional subspace that depends analytically on γ. We list vectors in these coordinates
as (U c, U ss, Uuu)T . Since γ = 0 is a simple branch point of the dispersion relation, we can
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choose coordinates in the center subspace such that the stable subspace is spanned by the
Nm − 1 column vectors in (0, id, 0)T and the vector ((1,−γ), 0, 0)T + O(γ2). The boundary
conditions are spanned by the Nm− 1 column vectors in (0, 0, id)T and (Qdγ

ds , 0, 0)
T , where Q

is an invertible linear transformation. We can form the determinant E(γ) from basis vectors
of stable eigenspace and boundary tangent space to build the Evans function which then
tracks eigenvalues near the origin γ = 0. Eigenvalues in γ > 0 correspond to actual unstable
eigenvalues, whereas γ < 0 corresponds to resonance poles. Since the stable subspace limits
on the eigenspace at γ = 0, which is spanned by the derivative of the periodic pattern, we
find that Qγ′ = (q11ϕ

′ + q12k
′, q22k′)T , with q11, q22 �= 0 from invertibility; here ′ denotes the

derivative with respect to arc length s. We therefore find that

E(γ) =
(
q22k

′ − q11ϕ
′γ +O(γ2)

)
E0(γ),

where E′ is analytic and nonzero near the origin. We conclude that γ = 0 is a root precisely
when k′ = 0, and the sign of γ changes precisely when the sign of k′ changes.

Remark 2.8 (nonlinear stability). Given the results on stability of stripes on R, one expects
spectrally stable boundary layers to be stable. In fact, one would expect a slightly faster
pointwise decay, ∼ t−3/2, given that the Evans function does not vanish at the origin for
boundary layers but does vanish for stripes. This is in analogy to the heat equation with, say,
Dirichlet boundary conditions on the half line.

Remark 2.9 (orientation). We can orient displacement curves so that p = sign
(
Pk
(dγ
ds

))
.

Stable boundary layers within a connected family then necessarily either compress or expand
along γ. The somewhat trivial examples of phase diffusion, below, illustrate that there is no
obvious way to avoid an ambiguity in orientation (or, equivalently, the choice of e in Lemma
2.7).

Remark 2.10 (displacement-strain dependence). The results on stability suggest that, typ-
ically, k could be thought of as a parameter so that turning points correspond to exchange of
stability as in a traditional saddle-node bifurcation. It is mainly this motivation that leads us
to displaying displacement-strain relations with k as the independent, horizontal variable in
the remainder of this paper.

2.5. Finite domains—gluing boundary layers. In this section, we describe equilibria in
large but finite domains, based on left and right boundary layers. The key conclusion is that
displacement-strain curves for boundary layers associated with boundary conditions on the
left and right sides of the domain allow for a complete description of the set of equilibria for
large enough domains (−L,L), with boundary conditions Bl/r at ±L.

We employ a two-sided shooting approach. We start with transverse boundary layers
Ul(x; k, ϕ), x > 0, and Ur(x; k, ϕ), x < 0, which satisfy the boundary conditions at Bl/r at
x = 0, and

Ul(x; k, ϕ) − Ust(kx− ϕ; k) →0, x→ +∞,

Ur(x; k, ϕ) − Ust(kx− ϕ; k) →0, x→ −∞,

with associated displacement-strain relations

(2.5) dl/r(kl/r, ϕl/r) = 0.
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Shifting Ul/r to the boundaries, we look for solutions U that are close to Ul(x + L; kl, ϕl) on
(−L, 0) and Ur(x−L; kr, ϕr) on (0, L). Continuity of the solution at x = 0 up to exponentially
small terms gives phase and wavenumber matching,

(2.6) klL− ϕl ≡ −krL− ϕrmod 2π, kl = kr.

We say that phase and wavenumber matching is transverse if the linearization of (2.6) together
with (2.5) is invertible at a solution (kl/r, ϕl/r)(L).

The following proposition shows that this formal phase and wavenumber matching proce-
dure actually determines solutions.

Proposition 2.11 (phase matching). Assume the existence of families of transverse boundary
layers Ul(x; k, ϕ), x > 0, and Ur(x; k, ϕ), x < 0, to boundary conditions Bl/r at x = 0, with
displacement-strain relations dl/r(k, ϕ) = 0. Then there are an L0 > 0 and smooth functions

Rj(kl, kr, ϕl, ϕr, L), j = ϕ, k, exponentially small in L > L0, Rj = O(e−ηL), together with
its derivatives, so that solutions on (−L,L) with boundary conditions Bl/r at x = ±L exist
whenever exponentially corrected phase and wavenumber matching conditions hold,

kl = kr +Rk,(2.7)

(kl + kr)L ≡ ϕl − ϕr +Rϕmod2π.(2.8)

These solutions are L∞-close to Ur(x− L; kl, ϕl) on x < 0 and to Ul(x+ L; kr, ϕr) on x > 0.
Remark 2.12 (uniqueness in bounded domains). The result can be understood to be a

Lyapunov–Schmidt reduction to the phase matching equation, near an approximate profile
that is obtained via solving the phase matching conditions (2.6), that is, (2.7)–(2.8) without
the error terms Rj. The result gives local uniqueness in the sense that all profiles in a vicin-
ity must solve this reduced equation. In particular, if one can find a unique solution to the
reduced equation using, for instance, the implicit function theorem, then one can conclude
local uniqueness.

More global uniqueness statements are tricky for a variety of reasons. First, stationary
solutions in bounded domains need not be close to periodic patterns but may involve defects
in the bulk of the domain rather than near the boundary. Examples include the Ginzburg–
Landau equation with Neumann conditions, which possesses solutions close to tanh(x/

√
2);

see section 4. On the other hand, strain-displacement curves need not be compact (see the
numerical example in Figure 14 or examples where branches terminate on Eckhaus boundaries
in section 2), and error terms may not be uniformly exponentially small along such curves.
Of course, solutions to the phase matching equation may be degenerate in the first place,
so that the number of solutions may depend on the precise form of the error terms Rj .
Last among those obvious obstructions to a characterization of uniqueness is the more subtle
characterization of the neighborhood in which the construction takes place: the restrictive
choice of exponentially weighted spaces in (2.12) is quite certainly not optimal.

Proof. We write U = Ul(x + L)χ−(x) + Ur(x − L)χ+(x) +W (x), where χ± is a smooth
partition of unity, χ−+χ+ = 1, χ±(x) = 1 for ±x > 1. Exploiting the fact that the boundary
layers solve the ODE, we find the equation
(2.9)
Ẇ = F (Ul(x+L)χ−(x)+Ur(x−L)χ+(x)+W (x))−F (Ul(x+L)χ−(x)+Ur(x−L)χ+(x))+R(x),
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with boundary conditions

(2.10) W (±L) ∈ Bl/r − Ul/r(0),

where the remainder is

R(x) =F (Ul(x+ L)χ−(x) + Ur(x− L)χ+(x))− F (Ul(x+ L))χ−(x)− F (Ur(x− L))χ+(x)

− Ul(x+ L)χ′
−(x)− Ur(x− L)χ′

+(x).

We view the system (2.9)–(2.10) as an equation with variables W and τ±, where τ± enter as
a parameterization of the boundary layers

Ul/r(x) = Ul/r(x; kl/r(τ±), ϕl/r(τ±)), dl/r(kl/r(τ±), ϕl/r(τ±))) = 0, |k′l/r(τ±)|2+ |ϕ′
l/r(τ±)|2 = 1.

Note that the remainder is small when the system (2.7)–(2.8) is satisfied. In order to solve
(2.9)–(2.10), we need to understand the linearized operator

Ẇ − F ′(Ul(x+ L)χ−(x) + Ur(x− L)χ+(x))W, W (±L) ∈ TBl/r|Ul/r(0).

Note that this operator is close to the linearization at individual boundary layers on (−L, 0)
and (0, L), respectively. This linearization at individual boundary layers is not invertible in
the limit L = ∞. It is, however, Fredholm in exponentially weighted spaces, with index −1.
We therefore study relaxed boundary conditions

(2.11) W (±L) + αl/rψl/r(0) ∈ Bl/r − Ul/r(0),

replacing (2.10). Here, αl/r are independent scalar variables and ψl/r(x) are solutions to

ψ̇l/r − F ′(Ul/r(x))ψl/r = 0

such that ψl/r �∈ TBl/r, with at most linear growth at ±∞, respectively.
We will show that the associated linearized operator L[−L,L],

Ẇ − F ′(Ul(x+ L)χ−(x) + Ur(x− L)χ+(x))W, W (±L) + αl/rψl/r(0) ∈ TBl/r|Ul/r(0),

is invertible with L-uniform bounds in exponentially weighted spaces,

(2.12) ‖W‖L2
η
= ‖min{eη(x+L), eη(−x+L)}W (x)‖L2 ,

with domain H1
η , where W,W

′ ∈ L2
η.

For this, we solve L[−L,L]W = H by decomposing H = H− +H+, H± = χ±H,

Ẇ− − F ′(Ul)W− − [F ′(Ulχ− + Urχ+)− F ′(Ul)]W+ = H−,

Ẇ+ − F ′(Ur)W+ − [F ′(Ulχ− + Urχ+)− F ′(Ur)]W− = H+,

W−(−L) +W+(−L) + α−ψl ∈ TBl,

W+(L) +W−(L) + α+ψr ∈ TBr.
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In the exponentially weighted norms (2.12), the boundary terms W+(−L) andW−(L), as well
as the coupling terms involving W+ in the first equation and W− in the second equation, are
exponentially small, so that this system is a small perturbation of

Ẇ− − F ′(Ul)W− = H−,

Ẇ+ − F ′(Ur)W+ = H+,

W−(−L) + α−ψl ∈ TBl,

W+(L) + α+ψr ∈ TBr.

We can extend H± to half lines and thereby find W± by inverting the linearization at the
boundary layers.

Summarizing, we have shown uniform bounded invertibility of the linearization of (2.9),
with extended boundary conditions (2.11), variables W,α±, and parameters τ±, L. The resid-
ual is small, R = O(e−ηL), when the phase matching conditions,

kl(τ−) = kr(τ+), 2krL = ϕl(τ−)− ϕr(τ+),

are satisfied. We therefore obtain families of solutions (W,α±) = (W ∗, α∗±)(τ±, L). It remains
to solve

α∗
+(τ+, τ−, L) = 0, α∗

−(τ+, τ−, L) = 0.

A straightforward but tedious expansion of this system shows that it is equivalent to wave-
number and phase matching, up to exponentially small corrections,

kl = kr +O(e−δL), klL− ϕl = krL− ϕr +O(e−δL) mod 2π,

where

(kl, ϕl) = (kl(τ−), ϕl(τ−)) + α−(k′l(τ−), ϕ
′
l(τ−))

⊥.

This establishes the desired phase and wavenumber matching conditions.
Remark 2.13. A more geometric proof would be based on flowing the boundary conditions

from x = ±L to x = 0 and exploiting inclination lemmas (see, for instance, [15, Thm. 3.1])
to see that the intersection is transverse in a complement of the tangent space to the two-
dimensional family of periodic orbits, so that intersections can be computed from matching
within this manifold up to exponentially small terms. Our approach here is closer in spirit to
[12].

2.6. Subtraction and quantization—from displacement-strain curves to equilibria. In
the following, we discuss conceptually the solutions to (2.7)–(2.8). We will neglect exponen-
tially small terms, which can be easily accommodated in the analysis. As in the proof of
Proposition 2.11, we parameterize solutions to the displacement-strain relation as curves via

Γl/r =
{(
kl/r(τ±), ϕl/r(τ±)

)∣∣ τ± ∈ J±
}

for some intervals J±,

with nonvanishing tangent vectors |(ϕ′, k′)|2 = 1, and study wavenumber and phase matching,
with (2.7)–(2.8) as two equations in three variables τ±, L. It is conceptually helpful to add an
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ψ=2kL

Figure 2. The figures show schematic plots of left and right displacement-strain relations (green and
red), their differential displacement-strain curves (blue), and the quantized intersections with ψ = 2kL (gray).
From left to right: two-sided phase selection, phase and wavenumber selection, two-sided wavenumber selection
with Jl ⊂ Jr (note the two branches of the differential displacement-strain curve), and two-sided wavenumber
selection with marginal overlap.

intermediate step, solving

0 = kl(τ−)− k,

0 = kr(τ+)− k,

0 = ϕl(τ−)− ϕr(τ+)− ψ.

Note that with the definition of k, ψ from this system, phase matching reduces to ψ =
2kLmod 2π.

The linearization of this auxiliary system is readily seen to be onto as long as k′l and k
′
r do

not vanish simultaneously. Since in this case the linearization with respect to k, ϕ, and either
τ+ or τ− is invertible, we can parameterize the solution set as curves (k, ψ)(τ). Critical points
of k(τ) are given by the union of critical points of kl/r(τ±). Critical points of ψ correspond to
values of k where tangent vectors of left and right displacement-strain relations are collinear,

ψ′ = 0 ⇐⇒
∣∣∣∣ k′l k′r
ψ′
l ψ′

r

∣∣∣∣ = 0.

We can formalize these operations as follows.
Definition 2.14 (differential displacement strain). We refer to the curves (k, ψ)(τ) as dif-

ferential displacement-strain curves, obtained by taking the difference between left and right
displacement-strain curves, pointwise in k.

From differential displacement-strain curves, we obtain equilibria in the bounded domain
for large L by intersecting with the straight line ψ = 2kLmod 2π, effectively quantizing the
curves.

In summary, the operations that lead to a description of equilibria in bounded domain are
• vertical subtraction, which gives differential displacement-strain curves; and
• quantization of differential displacement strain by intersecting with ψ = 2kL.

2.7. From displacement-strain curves to equilibria: Conceptual examples. In the fol-
lowing, we analyze several representative cases in some more detail; see Figure 2 for illus-
trations of differential displacement-strain curves and Figure 3 for the effect of varying L in
the case of wavenumber and phase selection by the differential displacement-strain curves,
respectively.
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φ

k

Figure 3. The figure illustrates the effect of increasing the domain size on equilibria. Wavenumber selection
with nonzero winding number (left) leads to a continuous (snaking) family of equilibria as L is increased. Phase
selection (right) leads to chains of creation and annihilation events of equilibria near the Eckhaus boundary.

Two-sided phase selection. In this case, both displacement-strain curves are defined for
kr/l ∈ J , and so is the differential displacement-strain curve. In the simplest case, ψ = ψ(k) is
a graph, and intersections with the straight lines 2kL are monotone in L, increasing from k−
to k+ as L increases. In particular, specific equilibria appear and disappear as L is increased
by an order-one amount because of instabilities at the boundary of J .

Phase and wavenumber selection. Suppose that kr ∈ J and kl ∈ Jl. The differential
displacement-strain curve is now defined on Jl, as a closed curve, with the same winding
number of the ψ component as ϕr. Intersections with the straight lines 2kL give continuous
families of equilibria in the case of nonzero winding number (the right boundary layer is
selecting only wavenumbers, allowing for arbitrary phases).

Two-sided wavenumber selection. When Jr ⊂ Jl, the situation is equivalent to left-sided
wavenumber selection. New phenomena appear when Jr and Jl are not contained one in
the other. Of course, no equilibria exist when these intervals are mutually disjoint. In the
simplest case, a mutual intersection gives figure-eight-type differential displacement-strain
curves. Again, one expects phase slips as the size of the domain is gradually increased.

Summary. Envisioning slowly increasing the domain size L, we expect continuous depen-
dence of the solution on L only when one of the boundary conditions is wavenumber selecting
with nonzero winding number in the phase and when all wavenumbers of this boundary con-
dition are compatible with the other boundary condition. Other combinations will typically
lead to phase slips.

Incompatible boundary conditions (selecting disjoint wavenumber intervals) will lead to
phase drift, as we shall see in the simple example of the phase-diffusion problem below.

3. Boundary layers in phase diffusion. Using a multiple-scale expansion, one can derive
simplified dynamics near roll solutions, known as the Cross–Newell phase-diffusion equation.
One expands an Ansatz ust(θ(t, x); θx(t, x)) assuming long-wavelength modulations of the
phase θ and finds the nonlinear diffusion equation

θt = (b(θx))x,

where b′(k) = λ′′(0). In particular, the long-wavelength problem is well-posed when b′ > 0.
Boundary conditions are given by smooth curves B in the (θ, θx)-plane. Each point (θ, θx) =
(ϕ(s), k(s)) ∈ B gives rise to a unique equilibrium in x > 0, ϕ+ kx. Linearizing the equation
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and boundary conditions gives

θt = b′(k)θxx, k′θ − ϕ′θx = 0.

Patterns with k′ϕ′ < 0 are unstable with eigenfunction e−γx, γ = k′/ϕ′, and eigenvalue λ = γ2.
Stable patterns possess k′ϕ′ > 0, with resonance pole λ = γ2. Note that when ϕ′ → 0, an
eigenvalue (or resonance pole) disappears at infinity, not unsurprisingly due to the singular
perturbation in the boundary conditions when passing from Dirichlet to Robin (or mixed).
The allowed interval J is given through b′(J) > 0. Clearly, Dirichlet boundary conditions
θ = ϕ0 select a phase and Neumann boundary conditions θx = k0 select a wavenumber. In
reaction-diffusion systems or the Swift–Hohenberg equation, phase selection is accomplished
by Neumann boundary conditions. Since perturbations from Neumann to mixed are nonsin-
gular, we can exclude eigenvalues near infinity and changes of stability when ϕ′ = 0 for such
more general systems.

Within the class of phase-diffusion problems, one would require ϕ′ to be nonzero to guar-
antee well-posedness. As a consequence, one finds k = k(ϕ) and isolas are excluded; that is,
wavenumber selection implies a nonzero winding number of the displacement-strain curve.

Imposing different wavenumber selection conditions θx = k± at x = ±L, one finds drifting
patterns,

θ(t, x) =

∫ x

0
b−1

(
k− + k+

2
− k− − k+

2L
y

)
dy − k− − k+

2L
t,

which are effectively time-periodic solutions to the equation since θ ∈ R/2πZ. Roughly
speaking, b(θx) interpolates the selected wavenumbers linearly, leading to a nonlinear phase
profile and constant phase drift. Note that the expression is well defined as long as the interval
of wavenumbers defined by the boundary conditions lies within the stable regime, b′ > 0.

On the other hand, our analysis validates the phase-diffusion approximation in semi-
bounded (or even bounded) domains for general striped phases in a very concise fashion:
boundary conditions should be replaced by displacement-strain relations,

d(θ, θx) = 0,

at x = 0 (respectively, where θ is understood modulo 2π), and the equation in the interior of
the domain should be simply θxx = 0. The fact that displacement-strain relations may not
lead to well-posed boundary conditions points to the fact that some defects (here, boundary
conditions) can simply not be incorporated into a phase-modulation description. On the
other hand, one can expand the effective boundary conditions near θx = k∗, and solutions
near θ = k∗x+ ϕ, to obtain locally valid effective Robin boundary conditions.

4. Boundary layers in the Ginzburg–Landau equation. The Ginzburg–Landau equation

At = Axx +A−A|A|2, A ∈ C,

arises as a modulation equation at the onset of a Turing instability and as such provides a
universal model for small-amplitude Turing patterns. We will study the effect of boundary
conditions within this equation but will also comment on the effect of scalings used to derive
Ginzburg–Landau on the boundary conditions. Stationary solutions satisfy

(4.1) Ax = B, Bx = −A+A|A|2.
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Exact solutions include the periodic patterns, A(x) =
√
1− k2eikx, and the defect solutions,

(4.2) Ad(x; k) =
(√

2k + i
√

1− 3k2 tanh(
√

1− 3k2x/
√
2)
)
eikx.

One easily calculates that the argument of A(x; k)e−ikx increases by 2 arctan(
√
1− 3k2/(

√
2k))

when k > 0 and decreases by the same amount when k < 0. For k = 0, the argument is not
defined at x = 0 and the final phase shift is π. The defects are invariant under the reflection
A(x) �→ Ā(−x). Defects are known to be unstable for energetic reasons.

As a Hamiltonian system with two degrees of freedom and a phase rotation symmetry,
(4.1) is integrable and all solutions are explicit, in particular the stable and unstable manifolds
of periodic orbits.

Indeed, the bounded part of stable and unstable manifolds is given by the defect, and the
unbounded parts are given by

(4.3) A(x; k) =
(√

2k + i
√

1− 3k2 coth(
√

1− 3k2x/
√
2)
)
eikx,

with x < 0 or x > 0, respectively.
The Ginzburg–Landau equation arises universally as an amplitude equation for small

striped patterns and therefore is a prototype for our study. On the other hand, the additional
symmetries in this equation sometimes distort phenomena. In fact, one can further “reduce”
the Ginzburg–Landau equation by assuming a slowly varying phase near periodic patterns
and then derive the phase-diffusion equation discussed in the preceding section. Our main
findings here do replicate the phenomena for the phase-diffusion equation. However, we find
several new phenomena, in particular

• displacement-strain curves with winding number 2 (inhomogeneous Neumann),
• displacement-strain curves where ϕ is not monotone (inhomogeneous Dirichlet),
• defect pinch-off at terminal points of displacement-strain curves (inhomogeneous Neu-

mann and Dirichlet), and
• reconnection crises near the Eckhaus boundaries (inhomogeneous Neumann and Dirich-

let).

4.1. Symmetries and invariant coordinates. While one can find boundary layers using
the explicit representation of stable manifolds in (4.2) and (4.3), we found it significantly
more manageable (albeit, presumably, equivalent) to use different coordinates and reduce to
polynomial equations.

The stationary Ginzburg–Landau equation (4.1) is invariant under the gauge and reversal
symmetries

Rψ(A,B) = eiψ|(A,B), S(A,B) = (Ā,−B̄), T (A,B) = (A,−B).

Typically, S corresponds to the reflection symmetry in the original equation, when Ginzburg–
Landau is derived as an amplitude equation, since, say in the Swift–Hohenberg case, u ∼
Aeix + c.c.. Complex conjugation symmetry ST is a “normal form artifact.” The system is
also Hamiltonian, with H = |B|2 + |A|2 − 1

2 |A|4, so that

Ax = ∂B̄H, Bx = −∂ĀH.



BOUNDARY LAYERS FOR STRIPED PHASES 1401

One can factor the gauge symmetry and consider the equation in new variables for A,B ∈ C,
the Hilbert invariants of the circle action Rψ,

α = |A|2 � 0, β = |B|2 � 0, M =
1

2
(m+ iM) = AB̄ ∈ C, with relation 4αβ = MM̄.

The inverse transformation gives A and B up to a relative phase,

(4.4) A =
√
αeiϕ1 , B =

√
βeiϕ2 , ei(ϕ1−ϕ2) =

M√
4αβ

.

The equations read as

αx = m,

βx = m(α− 1),

mx = 2(β + α2 − α),

Mx = 0.(4.5)

Since β is given implicitly through the relation and M is conserved, we end up with a two-
dimensional system for (α,m), in which we can eliminate β, most conveniently using the
Hamiltonian, which gives

αx = m,

mx = 2

(
H− 2α+

3

2
α2

)
.(4.6)

From solutions to this planar ODE, for any fixed H, we find solutions to the original system by
first reconstructing β from H, reconstructing M2 = αβ −m2 from the relation, and using the
inverse transformation (4.4). Note, however, that each solution of (4.6) yields two solutions
corresponding to the different signs of M .

4.2. Stable manifolds. Periodic patterns are of the form A =
√
1− k2eikx, which in

invariant coordinates gives

α = 1− k2, β = k2(1− k2), m = 0, M = −2k(1− k2), H =
1

2
(1− k2)(1 + 3k2).

Note that H is a monotone function of k2 within the Eckhaus stable region k2 ∈ [0, 13 ). We
can also use the expressions for H and M to express (4.6) using the parameter k,

αx = m,

mx = 2

(
H(k)− 2α+

3

2
α2

)
, H(k) =

1

2
(1− k2)(1 + 3k2).(4.7)

Equilibria are α± = 2
3(1±

√
1− 3

2H) or

α+ = 1− k2, α− =
1

3
(1 + 3k2),
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Figure 4. The stable manifold of wave trains, plotted as (α,m,M)(k, τ ), with |k| � 1/
√
3 (three left figures).

Stable and unstable manifold s (right). The red curve shows the Eckhaus-stable equilibria α+, and the blue curve
shows the stable manifold for k = 01/4 in the (light shaded) plane k = 1/4, consisting of a homoclinic orbit
(4.2) in (4.7) and an unbounded branch (4.3). Intersections along constant M-values (vertical in the second
panel) give homoclinic orbits from an unbounded branch.

with α+ corresponding to the Eckhaus-stable equilibrium for k2 < 1/3. We normalize the
Hamiltonian of (4.7),

h(α,m; k) =
1

2
m2 − V (α; k), V (α; k) =

∫ α

1−k2
(
(1− k2)(1 + 3k2)− 4a+ 3a2

)
da

= (α− α∗)(α− α+)
2,

where α∗ = 2k2. The stable manifold W s of α+ consists of an unbounded branch with

m = −
√
2(2Hα − 2α2 + α3 + h+), α > α+,

and a bounded branch,

m = ±
√

2(2Hα− 2α2 + α3 + h+), α∗ < α < α+.

A somewhat more compact representation is achieved in coordinates τ = m
α−α+

, where W s is
given through

(4.8) α = 2k2 +
1

2
τ2, m = τ

(
1

2
τ2 − (1− 3k2)

)
, τ � τ∗ =

√
2(1− 3k2).

In summary, given a wavenumber |k| < 1/
√
3, we can parameterize its stable manifold by τ

via (4.8).
Figure 4 shows the stable manifold of the wave trains in (α,m,M)-space.

4.3. Phase shifts. Phase shifts ϕ are defined so that for a boundary layer,

lim
x→∞ Im (log(A(x)) − (kx− ϕ)) = 0,

which gives, using the expression for the derivative of A,
(4.9)

ϕ = − lim
x→∞ (Im(logA(x))− kx) = − Im log(A(0)) −Δϕ, Δϕ = −

∫ ∞

0

(
k +

M

2α(x)

)
dx.
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Using (4.8) gives ττ ′ = m and τ ′ = 1
2(τ − τ∗)(τ + τ∗) with τ∗ =

√
2(1− 3k2). We can use τ

as an integration variable with τ(∞) = −τ∗ to obtain

Δϕ = −
∫ −τ∗

τ(0)

2k

4k2 + τ2
dτ = arctan

(√
2(1− 3k2)

2k

)
+ arctan

(
τ(0)

2k

)

and, altogether,

(4.10) ϕ = arctan

(√
2(1 − 3k2)

2k

)
− Im log(A(0)) + arctan

(
τ(0)

2k

)
.

4.4. Computing displacement-strain curves for specific boundary conditions. General
boundary conditions will not be invariant under the gauge symmetry. Consider a general
affine boundary condition of the form

(4.11) B = k1A+ k2Ā+ μ, k1, k2, μ ∈ C;

note that this comprises all affine boundary conditions which are not strictly Dirichlet in either
component. We will discuss Dirichlet boundary conditions at the end of this section.

The group orbit of the two-dimensional plane defined by (4.11) under the gauge symmetry
is

{(A,B);B = eiφ
(
k1ξ + k2ξ̄ + μ

)
, A = eiφξ, ξ ∈ C, φ ∈ [0, 2π)},

which gives the parameterized representation in invariants

(4.12) α = |ξ|2, M = ξ(k1ξ + k2ξ̄ + μ).

One now proceeds to find boundary layers by solving (4.12) together with (4.8) and the relation
for M ,

(4.13) α = 2k2 +
1

2
τ2, m = τ

(
1

2
τ2 − (1− 3k2)

)
, M = −2k(1− k2), τ �

√
2(1− 3k2).

Equations (4.12) and (4.13) can be viewed as a polynomial system of six real equations in
seven real variables Re ξ, Im ξ, α,m,M, k, τ , together with an inequality constraint. We will
next show how to solve this system in several simple cases.

Neumann boundary conditions. For k1 = k2 = 0, μ > 0, we can use the second equation in
(4.12) and the second and third equations in (4.13) to express ξ in terms of τ, k, which we can
then substitute into the first equations of (4.12) and (4.13) to obtain an equation in τ, k only.
After eliminating a factor 4k2 + τ2, which gives only the trivial solution A ≡ 0, we find that

(4.14) 4k4 − 8μ2 + (τ2 − 2)2 + 8k2(τ2 − 1) = 0,

combined of course with the inequality τ �
√

2(1− 3k2). This equation is a simple quadratic
in κ = k2 and σ = τ2,(

σ + (4− 2
√
3)κ− 2 +

2√
3

)(
σ + (4 + 2

√
3)κ− 2− 2√

3

)
= 8μ2 − 4

3
,
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Figure 5. Plots of solutions (4.15) in the (τ, k)-plane, with reconnection crises. Also shown is the restriction
τ � τ∗ as a half-ark in the right half-plane. Parameter values are μ = 0.1, 0.4, 0.41, 0.46, 0.49, 0.7065, left to
right, top to bottom.

with solutions given by hyperbolas in σ, κ, with a double point at |μ| = 1/
√
6 ∼ 0.408.

Solving and substituting back gives the four solution branches which are plotted in the
(τ, k)-plane in Figure 5:

k1,±(τ) = ±

√
1− τ2 +

√
2μ2 − τ2 +

3

4
τ4,

k1,±(τ) = ±

√
1− τ2 −

√
2μ2 − τ2 +

3

4
τ4.(4.15)

A second crisis happens at μ =
√
2/3 ∼ 0.471 when two curves join within the Eckhaus

boundary. A third and last crisis occurs when μ = 1/
√
2 ∼ 0.707, when the origin becomes

a critical point of (4.14) and a curve vanishes at the origin. After this crisis, only one curve
remains which covers the entire range of allowed wavenumbers. The intersections of stable
manifold and boundary manifold are shown in Figure 6 in the reduced space of invariants
α,m,M .

We can now reconstruct the phase using the original boundary condition A = ξ and (4.10).
Figure 7 shows the resulting displacement-strain curves. For small μ, there are two families

of boundary layers. One selects wavenumbers, with phase-winding number 1; the other family
selects both wavenumber and phase, terminating on τ = τ∗. Along the curve a defect has
nucleated from the boundary, and the defect location diverges to infinity as the end point of
the curve is approached. At the end point, the phase difference between this boundary layer
and the other boundary layer is precisely π, the phase shift along the defect. For increasing
μ, the wavenumber-selecting boundary layer covers an increasing interval of k-values, until
it reaches the Eckhaus boundary at the extremum, at which point it splits into two families
of boundary layers, with opposite signs of the displacement-strain derivative (and opposite
stability properties). One of those families eventually reconnects with the third family, creating
a wavenumber-selecting family with winding number 2.

Pure wavenumber selection. A special case is comprised of boundary conditions of the form

(4.16) B = μA, μ ∈ C,
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Figure 6. Stable manifold in (α,m,M)-space, together with the Neumann surface and the intersection;
parameters are μ = 0.1, 0.4, 0.41, 0.46, 0.49, 0.7065, left to right, top to bottom.
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Figure 7. Plots of displacement-strain curves in the (ϕ, k)-plane corresponding to Figure 6. Note that
for μ > 1/

√
2, one of the displacement-strain curves has winding number 2. Open ended curves for small μ

correspond to curves terminating on τ = τ∗; parameters μ = 0.1, 0.4, 0.41, 0.46, 0.49, 0.7065, left to right, top to
bottom.

that are fixed. Since the boundary conditions are invariant under the gauge symmetry, the
phase of boundary layers is arbitrary once we find a boundary layer. In invariant coordinates,
we find the equivalent of (4.12),

m− iM = 2M̄ = 2μα,

a curve rather than the surface we had seen in the previous example. Together with (4.13),
we find six equations in six variables, which reduce to the system of polynomial equations in
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Figure 8. Plot of selected wavenumber with boundary conditions (4.16) as a function of Im(μ) for fixed
Re(μ) = 0, 0.03,−0.03 from left to right.

Figure 9. Stable manifold in (α,m,M)-space, together with the boundary conditions and intersections.
Pure wavenumber selection (Re(μ) = −0.1, 0.1, Imμ = 0.3, left and middle) and pure phase selection (right).

τ and k,

2 Im(μ)

(
2k2 +

1

2
τ2
)

= 2k(1− k2),

2Re(μ)

(
2k2 +

1

2
τ2
)

= τ

(
1

2
τ2 −

(
1− 3k2

))
.

One readily notices that for Re(μ) = 0, either τ = ±τ∗ and k = Im(μ), the compatible
equilibrium, or τ = 0 and k = Im(μ) ±

√
1 + (Im(μ))2. For | Im(μ)| < 1/

√
3, the first

k-solution lies within the Eckhaus boundary; for | Im(μ)| > 1/
√
3, the second k-solution does.

For small Re(μ), the intersection with the equilibrium splits into a pair of intersections
close to ±τ∗, respectively. For Re(μ) > 0, |τ | > |τ∗|, so that only one intersection with the
level set of the Hamiltonian yields an intersection with the stable manifold. For Re(μ) < 0,
both intersections yield boundary layers. The dependence of k on Im(μ) is shown in Figure
8. The associated pictures in (α,m,M)-space are shown in Figure 9.

Pure phase selection. Boundary conditions Im(A) = Re(B) = 0 encode the reflection
symmetry S. In fact, all periodic solutions satisfy this boundary condition for an appropriate
phase shift. In order to study these boundary conditions more systematically, we write for
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Figure 10. Plots of solutions (4.18) in the (τ, k)-plane, with reconnection crises. Also shown is the
restriction τ � τ∗ as a half-ark in the right half-plane. Parameter values are μ = 0.2, 0.7, 0.8, 0.82, 0.93, 1.1.

the group orbit of the boundary condition A = eiφ(ξ + ξ̄), B = eiφ(ξ − ξ̄), which gives

m = 0, M = −2i(ξ̄2 − ξ2).

Solving the remaining equations (4.13), we find four solutions corresponding to the exact
periodic pattern, τ = ±τ∗, ξ = ±(1+ ik)

√
1− k2, and two solutions, τ = 0, ξ = (i(1− k2)/2−

k)/
√
2. The first four solutions correspond to only two actual “boundary layers” (τ = ±τ∗

yield the same boundary layer). They are in fact the exact periodic solution and the solution
with a phase shift of π. The latter two solutions correspond to an appropriate shift of the
defect and yield a phase shift of π/4.

A completely equivalent analysis also yields the boundary layers for the third reflection
symmetry ReA = 0, ImB = 0, with the same wavenumber selection, and phases shifted by
π/4.

Dirichlet boundary conditions. For Dirichlet boundary conditions, A = μ > 0, the group
invariant form gives

{(A,B);B = eiφξ,A = eiφμ, ξ ∈ C, φ ∈ [0, 2π)},

which gives the equivalent of (4.12),

(4.17) α = μ2, M = μξ̄.

Again, we can use the second equation in (4.17) and the second and third equations in (4.13)
to express ξ in terms of τ, k. The first equations of (4.12) and (4.13) give

(4.18)
1

2
τ2 + 2k2 = μ2;

the solution curves, together with the restriction τ � τ∗, are shown in Figure 10. The el-
lipse intersects the boundary τ = τ∗(k) for μ >

√
2/3. The intersections of stable manifold

and boundary manifold are shown in Figure 11 in the reduced space of invariants α,m,M .
Resulting displacement-strain curves are shown in Figure 12.
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Figure 11. Stable manifold in (α,m,M)-space, together with the Dirichlet plane and the intersection.
Parameter values are μ = 0.2, 0.7, 0.8, 0.82, 0.93, 1.1.
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Figure 12. Plots of displacement-strain curves in the (ϕ, k)-plane, cporresponding to Figure 11. We first
see the separation crisis at the Eckhaus boundary, followed by the vanishing of two defect limits. Eventually, ϕ
is not monotone.

As μ is increased, we see displacement-strain curves changing from wavenumber selection
(winding number 1) to phase selection. The second curve of boundary layers terminates at
defects and, as μ increases further, shrinks and vanishes on the defect associated with k = 0.

Note that for μ = 1.1, ϕ(k) is not monotone. In fact, ϕ(k) develops three critical points
for μ < 1 in a pitchfork bifurcation. This phenomenon cannot occur for well-posed equations
in the phase-diffusion systems, where an eigenvalue or resonance pole disappears at infinity
at ϕ′ = 0.
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Remark 4.1. All boundary layers constructed in this section are in fact transverse in the
sense of Definition 2.4, provided that the intersection in the reduced orbit space is transverse.
An example of a nontransverse boundary layer is the half-defect Ad = i tanh(x/

√
2)q, x > 0,

with boundary conditions, Ax = i/
√
2. Inspecting the formulas for the k-dependent defects

(4.2) and differentiating at the origin x = 0, we find tangent vectors (A,B) = (0,−1) from
the phase, (A,B) = (i, 0) from x-translation, and (A,B) = (2, 0) from the k-derivative, so
that the real span of (0, i) is not contained in TW cs + TB. The reason is of course that these
boundary conditions mimic infinitesimal translation of the defect at the origin.

4.5. Existence—linear and affine boundary conditions. Linear boundary conditions
translate into a cone in (α,m,M)-space by scaling invariance. On the other hand, the expan-
sion of W s at α = m = M = 0 is quadratic, so that any cone is contained in the interior of
the body of the fish, which guarantees intersections between W s and the cone and hence the
existence of boundary layers.

Proposition 4.2. For all affine boundary conditions

T1A+ T2B = μ,

with Tj : R
2 → R

2 real linear, μ ∈ R
2, RgT1 +RgT2 = R

2, there exists a boundary layer.
Proof. The proof exploits the topology of (α,m,M)-space. We can distinguish three

different cases depending on the rank of T2:
(1) rkT2 = 2;
(2) rkT2 = 1;
(3) rkT2 = 0.

In the following, we will treat various scenarios on a case-by-case basis.
Case (3). The map T1 is invertible, so that the boundary conditions are equivalent to

Dirichlet boundary conditions, and we already established existence in the previous section.
Case (1). We can invert T2 and obtain a boundary condition of the form

B = TA+ ν, T = T−1
2 T1, ν = T−1

2 μ,

or B = κ1A + κ2Ā + ν. In case κ1 = κ2 = 0, T1 = 0, we recover the Neumann boundary
conditions studied in the previous section and we can conclude existence. We consider the
boundary manifold in the space of invariants α,m,M , thinking ofm as the vertical coordinate.
We set A = ξ = reiψ, which gives

α = r2, M = r2
(
κ̄1 + κ̄2e

2iψ
)
+ rνeiψ.

We view this as a family in r of closed curves, each parameterized by ψ, and compare the
location of the curve with the position of the stable manifold. For large r, the stable manifold is
located near m ∼ −α2, so that the curves M ∼ r2

(
κ̄1 + κ̄2e

2iψ
)
lie above the stable manifold.

For small r, suppose first that ν > 0. The curve M ∼ rνeiψ is then located either inside
the compact part of the stable manifold, or it winds around or intersects it. In either case,
homotoping between small and large r, we see that there necessarily is an intersection. In the
case μ = 0, linear boundary conditions, the small-r asymptotics are equal to the large-r case
and one readily sees that the curve is located inside the compact part of the stable manifold,
which has a quadratic tangency with the plane α = 0. Again, a homotopy to large r gives
intersections between our family of curves and the stable manifold.
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Case (2). Without loss of generality, possibly rotating with the gauge symmetry, the
boundary conditions can be written in the form

ReB = κ1 ReA+ κ2 ImA+ μ1, ImA = σ1 ReA+ μ2,

with real parameters μ1, μ2, κ1, κ2, σ1. Parameterizing ImB = y, ReA = x, we find that

α = x2 + (σ1x+ μ2)
2, M = (x+ i(σ1x+ μ2)) (κ1x+ κ2σ1x+ μ1 + κ2μ2 + iy) .

We view this surface as a family in x of straight lines parameterized by y. We follow the
family of lines from x = +∞ to x = −∞ and note that near the endpoints of the homotopy
the lines are close, with tangent close to (i−σ1)x

2. Since M = O(α) when y = O(x), the line
is located above the stable manifold for large |x| (and large α), with nonreal tangent. As x is
increased from −∞ to +∞, the tangent vector rotates by π. As a consequence, the family of
lines necessarily intersects the stable manifold.

In the case where the equation comes from a variational problem,

E [A] =
∫ ∞

0

(
|Ax|2 +

1

2
(|A|2 − 1)2

)
dx+

(
μ|A|2 + (νĀ2 + c.c.) + (ρĀ+ c.c.)

)∣∣
x=0

,

μ ∈ R, ν, ρ ∈ C,

one obtains boundary conditions

(4.19) B = μA+ νĀ+ ρ, μ ∈ R, ν, ρ ∈ C,

which form a Lagrangian (affine) subspace of C2 with respect to the symplectic form

ω((A1, B1), (A2, B2)) = Re(A1B̄2 −A2B̄1).

Since in the interior of the domain |A| = 1 and the associated solutions A = eiϕ are the
only minimizers, one expects boundary layers with finite energy, thus connecting to k = 0.
While such a result can presumably be established using variational techniques, possibly for
more general systems, we restrict ourselves here to the Ginzburg–Landau equation and the
geometric viewpoint from Proposition 4.2.

Proposition 4.3. For all Lagrangian boundary conditions (4.19), there exists a boundary
layer with k = 0.

Proof. We describe the boundary surface in the invariant space setting A = ξ = reiψ, so
that

α = r2, M = (μ + ν̄e2iψ)r2 + ρ̄eiψr.

For ρ̄ = 0, these boundary conditions describe a cone with elliptical cross-section, which
necessarily intersect the compact part of the stable manifold in the plane M = 0. For ρ̄ �= 0,
we can view the boundary manifold as a family in r of curves parameterized by ψ. One can
choose two intersections of these curves with the real axis (maximum and minimum) depending
on r in a continuous fashion (the curves are Limaçons). For r large, this intersection point
lies above W s. For r small, the intersection points lie either above and below, or inside, or
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on the compact part of the stable manifold. For large r, the intersection points lie above the
stable manifold. As a consequence, there is an intersection, which concludes the proof.

Remark 4.4 (nonexistence and isolas). Boundary layers may not exist even with well-posed
boundary conditions. A simple and instructive example is the cubic-quintic Ginzburg–Landau
equation

At = Axx −A+ γA|A|2 −A|A|5.

Periodic orbits reikx exist for k2 = −1 + γr2 − r4, provided that γ � 2. The steady-state
equation preserves the Hamiltonian H = |Ax|2 − |A|2 + γ

2 |A|4 −
1
3 |A|6. For γ ∼ 2, all periodic

orbits are close to |A| = 1 and have H ∼ −1/3. Choosing “asymptotic boundary conditions,”
B =W u(A = 0, B = 0), we conclude that all boundary layers would have Hamiltonian H = 0,
which is incompatible with the Hamiltonian of periodic orbits. The unstable manifoldW u can

in fact be expressed as a smooth graph B = A
√

1− γ
2 |A|2 +

1
3 |A|4, so that the equation with

these nonlinear boundary conditions is in fact locally well-posed. Alternatively, imposing
Dirichlet boundary conditions A = 0 gives H � 0 on the boundary, which also precludes
intersections with the stable manifold of periodic patterns, where H ∼ −1/3.

Considering inhomogeneous Dirichlet boundary conditions A = μ with increasing μ, one
finds a tangency between boundary conditions and the stable manifold (much like the tangency
in the cubic case at μ = 0, just at some finite α > 0, k = 0), which then leads to a small
closed curve of intersections and a small isola in the (ϕ, k)-plane.

4.6. Scaling boundary conditions. In general, Ginzburg–Landau spatial dynamics are re-
covered on a four-dimensional center manifold for spatial dynamics [16]. Boundary conditions
will typically intersect the center-stable manifold along a two-dimensional manifold, which can
be collapsed along the stable fibration to obtain effective two-dimensional boundary manifolds
in the center manifold. In the center manifold, the dynamics are, up to changes of coordinates
and higher-order terms,

Ax = ikA+B, Bx = ikB − μA+A|A|2,

where μ is the bifurcation parameter. The usual scaling A =
√
μÃ, B = μB̃, k =

√
μk̃,

y =
√
μx eliminates the parameter μ and gives, up to the fast rotation, the Ginzburg–Landau

equation. Under the scaling, most linear boundary conditions will reduce to homogeneous
Dirichlet boundary conditions at leading order since derivatives are small in the expansion.

5. Computation of boundary layers in the Swift–Hohenberg equation. Computing
boundary layers is related to the computation of heteroclinic orbits. Numerically one needs
to approximate the infinite domain [0,∞) by a finite domain [0, L] and discretize in space.
The first step, truncation, involves choosing appropriate boundary conditions at x = L. The
correct boundary condition, u(L) ∈ W s, is usually approximated by its linearization. A dif-
ficulty in our case is the presence of neutral directions, phase and wavenumber, and the fact
that the asymptotic state is not explicitly known.

In the following we present the general strategy of our approach (section 5.1) and some
results for a specific set of boundary conditions (section 5.2).
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5.1. Decomposing periodic and heteroclinic orbit. Let χ(x) be a smooth function with
χ(x) = 0 on x < �− and χ(x) = 1 on x > �+ for some 0 < �− < �+ < L. Also, denote by
Lμ = −(∂xx + 1)2 + μ the linear part of the Swift–Hohenberg equation. Finally, we write
[Lμ, χ]u := Lμ(χu)− χLμu.

With these preparations, we substitute the ansatz u(x) = χ(x)ust(kx − ϕ; k) + w(x) into
the Swift–Hohenberg equation, subtract χ(Lust − u3st), and obtain

F̃0(w,ϕ, k) = Lμw −
(
(χust + w)3 − (χust)

3
)
+ [Lμ, χ]ust − (χ− χ3)u3st = 0,

(w,wx, wxx, wxxx)(0) ∈ B.(5.1)

Since χ vanishes near x = 0, w needs to satisfy the same boundary conditions that we
imposed on u. The first two terms vanish for w = 0, reflecting the fact that ust solves the
Swift–Hohenberg equation. The last two terms, which we refer to as residuals, are compactly
supported on [�−, �+].

We are interested in solutions w that are exponentially localized. Therefore, define L2
η =

{u;u(x)eηx ∈ L2}, with induced norm, and, analogously, Hk
η = {u; ∂�xu ∈ L2

η, � � k}. It

turns out that F̃0 is not differentiable with respect to k as a map: the derivative with respect
to k of the term 3(χust)

2w does in general not belong to L2
η due to the linear multiplier

6χ2ustx∂xust. A simple rescaling can remedy this difficulty, as we shall see below. Consider
the scaled differential operator Lμ,k = −(k2∂yy +1)2 +μ, with appropriately scaled boundary
conditions, and define

F0(w,ϕ, k) = Lμ,kw −
(
(χust + w)3 − (χust)

3
)
+ [Lμ,k, χ]ust − (χ− χ3)u3st = 0,

(w, kwy , k
2wyy, k

3wyyy)(0) ∈ B,(5.2)

where ust = ust(y − ϕ; k) is the 2π-periodic, scaled family of stripes; χ = χ(y) can be left
unscaled. One readily finds that solutions w, k, ϕ to (5.2) are in one-to-one correspondence
with solutions w̃, k, ϕ to (5.1) via the rescaling w̃(x) = w(kx) and the appropriate modification
of χ.

Lemma 5.1 (well-posedness). The map F0 : H4
η ∩ B × R

2 → L2
η is well defined and smooth

near a given boundary layer w = ubl − χust, for η > 0, sufficiently small. Moreover, the
linearization at a boundary layer is Fredholm with index 1. If in addition the boundary layer
is transverse, according to Definition 2.4, then F ′

0 is onto and the k- and ϕ-components of the
one-dimensional kernel do not both vanish.

Proof. The map is well defined since residuals are compactly supported and thus belong
to exponentially weighted spaces. The linearization with respect to w is Fredholm with index
−1, as a simple counting of Floquet exponents shows. Adding two parameters increases the
Fredholm index to 1. The map and derivatives with respect to w depend smoothly on k and
ϕ, as coefficients ust depend smoothly on k and ϕ in L∞ and the dependence of the linear
operator on k is smooth. The last claim is an immediate consequence of the assumption
of the intersection between the boundary manifold and center-stable manifold in Definition
2.4.

The lemma can be viewed as a substitute for the smooth dependence of the strong-stable
foliation of the periodic on phase and wavenumber, parameterizing the base points of the
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fibration. As a direct consequence of the lemma, we obtain the existence of a one-parameter
family of boundary layers, described by a smooth curve in the (k, ϕ)-plane, using Lyapunov–
Schmidt reduction.

Truncating to a finite domain would requirew(L) to lie in the (unknown) strong stable fiber
of ust (translated by ust). Since w is exponentially small, this fiber is well approximated by its
tangent space, so that a good asymptotic boundary condition would be w(L) ∈ Ess(kL−ϕ; k),
where Ess(y) denotes the strong stable Floquet subspace of the linearization at ust(y). Again,
we find the computation of this Floquet subspace somewhat intricate. Alternatively, one can
impose other boundary conditions at x = L, as long as the boundary subspace is transverse
to Ecu.1 In practice, we choose Dirichlet boundary conditions and add a phase condition to
achieve the correct number of boundary conditions. As a phase condition, we choose

(5.3) Fph(w,ϕ) =

∫ K+2π

K
u′st(y − ϕ)w(y)dy,

which ensures that w cannot encode a phase shift in the periodic pattern (which is already
encoded explicitly in the parameter ϕ).

We obtain the following problem in a bounded domain:

FL
0 (w,ϕ, k) = Lμ,kw −

(
(χust +w)3 − (χust)

3
)
+ [Lμ,k, χ]ust − (χ− χ3)u3st = 0,

(w, kwy , k
2wyy, k

3wyyy)(0) ∈ B,
(w,wyy)(L) = 0,

Fph(w,ϕ) =

∫ K+2π

K
u′st(y − ϕ)w(y) = 0.(5.4)

One readily verifies that this problem is Fredholm index 1, and we therefore expect to find
solution curves in the (k, ϕ)-plane. We expect exponential convergence of the solutions to
(5.4) to solutions of (5.2), exponentially as L→ ∞.

5.2. Wavenumber selection in Swift–Hohenberg—numerical results. We use second-
order finite differences to discretize the fourth-order differential operator, using a mesh of width
h on a domain of length L. As part of the problem, we compute ust(y; k) using Neumann
boundary conditions on a domain of size 2π. We then construct ust(y − ϕ; k) using cubic
splines and periodic extrapolation. We then solve (5.4) using arc length continuation within
MATLAB. We found the expected exponential convergence in the domain length, which breaks
down near the Eckhaus boundary. We verified that the results are independent of the cut-off
function.

In order to illustrate the phenomena discussed here, we computed the displacement-strain
curves for free boundary conditions,

(5.5) uxx + u = 0, uxxx + ux = 0.

1Such an approach is well understood in the context of heteroclinic or homoclinic orbits to hyperbolic
equilibria. One finds that the convergence of solutions is e−2ηL with correct linear Floquet boundary conditions
and only e−ηL with general transverse boundary conditions, where η measures the spectral gap separating
Floquet exponents on either side of the imaginary axis; see [2, section 6] and references therein.
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Figure 13. Displacement-strain relation in the (k, ϕ)-plane for the Swift–Hohenberg equation with boundary
condition (5.5) for various values of μ, k ∈ (0.6, 1.1). The vertical lines indicate Eckhaus boundaries. Note the
separation crisis at the Eckhaus boundary near μ = 2.02 followed by the reconnection with a different branch
(near μ = 2.15).
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Figure 14. Displacement-strain relations as in Figure 13 for μ = 2.5, 4, extended for large phases (left).
Plots of associated profiles for μ = 4 associated with points marked on the displacement-strain curve for μ = 4;
ϕ increasing, top to bottom, left to right. One notices the formation of a plateau near the boundary and the
separation of an interface from the boundary, separating the plateau from the periodic pattern along the snaking
curve (right).

Free boundary conditions arise naturally when considering the operator generated by the
bilinear form

∫∞
0 (∂xxu + u)(∂xxv + v)dx on H2 × H2. Figure 13 shows the results of these

computations for various values of μ. Numerical parameters were dx = 0.04, L = 14 ∗ π; for
these parameters, we found errors in the displacement-strain relations below 10−4.

Not surprisingly, we find phase selection for small μ, reflecting the fact that the energy
density along periodic patterns is almost constant in x. For moderate sizes of μ, we still
find wavenumber selection, with a characteristic double-well shape for k > 1 that persists
throughout the entire range of μ. Note also that the displacement-strain curves are symmetric
by ϕ �→ ϕ+ π but break the ϕ �→ −ϕ symmetry. For μ ∼ 2.02, the displacement-strain curve
touches the Eckhaus boundary and separates, the typical transition between wavenumber and
phase selection. Shortly after, μ ∼ 2.15, the displacement-strain relation reconnects with a
different branch, which is not periodic in ϕ but rather “snakes” as ϕ → ∞. The profiles
indicate that this snaking behavior is mediated by the emergence of a stationary interface
between the stable state u =

√
μ− 1 and the periodic patterns. Indeed, the plateau visible

in Figure 14, ϕ = 11.31, forms at 1.73 . . . ∼
√
3. This stationary interface interacts with the

boundary condition in an oscillatory, exponentially weak fashion, yielding steady states with
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increasing separation of the interface from the boundary and exponentially small, oscillatory
oscillations in the wavenumber. In other words, the boundary layer is composed of a boundary
layer to the spatially constant state

√
μ− 1 and a pinned front between this constant state

and a periodic state. The boundary layer to the constant state is robust with respect to small
changes in the boundary conditions, and, as a consequence, selected wavenumbers for large ϕ
are independent of the boundary condition, given by the wavenumber that coexists with the
constant state

√
μ− 1.

6. Discussion. Summarizing, we have introduced a systematic description of boundary
layers in terms of curves that can be interpreted as displacement-strain relations. Generically,
in terms of the boundary conditions, these are smooth curves which may terminate either
near instability boundaries or when the boundary layer itself disappears. We showed how
such curves can be used to systematically describe the set of equilibria in bounded domains,
in particular as the domain size is varied. More specifically, we defined an operation on pairs
of displacement-strain relations corresponding to left and right boundary layers in large but
finite domains that consists of “vertical subtraction” and subsequent “quantization.” The
resulting families of intersection points are in one-to-one correspondence with equilibria in
large bounded domains.

Most of the paper is devoted to actually constructing or computing such displacement-
strain curves. We saw that the common phase-diffusion approximation gives only very limited
classes of examples! On the other hand, the Ginzburg–Landau equation, equipped with a va-
riety of inhomogeneous Dirichlet, Neumann, or mixed boundary conditions, gives a plethora
of interesting phenomena, including phase- and wavenumber selection, nonmonotone displace-
ment strain, pinch-off of defects leading to end points of displacement-strain curves, absence
of boundary layers and isolas, and displacement-strain curves of higher winding number. We
also outline how to systematically explore such displacement-strain curves using numerical
continuation and illustrate some preliminary results in the Swift–Hohenberg equation.

Our point of view raises numerous questions. First, we noted throughout that changes in
the type of displacement-strain curve are accompanied by reconnection or separation events
at the Eckhaus boundary. A local analysis of the stable manifold there should reveal a uni-
versal description of such events. One may also wonder whether a variational structure in
the boundary condition may lead to additional restrictions on boundary layers and bifurca-
tions. We showed existence in the Ginzburg–Landau equation, but we suspect that, more
generally, variational problems where periodic structures minimize the energy always accom-
modate boundary layers.

Much of our analysis is reminiscent of the analysis of snaking diagrams in, for instance,
the weakly subcritical Swift–Hohenberg [4, 1]. There, the trivial stable state coexists with
stable periodic patterns. For a range of parameter values μ, one observes stationary (pinned)
interfaces between trivial and periodic states. From our perspective, here, these pinned inter-
faces correspond to intersections between the center-stable manifold of the periodic patterns
and the unstable manifold of the origin. Interpreting this unstable manifoldW u(0) =: B as an
“effective boundary condition,” one recognizes a certain similarity between our viewpoint here
and the analysis of snaking diagrams. However, W u is flow-invariant (unlike typical boundary
manifolds B), so that these “effective boundary conditions” always allow for arbitrary phases
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and select wavenumbers, k(ϕ) ≡ const. In fact, in the variational case, the differential equa-
tion is Hamiltonian, so that W u also lies within a level set of the Hamiltonian, which allows
one to directly predict the selected wavenumber. Boundary conditions that we studied here
do not possess this additional structure. In the context of snaking, interesting questions are
concerned with changes of the selected wavenumber as parameters μ are varied. Fold points
of k(μ) can be interpreted as unpinning transitions [3]. The analysis in [1] is concerned with
phase matching of such “effective boundary layers,” which yields spatially localized struc-
tures. Due to the singularities of displacement-strain curves, equilibria are not locally unique,
generating various bifurcations (ladders, etc.). It would clearly be very interesting to analyze
phase matching as described here near singularities of displacement-strain curves and possibly
elucidate the connection with snaking diagrams further.

In higher dimensions, rolls allow for rotation as an additional degree of freedom. Setting
up boundary layer problems in x > 0, and y ∈ R/LZ periodic, we do encounter, however, a
translational symmetry in y which implies wavenumber selection due to arbitrary phases for
rolls that are not parallel to the boundary. The case of Neumann boundary conditions has
been studied extensively since boundary layers can then be interpreted as symmetric grain
boundaries; see [17, 6] and references therein.

Recognizing the analogy with defects such as grain boundaries, one can ask whether there
is a similar description for defects and their interactions. This appears to be an interesting
avenue of research. Some results in two space dimensions [9] indicate that properties such as
phase selection can be attributed to inhomogeneities in higher-dimensional striped phases.

Generalizations of our setup also include discrete atomic lattices, possibly multi-atom
lattices, which possess natural periodic equilibria. In a different direction, boundary conditions
(and defects) for oscillatory media, where striped patterns propagate with nonzero group
velocities, have been classified in [14]. It would be interesting to find a more unified description
of all these interesting phenomena, and we hope that the present work is a contribution in
this direction.

Acknowledgments. The authors acknowledge discussions with David Lloyd on the imple-
mentation of the computational strategy outlined in section 5.1. The decomposition described
there was first implemented in a joint forthcoming work on grain boundaries [11], and the com-
putational results in section 5.2 mimic the approach in [11].
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