
Growing stripes, with and without wrinkles∗
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Abstract. We present results on stripe formation in the Swift-Hohenberg equation with a directional quenching
term. Stripes are “grown” in the wake of a moving parameter step line, and we analyze how the
orientation of stripes changes depending on the speed of the quenching line and on a lateral aspect
ratio. We observe stripes perpendicular to the quenching line, but also stripes created at oblique
angles, as well as periodic wrinkles created in an otherwise oblique stripe pattern. Technically, we
study stripe formation as traveling-wave solutions in the Swift-Hohenberg equation and in reduced
Cahn-Hilliard and Newell-Whitehead-Segel models, analytically, through numerical continuation,
and in direct simulations.
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1. Introduction. Striped phases appear in a plethora of contexts, from sand [46] and icicle
ripples [4], to convection roll [3] and precipitation patterns [49], to bacterial colony growth [2]
or the formation of presomites in early development [45], and to ion-beam milling [30], dip-
coating [52], lamellar crystal growth [7, 1], and water jet cutting [12]. Simple understanding of
such patterns is often based on the weak instability of a trivial, spatially constant state against
perturbations that are periodic in space with wavenumbers close to a critical wavenumber
kc > 0. While the selection of this specific wavenumber may be due to quite different and
complex physical mechanisms, the resulting phenomena, at least for weak instabilities, often
bear a striking resemblance. In many cases, phenomena are well captured by simple, universal
models such as the Swift-Hohenberg equation [47],

(1.1) ut = −(1 + ∆)2u+ ρu− u3

posed on (x, y) ∈ R2, with 0 < ρ� 1. The linear part will enhance Fourier modes ei(kxx+kyy)

with k =
√
k2
x + k2

y ∼ kc = 1, and the nonlinear part leads to (local) saturation and com-

petition of these modes, such that the locally dominant observed pattern is of the form
ei(kxx+kyy) + c.c., k ∼ 1, for some orientation of the wave vector (kx, ky) depending on space
(x, y). Indeed, starting the system with random initial conditions in a large domain leads to
quite complex, incoherent structures; see Fig. 1. One mostly observes such sinusoidal stripe
patterns with some locally chosen orientation, but these local stripe domains are bordered by
a plethora of defects, including grain boundaries, dislocations, and disclinations [33].
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Figure 1. Patterns in (1.1) from random initial conditions with ρ ≡ 0.25 (left), compared to results from
directional quenching ρ = 0.25sign(ct − |(x, y)|) (center, left). Note the orientation of stripes predominantly
parallel to the quenching boundary for the large speed and wrinkly structures for the smaller speed.

Directional quenching. Such a spatially constant unstable state is sometimes obtained via
a quenching process, where system parameters are changed in the whole system rapidly,
rendering a spatially constant state unstable. In phase separating systems, this typically refers
to a rapid cooling from a stable state of well mixed phases to a regime where phases separate.
In many of the physical contexts listed above, patterns do not arise through such a spatially
homogeneous quenching process, but one rather observes that the domain in which patterns
form grows in time. There has been quite some interest in the interplay between growth
processes and pattern formation mechanisms, in particular since the phenomenology of both
the growth process and the pattern formation mechanism can quite dramatically influence each
other. We shall focus here on the effect of the growth mechanism on the pattern formation, and
neglect the reverse effect, as a first approximation. We therefore assume that the parameter ρ
in (1.1) is time- and space-dependent with ρ = ρ(t, x, y) ≡ µ > 0 in a time-dependent region
(x, y) ∈ Ωt and ρ(t, x, y) ≡ −µ < 0 in the complement (x, y) 6∈ Ωt. We illustrate the striking
“regularity” of the resulting patterns in Fig. 1 where Ωt = {|(x, y)| < cxt} for some cx > 0.

Assuming small curvature of ∂Ωt, one can think of approximating ∂Ωt with a straight
line. Assuming in addition periodicity along ∂Ωt, one is lead to consider domains Ωt = {x <
cxt| (x, y) ∈ R2} with lateral periodicity y 7→ y+ 2π

ky
, that is, growth along the axis of a laterally

periodic strip. Direct simulations in this geometry, shown in Fig. 2, confirm a delicate behavior
of the selection process when the transverse wavenumber ky is close to 1 and cx is gradually
increased. Our goal is to shed light onto the complexity in this parameter regime.

Outline of phenomena. Fig. 3 presents much of the phenomenology in 50 vertically stacked
simulations with increasing ky. The speed cx increases left to right and patterns are frozen
behind the quenching line. The result gives a good illustration of the emerging patterns in
the (ky, cx)-parameter plane. We observe stripes with different orientations relative to ∂Ωt,

• perpendicular stripes (horizontal in the picture),
• oblique stripes (slanted in the picture),
• parallel stripes (vertical in the picture),

and striped patterns with defects, oblique and perpendicular, respectively,
• zigzagging stripes,
• spotted stripes.
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Figure 2. Formation of striped patterns in the Swift-Hohenberg equation as analyzed and predicted, here,
for µ = 0.25, ky = 0.95. Final state in simulations in a co-moving frame with quenching line at x = 0.
Transitions observed (top to bottom, left to right), are from oblique to zigzag to straight, back to oblique, until
stripe formation detaches.

Increasing cx for fixed ky . 1, we observe two main transitions,
• oblique detachment : oblique stripes form for small speeds cx < cosn

x (ky), 0.85 . ky . 1,
until zigzagging and, for ky & 0.9, perpendicular stripes take over;
• perpendicular detachment : for 0.85 . ky . 1.17, perpendicular stripes detach at
cpsn
x (ky) and give rise to either oblique or spotted stripes.

Details of these transitions are in fact more subtle and the parameter regions visible in this
figure only qualitatively reflect the more accurate analysis presented below.

An approach via modulation equations — outline of approach. Our approach here is, as a
consequence, three-fold and schematically summarized in Fig. 4. In the remainder of this
introduction we briefly outline strategy and results in this paper, which closely reflect the

Figure 3. Shown are 50 simulations of (1.1) with ky varying from 0.75 to 1.24 in increments of 0.01,
stacked vertically; ρ = − 1

4
sign(x − ξ(t)), with exponential speed ξ(t) = 9 · 10−5(e0.0013t − 1). Dynamics are

frozen at x < ξ(t) − 10, such that the pattern observed at horizontal position x encodes the possibly transient
pattern formed at the corresponding speed cx ∼ ξ′(t); vertical position encodes values of ky; see also Fig. S1
of parameter landscape.pdf in the supplementary materials for more details and alternate representations
with more symmetry.
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Figure 4. Schematic illustration of results: a coarse description (center) with mostly perpendicular (light
red) or oblique stripes (light blue). Details show more complexity analyzed in a Cahn-Hilliard phase approxi-
mation, §3 and §4, in a Newell-Whitehead-Segel amplitude approximation in §5, and in numerical continuation
for the original Swift-Hohenberg model in §6. Note ky is horizontal here but vertical in Fig. 3.

organization of Fig. 4. We analyze oblique detachment in §3 and §4 within a Cahn-Hilliard
phase approximation. Perpendicular detachment is analyzed within a Newell-Whitehead-Segel
approximation in §5. Results are based on the description of traveling-wave solutions and their
stability. The approximation by phase and amplitude equations both predicts universal va-
lidity beyond Swift-Hohenberg and makes the heteroclinic analysis more tractable. There are
numerous results in the literature where validity of these modulation equations is established
either for temporal dynamics or, more pertinent here, for existence and stability of particular
traveling-wave solutions; see for instance [6, 44, 27, 17, 43, 20]. We shall not pursue this vali-
dation of the results obtained here for modulation equations in the Swift-Hohenberg equation,
particularly since many of our results in the modulation equations are of (semi-)numerical na-
ture. We do however compare our results with both direct simulations and computation of
traveling waves in the Swift-Hohenberg equation in §6.

With the exception of the rigorous analysis of a heteroclinic bifurcation at cx ∼ 0 in the
Cahn-Hilliard approximation that establishes existence and predicts angles for oblique stripe
formation in §3, our results are stated in an informal fashion, combining numerical tools with
theoretical predictions based on asymptotics near bifurcations and transitions from convective
to absolute instabilities [18, 36, 34, 15]. We demonstrate that the predictions compare well
with direct simulations. Making some of our predictions more rigorous poses a number of
quite interesting theoretical challenges that we comment on throughout.

Oblique detachment and Cahn-Hilliard — §3 & §4. We show that phenomena for small
cx & 0 and 1− ky = ε ∼ 0 (left panel in Fig. 4) can be captured by a Cahn-Hilliard equation
with effective boundary condition

(1.2) ψt = −(ψxx + εψ − ψ3)xx + cxψx, x < 0, ψ = ψxx = 0|x=0 ,

after suitable scalings. We construct heteroclinic and homoclinic orbits for cx = 0 that corre-
spond to oblique stripes, compatible with the parameter jump (boundary condition) at x = 0
and analyze the singular perturbation that yields oblique stripes for cx & 0. Heteroclinic and
homoclinic orbits can be understood as parts of grain boundaries, constructed in [17], and
correspond in this sense quite literally to kinks (sometimes referred to as knees), where the
orientation of the oblique stripe flips, or wrinkles (sometimes referred to as zigzags), where
stripe orientation flips repeatedly (see Fig. 5). Our analysis predicts dkx

dcx
and agrees well with
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numerical results that we present later. We continue the heteroclinic profiles numerically un-
til they disappear in a saddle-node bifurcation, the oblique detachment. The unstable branch
corresponds to an oblique stripe that contains a kink. The saddle-node occurs when this kink
detaches from the boundary, which leads to periodic kink shedding, the creation of zigzag
patterns in the wake of the quenching line. The saddle-node bifurcation is of independent
theoretical interest due to the presence of essential spectrum, and we discuss some interest-
ing technical questions and phenomena in this context. We also exhibit a transition where
the nature of the bifurcation changes to a hyperbolic homoclinic orbit, that causes changed
asymptotics and coexistence between oblique stripes and oscillating stripe angles in large fi-
nite domains. We finally study detachment of the kink-shedding process in the Cahn-Hilliard
equation, which corresponds to detachment of zigzag oscillations in Swift-Hohenberg, near a
critical speed resulting in the creation of perpendicular stripes at the quenching line.

Perpendicular detachment and Newell-Whitehead-Segel — §5. We study the dynamics of
stripes for moderate speeds in amplitude equations. One observes yet another saddle-node
bifurcation corresponding to the perpendicular detachment, and an accompanying birth of a
limit cycle. The bifurcation is accompanied by pitchfork bifurcations and several transitions
from convective to absolute instabilities. For yet larger speeds, oblique stripes and eventually
stripes of all orientations detach.

The moduli space — §6. We present computational results in the Swift-Hohenberg equa-
tion that capture oblique and perpendicular stripes, using a Newton method and farfield-core
decomposition. This allows us to systematically track patterns through the saddle-node bifur-
cations and detect other instabilities. The results can be summarized in a surface, the moduli
space, in the (kx, ky, cx)-space. The surface is surprisingly complex. Many of the phenomena
discussed here are reflected in the geometry of this surface; see Fig. 15.

Universality and similar phenomena in the literature. Directional quenching in Turing-type
systems was studied qualitatively in the context of the CIMA reaction in [29], with qualita-
tively similar observations of transitions between parallel, oblique and perpendicular orienta-
tions. In the context of the Cahn-Hilliard equation as a model for phase separation, similar
transitions have been studied in the literature. The most striking similarity can be found in
a bifurcation study of a Langmuir-Blodgett transfer model [21]. Without our emphasis on a
problem posed in an infinite domain, the authors observe a primary branch for small cx (V in
their notation), which destabilizes in a saddle-node bifurcation and then continues a snaking
curve, different from our scenario in §3. Similar to our context, the authors do see a branch
of periodic orbits limiting on the primary branch in a global homoclinic bifurcation (as in
our situation, not always at the saddle-node but sometimes on a homoclinic to a hyperbolic
equilibrium), which disappears in a steep Hopf bifurcation, that in the limit of large domains
is caused by a detachment of kink-formation. A different scenario occurs in simple parame-
ter triggers for Cahn-Hilliard [23], where mass conservation forces the appearance of periodic
orbits for arbitrarily small speeds. A more comprehensive numerical study based on direct
simulations can be found in [11]. Also, the kink-shedding process, organized by bifurcations
in Cahn-Hilliard and Newell-Whitehead-Segel equations, appears to be an organizing feature
behind a number of phenomena also in reaction-diffusion processes; see for instance [48, 22].

In a more narrow sense, we expect that the first part of our discussion is a universal de-
scription of growth in systems with zigzag-instabilities, since those can universally be reduced
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to Cahn-Hilliard type phase-diffusion problems. The second part of our analysis relies on
amplitude equations and should hold quite generally near instabilities in isotropic systems
that select a finite wavenumber, and in the absence of quadratic interaction terms that would
favor formation of spots over stripes.

Outline. We derive modulation equations in §2, present a heteroclinic bifurcation analysis
for Cahn-Hilliard in §3, and continue heteroclinics numerically in §4. We turn to Newell-
Whitehead-Segel and perpendicular detachment in §5. We show computational strategies and
results for Swift-Hohenberg in §6 and conclude with a discussion.

2. Zigzag instabilities and the Cahn-Hilliard approximation. We present background
on zigzag instabilities in §2.1, responsible for bending and wrinkling in Fig. 2; we briefly
review modulation formalism and derive the Cahn-Hilliard equation in §2.2. We also discuss
spatial dynamics in this context in §2.3 and use those to motivate boundary conditions for
Cahn-Hilliard on a half-line in the case of directional quenching in §2.4.

2.1. Stripes and zigzag instabilities. Striped solutions in the Swift-Hohenberg equation
(1.1) can be found as particular solutions up(kx; k) of (1.1), solving

−
(
k2∂ξξ + 1

)2
up + µup − u3

p = 0, up(ξ + 2π) = up(ξ) = up(−ξ),

It turns out that a family of such solutions bifurcates for small µ > 0, for all k ∼ 1. Since

(1.1) is isotropic, we also find the associated rotated solutions up(kxx+kyy; k), k =
√
k2
x + k2

y.

Beyond existence, one would next ask for stability of these solutions, studying the linearized
operator

L(kx)u = −
(
k2
x∂ξξ + ∂yy + 1

)2
u+ µu− 3u2

p(ξ; kx)u, y, ξ ∈ R.

Floquet-Bloch theory conjugates this operator to the family of operators

(2.1) L̂(kx;σx, σy)u = −
(
k2
x(∂ξ + iσx)2 − σ2

y + 1
)2
u+ µu− 3u2

p(ξ; kx)u, u(ξ) = u(ξ + 2π),

such that the spectrum of L is the union of the spectra of L̂(kx;σx, σy), 0 ≤ σx < 1, σy ∈ R.
Since the spectrum of L̂(kx;σx, σy) consists of isolated, real eigenvalues of finite multiplicity,
one can use regular perturbation theory to calculate expansions of eigenvalues near µ = σx =
σy = 0. One finds that the spectrum is stable with the possible exception of a branch of
eigenvalues

λ(σx, σy; kx) = −d‖(kx)σ2
x − d⊥(kx)σ2

y + O(4),

where O(4) refers to terms of order four, O(4)/(σ4
x + σ4

y) ≤ C for some C <∞ as σx, σy → 0.
In particular, the spectrum is stable, Reλ ≤ 0, when effective diffusivities are positive

d‖, d⊥ > 0, a region in (kx, µ)-space often referred to as the Busse balloon. The boundaries of
this region are, for small µ, given by the Eckhaus boundary keck(µ) and the zigzag boundary
kzz(µ), where d‖ is negative for kx > keck and d⊥ is negative for kx < kzz. It turns out that
stripes with k = kzz possess minimal energy density and are therefore often preferred.

Our focus here will be on systems (x, y) ∈ R × (R/(LyZ)) where the lateral period Ly is
close to the critical zigzag period Ly ∼ 2π/kzz. Ignoring the parameter jump at x = 0, we see
that stripes with kx = 0, ky = 2π/Ly are stationary solutions in such a strip, stable only when
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ky > kzz. In fact, choosing the lateral period such that ky < kzz, we can find rotated stripes

up(κxx+ κyy;κ) with κy = ky and κx =
√
k2

zz − k2
y, such that the wavelength of this rotated

pattern is precisely kzz, thus minimizing the energy. This instability mechanism, often referred
to as the zigzag instability is at the origin of much of the phenomenology in this paper. We
refer to [19] for a broader background and to [28] for technical details.

2.2. Amplitude and phase diffusion equations. Striped patterns near a given orientation
can be described by amplitude equations. We scale y = kyỹ, and find, dropping tildes

(2.2) ut = −(∂xx + k2
y∂yy + 1)2u+ µu− u3.

Substituting an Ansatz u(t, x, y) = eiyA(t, x) + c.c., assuming that µ is small and t, x are
slowly varying, and collecting leading orders in µ, gives the Newell-Whitehead-Segel amplitude
equation

(2.3) At = −(∂xx + 2ε− ε2)2A+ µA− 3A|A|2, where ε = 1− ky.

Writing A = ReiΦ, separating equations for R and Φ, and relaxing to R =
√
µ/3 at leading

order in ε, we find after a short calculation the Cross-Newell phase-diffusion equation,

(2.4) Φt = −c4Φxxxx − c1εΦxx + c3Φ2
xΦxx, c4 = 1, c1 = 4, c3 = 6;

see [19, §8.3] for the general strategy and [8, 44] for approximation results and limits of validity.
Note that the coefficients in (2.4) are obtained from (2.3), thus leading-order in µ, only. One
can more generally derive (2.4) directly from the Swift-Hohenberg equation near the zigzag
instability, not necessarily at small µ. We computed coefficients c1,3,4 numerically in this way,
thus not using an asymptotic expression in µ, from the expansion of the dispersion relation,
with deviations from (2.4) of order 10−4 for µ = 0.25.

2.3. Spatial dynamics, knees, and more. A different approach [17] focuses on stationary
patterns or traveling waves of (2.2) that remain close to horizontal striped patterns at all
locations x ∈ R, u = up(kzzy − φ(x); kzz + w(x, y)) in

(2.5) − cxux − cyuy = −(∂xx + k2
y∂yy + 1)2u+ µu− u3, u(x, y) = u(x, y + 2π),

with ky = kzz + ε. One casts (2.5) as a first-order differential equation in x, requiring that w
be orthogonal to u′p and studies the resulting equations for φ and w from a dynamical systems
point of view. One finds a family of equilibria, that is, x-independent solutions, w ≡ 0,
φ ≡ const, at ε = 0. Linearizing at these equilibria gives a length-4 Jordan block at the
origin, with the rest of the spectrum being bounded away form the origin. A center-manifold
reduction can thus be carried out, and one finds a fourth-order differential equation for φ,
given at leading order through

φx = ψ,

ψx = v

vx = −4εψ + 2ψ3 +m

mx = cxψ + cy,(2.6)
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Figure 5. Picture of knee solution (heteroclinic) and zigzag (homoclinic) in Swift-Hohenberg (top); phase
portraits with corresponding heteroclinic and homoclinic orbits (bottom).

where ε = ky − kzz. Scaling

(2.7) ψ = (2ε)1/2ψ̃, v =
√

8εṽ, m =
√

32ε3/2m̃, ∂x = 2ε1/2∂x̃, cx = 8ε3/2c̃x, cy = 128
√
ε

2
c̃y,

eliminates ε-dependence and gives the the traveling-wave equation corresponding to the Cross-
Newell equation (2.4), substituting an ansatz Φ = φ(x− cxt, t)− cyt.

In the specific case of the Swift-Hohenberg equation, the stationary equations (2.5) for
cx = cy = 0 possess a Hamiltonian structure. Indeed, the system can be obtained as Euler-
Lagrange equation to a variational problem with translation-invariance in x. Interpreting the
energy as an action functional and the energy density as the Lagrangian, one then finds the
Hamiltonian structure. In more detail, the energy interpreted as action functional is

E [u] =

∫
x,y

(
1

2

(
∂xxu+ k2

y∂yyu+ u
)2 − 1

2
ε2u2 +

1

4
u4

)
dxdy.

We write (2.5) as a first order equation for u = (u, u1, v, v1)T in the form

ux = u1

u1,x = v − k2
y∂yyu− u

vx = v1

v1,x = −k2
y∂yyv − v + µu− u3,(2.8)

and define the Hamiltonian as

H[u] =

∫
y
h(u)dy, h(u) = −1

2
v2 + u1v1 + v(k2

yuyy + u)− 1

2
u2 +

1

4
u4,

and the symplectic structure through [24]

(2.9) ω(u, ũ) =

∫
y
u · (J ũ)dy, J =


0 0 0 1
0 0 −1 0
0 1 0 0
−1 0 0 0

 .
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The translation symmetry in y corresponds to the conserved quantity

S[u] = −
∫
y
s(u), s(u) = u(v1)y + v(u1)y, J∇L2S[u] = ∂yu,

which we shall refer to as the momentum.
The tangent space to the center manifold is spanned [17] by

e1 =


u′p(y)

0
−(1 + k2

y∂yyu
′
p)

0

 , e2 =


0

u′p(y)

0
(1 + k2

y∂yy)(1 + k2
y∂yy)u

′
p

 ,

e3 =


−1

2v2(y)
0

u′p(y)− 1
2(1 + k2

y∂yy)v2(y)

0

 , e4 =


0

−1
2v2(y)

0
u′p(y)− 1

2(1 + k2
y∂yy)v2(y)

 .

Here, v2(y) is the second derivative of the eigenvector for the Floquet-Bloch operator (2.1)
in σy at σx = 0 [17]. One readily finds that the reduced flow (2.6) is obtained in this basis
through uc = φe1 + ψe2 + ve3 + me4. The symplectic structure, reduced Hamiltonian, and
reduced momentum are, at leading order, in coordinates U = (φ, ψ, v,m)T , with J from (2.9),

ω(U, Ũ) = U · (J Ũ), H(U) = mψ − 1

2
v2 − 2ε2ψ2 +

1

2
ψ4, S(U) = m.

We note that heteroclinic orbits connect periodic orbits that are marginally stable with respect
to the zigzag instability [24], due to conservation of S. This follows from the fact that x-
reflection changes the sign of S on a periodic pattern such that for heteroclinic orbits between
reflected patterns necessarily S = 0, which in turn holds precisely at the zigzag-critical stripes.
On the other hand, one easily verifies that S is also conserved for a spatially inhomogeneous
ρ = ρ(x) that does not break the associated translation symmetry in y. As a consequence,
since S = 0 at x = +∞ where U → 0, the quenched system with cx = 0 allows for oblique
stripes at x = −∞ only when k = kzz.

2.4. Spatial dynamics and effective boundary conditions. We consider (2.8) now with a
parameter step, replacing the constant coefficient µ with ρ = −µ sign(x). The considerations
in the previous section provide a local description of solutions in a vicinity of the primary
periodic stripe, for x < 0, only. The picture can be complemented by a description of dynamics
in x > 0, where the origin u = 0 is a hyperbolic equilibrium. The following discussion is kept
at a somewhat informal level as it is merely meant to motivate effective boundary conditions.

We first define the stable manifold W s
+ in x > 0 where ρ = −µ < 0, as the set of initial

conditions (u, ux, uxx, uxxx)(y) at x = 0 that give rise to solutions converging to the origin as
x → +∞. Next, we define the center-unstable manifold W cu

− , in x < 0 where ρ = µ > 0, as
the set of initial conditions at x = 0 that give rise to solutions that converge to the center
manifold W c

− for the dynamics in x < 0 near the stripes, as x→ −∞. Solutions of interest to
us lie in the intersection of W s

+ ∩W cu
− .
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Fredholm theory shows that a transverse intersection of these two manifolds would consist
of a two-dimensional submanifold of W cu

− . Since W cu
− is foliated over the 4-dimensional center

manifold W c, we may assume that the submanifold is transverse to this foliation and then
project this two-dimensional submanifold along the smooth foliation onto the center manifold
W c, where it gives rise to a two-dimensional submanifold B of W c. By construction, initial
conditions on this two-dimensional submanifold that give rise to bounded solutions on the
center manifold as x → −∞ correspond to bounded solutions on x ∈ R, after lifting to the
corresponding intersection point in the unstable foliation.

The construction outlined above yields, under some transversality assumptions, the exis-
tence of effective boundary conditions, a two-dimensional submanifold B ⊂W c. By translation
invariance with respect to the shift in y, the center manifold W c, the local flow on W c, and
the effective boundary condition B are invariant under this translation, which is simply given
through the additive action φ 7→ φ+ ϕ on the circle. As a consequence, B = {(ψ, v,m) ∈ B}
for some one-dimensional manifold B which we parameterize as (ψB(σ), vB(σ),mB(σ)), σ ∼ 0,
with ψB(0) = vB(0) = mB(0) = 0.

Within the center-manifold, the scaling x̃ =
√
εx, ψ̃ =

√
εψ, ṽ = εv, m̃ = ε3/2m that re-

duces to the ε-independent Cahn-Hilliard equation (2.7), eliminates the parameter ε at leading
order and gives the Cahn-Hilliard steady-state equation. With this scaling, the boundary curve
B is transformed to Bε ∼ (0, 0, σ) provided that m′B(0) 6= 0. In this sense, we expect a typical
clamped boundary condition

(2.10) ψ = ψx = 0 at x = 0.

Of course, these boundary conditions would be accurate only at leading order in ε.
In the specific case of the Swift-Hohenberg equation with a parameter step, the boundary

manifold is not “generic” in the sense that the tangent space at the origin is given by ψ =
ψxx = 0. This non-genericity is caused by the Hamiltonian structure of the reduced equation,
or, more specifically, by the conservation of momentum. In fact, the equation with parameter
jump in x possesses the y-translation symmetry such that the momentum S is conserved in
x. Therefore, S evaluated on the effective boundary conditions coincides with S evaluated at
the origin, x = +∞. As a consequence, the boundary manifold Bε is contained in {m = 0}.
A generic curve through the origin in the (ψ, v)-plane will, after scaling, reduce to the line
ψ = 0, which together with m = 0 gives the Dirichlet boundary conditions

(2.11) ψ = ψxx = 0 at x = 0.

We would expect small non-variational effects to yield boundary conditions that interpolate
between Dirichlet and clamped, and therefore also study a straight interpolation,

(2.12) ψ = τψx + (1− τ)ψxx = 0. at x = 0,

for 0 ≤ τ ≤ 1. Finally, we shall also consider the time-dependent, scaled version,

(2.13) ψt = −(ψxx + ψ − ψ3)xx + cxψx,

obtained from (2.4) by scaling and setting ψ = Φx, together with the boundary conditions
(2.10) and (2.11). We emphasize that for any of the choices of boundary conditions, mass

∫
ψ

is not conserved at the boundary. In particular, solutions with ψ = 0 at the boundary and
ψ → η 6= 0 for x→ −∞ are possible.
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3. Slow growth: A singular heteroclinic perturbation problem. We analyze the station-
ary equation cx = 0 (2.6) in §3.1 and set up a perturbation analysis with cx & 0 in §3.2. We
relegate some more technical aspects of the analysis to §3.3 which the reader may skip at first
reading. The results in this section establish existence in the lower light gray region of Fig. 4,
left panel.

3.1. Oblique stripes at zero speed. We study (2.6) in the scaling (2.7), and omit the
trivial equation for φ,

ψx = v

vx = −ψ + ψ3 +m

mx = cxψ + cy.(3.1)

First, set cx = cy = 0 which gives m ≡ const and a remaining family of nonlinear pendulum
equation; see Fig. 6. Clamped boundary conditions correspond to a shooting problem from
the line ψ = v = 0 to backward spatial time x < 0. Dirichlet boundary conditions correspond
to a similar shooting problem, now from the line ψ = m = 0. We readily find the solution

2

v

0
-0.5

-1.5

0

-1

m

ψ

-0.5 0

0.5

0.5 1 -21.5

Dirichlet Boundary Conditions

Clamped Boundary Conditions

Figure 6. Phase portrait for (3.1) at cx = cy = 0, including straight lines defined by boundary conditions
at x = 0 and the heteroclinic and homoclinic intersections with the boundary conditions.

ψd(x) = ± tanh(x/
√

2) for Dirichlet boundary conditions, simply “half” of a knee solution
described in the previous section (see Fig. 5, left panel). For clamped boundary conditions,
we find ψcl(x) → η∗ for x → −∞, simply “half ” of the step solution described above, with
“explicit” expression,

(3.2) ψ′cl = (ψcl − η∗)
√

1

2
ψcl(ψcl + 2η∗), m∗ = η∗ − η3

∗, η∗ =
√

2/3;

see Fig. 5. Conservation of m leads to degenerate dynamics in R3 with families of equilib-
ria. Perturbations with cx and cy that break this degeneracy should be viewed as singular
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perturbations in the sense of [9]. While one could go ahead and study this singular perturba-
tion problem geometrically following the ideas there, we choose a somewhat more direct and
possibly more self-contained approach using farfield-core decompositions.

3.2. Oblique stripes for cx & 0. Our main analytical result is as follows.

Theorem 3.1. Consider (3.1) with either clamped (2.10) or Dirichlet (2.11) boundary con-
ditions, near the profiles ψcl/d and near cx = cy = 0. For all cx sufficiently small, there exists a
smooth function cy = −cx ·ηcl/d(cx) and solutions ψcl/d(x; cx) such that ψcl/d(x; cx)→ ηcl/d(cx)
for x → −∞ and ψcl/d satisfy (2.10) or (2.11), respectively. Moreover, ψcl/d and its deriva-
tives depend smoothly on cx as smooth functions, locally uniformly. We have the expansions

ηcl(cx) =

√
2

3
−
(√

6−
√

2 log(2 +
√

3)
)
cx + O(c2

x) ηd(cx) = 1−
√

2 log(2)

2
cx + O(c2

x).

(3.3)

We prove Theorem 3.1 in the remainder of this section, up to some more technical aspects
that we treat with more care in the next section. The key initial step is to decompose
the solution into a constant piece near infinity plus an exponentially localized perturbation.
Specifically, we introduce a smooth cutoff function 0 ≤ χ− ≤ 1, χ− ≡ 1 for x < −2, χ− ≡ 0
for x > −1, and look for solutions of the form

(3.4)

ψv
m

 =

 ψ̂ + χ−η
v

m̂+ χ−(η − η3)

 ,

where η is a constant to be determined, and ψ̂, v, and m̂ decay exponentially at −∞. We then
write (3.1), with cy = −cxη, as an equation for ψ̂, v, m̂ and η in the form

(3.5) F (ψ̂, v, m̂, η; cx) :=

 ψ̂′ + χ′−η − v
v′ + ψ̂ − m̂− ψ̂3 − 3ψ̂2χ−η − 3ψ̂(χ−η)2 + (χ− − χ3

−)η3

m̂′ − cxψ̂ + χ′−(η − η3) + cx(1− χ−)η

 = 0,

in an appropriately chosen exponentially weighted function space. The choice (3.4) implies
that (3.5) has an explicit solution at cx = 0 given by

η0 = η
cl/d
∗ ,

ψ̂0 = ψcl/d − χ−η
cl/d
∗ ,

v0 = ψ′cl/d,

m̂0 = (1− χ−)
(
η

cl/d
∗ − (η

cl/d
∗ )3

)
,(3.6)

where ηcl
∗ =

√
2/3 and ηd

∗ = 1 are the limits of ψcl/d at −∞. For ease of notation, let

u
cl/d
0 = (ψ̂0, v0, m̂0, η0; 0) denote this trivial solution. We will drop the sub- and super-scripts

“cl/d” when the difference is irrelevant.
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In the following section, we use Fredholm properties to prove that the linearization of F at
the trivial solution is invertible in appropriately chosen spaces. The implicit function theorem
then guarantees the existence of unique solutions to (3.5) near this trivial solution as well
as smooth dependence on cx, proving the first part of Theorem 3.1. Uniqueness guarantees

ηcl/d(0) = η
cl/d
∗ , giving the zeroth order terms in the asymptotics. In computing the coefficient

at the next order, we make use of the following fact from linear theory in §3.3:
Fact : Let L = ∂ψ̂,v,m̂F (u0) denote the linearization of F at its trivial solution with respect to

its first three arguments, and let L∗ be the adjoint of L with respect to the standard L2 inner
product. The kernel of L∗ is one dimensional, spanned by ecl

∗ = (−ψ′′cl, ψ
′
cl,−ψcl) for clamped

boundary conditions and by ed
∗ = (0, 0, 1) for Dirichlet boundary conditions.

Once we have existence of solutions and smooth dependence on parameters, differentiating
(3.5) gives, via the chain rule,

(3.7) L
(
∂cx(ψ̂(cx), v(cx), m̂(cx))

∣∣
cx=0

)
+ ∂ηF (u0)η′(0) + ∂cxF (u0) = 0.

The first term may be eliminated by projecting onto the kernel of L∗, which is orthogonal to
the range of L. We thereby find explicit expressions for η′(0) in terms of projections onto the
adjoint kernel:

(3.8) η′cl/d(0) = −〈∂cxF (u
cl/d
0 ), e

cl/d
∗ 〉

〈∂ηF (u
cl/d
0 ), e

cl/d
∗ 〉

.

These derivatives are given explicitly, after some simplification, by

(3.9) ∂ηF (u0) =

 χ′−

3χ−

(
(η

cl/d
∗ )2 − (ψ

cl/d
∗ )2

)
χ′−(1− 3(η

cl/d
∗ )2)

 and ∂cxF (u0) =

 0
0

η
cl/d
∗ − ψcl/d

 .

For clamped boundary conditions, we find

〈∂cxF (ucl
0 ), ecl

∗ 〉 =

∫ 0

−∞
(ηcl
∗ − ψcl)(−ψcl) dx =

∫ 0

ηcl∗

(ψcl − ηcl
∗ )ψcl

dψcl

ψ′cl

=

∫ 0

ηcl∗

(ψcl − ηcl
∗ )ψcl

(ψcl − ηcl
∗ )
√

1
2ψcl(ψcl + 2ηcl

∗ )
dψcl =

∫ 0

ηcl∗

√
2ψcl√

ψcl + 2ηcl
dψcl

=
2 log(2 +

√
3)√

3
− 2,(3.10)

where we have used (3.2) to write ψ′cl in terms of ψcl. For the denominator, we find after



14 M. AVERY, R. GOH, O. GOODLOE, A. MILEWSKI, AND A. SCHEEL

integrating by parts,

〈∂ηF (ucl
0 ), ecl

∗ 〉 =

∫ 0

−∞
−ψ′′clχ

′
− + ψ′cl(3χ−((ηcl

∗ )2 − ψ2
cl))− ψclχ

′
−(1− 3(ηcl

∗ )2) dx

=

∫ 0

−∞
(−ψ′′cl − ψcl(1− 3(ηcl

∗ )2)− 3ψcl(η
cl
∗ )2 + ψ3

cl)χ
′
− dx

+
[
(3ψclχ−(ηcl

∗ )2)− ψ3
clχ−

]0

−∞

=

∫ 0

−∞
−m∗χ′− dx+ 3ψcl(η

cl
∗ )2 − ψ3

cl

∣∣
−∞

= m∗ − 2η3
∗ = ηcl

∗ − 3(ηcl
∗ )3 = −

√
2

3
.(3.11)

Inserting (3.10) and (3.11) into (3.8) gives the leading coefficient in the asymptotics of Theorem
3.1 for clamped boundary conditions.

For Dirichlet boundary conditions, where ed
∗ = (0, 0, 1), we instead find

〈∂cxF (ud0), ed
∗〉 =

∫ 0

−∞

(
ηd∗ − ψd

)
dx =

∫ 0

−∞

(
1 + tanh

(
x/
√

2
))

dx =
√

2 log(2)

and

〈∂ηF (ud0), ed
∗〉 =

∫ 0

−∞
χ′−

(
1− 3(ηd∗)

2
)

dx = 3(ηd∗)
2 − 1 = 2,

which yields the linear asymptotics for Dirichlet boundary conditions and completes the proof
of Theorem 3.1, up to the technical aspects that we present in the next section.

3.3. Weighted spaces, Fredholm properties, and the implicit function theorem. We
construct function spaces Xcl/d and view F as an operator F : Xcl/d × R2 → (L2

δ(R−))3,
defined as follows. First, for δ > 0 small, let H1

δ (R−) denote the weighted Sobolev space of
weakly differentiable functions on x < 0 with finite H1

δ norm, given by

(3.12) ||f(x)||2H1
δ

= ||e−δxf(x)||2H1 ∼
∫ 0

−∞
(|f(x)|2 + |f ′(x)|2)e−2δx dx,

where ∼ denotes equivalence of these two norms. Then, we define

(3.13) Xcl = {(ψ̂, v, m̂) ∈ (H1
δ (R−))3 : ψ̂(0) = v(0) = 0},

and

(3.14) Xd = {(ψ̂, v, m̂) ∈ (H1
δ (R−))3 : ψ̂(0) = m̂(0) = 0}

as the subspaces of (H1
δ (R−))3 satisfying clamped and Dirichlet boundary conditions, respec-

tively. That F is a well-defined and differentiable function between these spaces follows from
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the fact that H1
δ (R−) is a Banach algebra, a property inherited from H1(R−) in combination

with the fact that multiplication by eδx is a bounded operator on H1(R−) for δ > 0, so

||fg||H1
δ

= ||e−δxf(x)g(x)||H1 ≤ C||e−δxf(x)e−δxg(x)||H1 ≤ C||f ||H1
δ
||g||H1

δ
.

The linear operator L : Xcl/d → (L2
δ(R−))3 defined in the previous section is the Fréchet

derivative of F evaluated at the trivial solution defined in (3.6), and is given explicitly by,

(3.15) L

 ψ̂1

v1

m̂1

 =

 ψ̂′1 − v1

v′1 + (1− 3ψ2
cl/d)ψ̂1 − m̂1

m̂′1,

 .

The key ingredients now are Fredholm properties of L, which determine our choice of δ.

Lemma 3.2 (Fredholm properties). For δ > 0 sufficiently small, L is a Fredholm operator
with index -1, trivial kernel, and one dimensional cokernel.

Proof. If (ψ̂1, v1, m̂1) ∈ ker (L), the third equation implies m̂1 is constant, hence vanishes
since our weights enforce localization. The first two equations then reduce to

(3.16) ψ̂′′1 + (1− 3ψ2
cl/d)ψ̂1 = 0,

which is simply the linearization of the pendulum equation for ψcl/d. Translation invariance

of this differential equation guarantees that ψ̂1 = ψ′cl/d is a solution to (3.16). Since the

Wronskian is constant, a second, linearly independent solution to (3.16) necessarily grows
exponentially and we conclude that ψcl/d is the unique solution that is bounded at x = −∞.

Hence, for δ > 0, ψ̂1 = ψ′cl/d is the only solution to (3.16) that is contained in our weighted

space. In the case of clamped boundary conditions ψ̂′1(0) = ψ′′cl(0) 6= 0, so the solution does

not satisfy the boundary conditions at x = 0. For Dirichlet boundary conditions, ψ̂(0) =
ψ′d(0) 6= 0, and again the boundary conditions are not satisfied. Thus, the kernel of L is
trivial.

We find the cokernel by viewing L as a closed, densely defined operator on (L2(R−))3

and computing its adjoint L∗ with respect to the standard L2 inner product. The boundary
conditions for the adjoint are the orthogonal complement to the boundary conditions for L,
i.e. the domain of L∗ is the dense subspace of (L2(R−))3 defined by

(3.17) Ycl = {(ψ̂1, v1, m̂1) ∈ (H1
−δ(R−))3 : m̂1(0) = 0}

in the clamped case and

(3.18) Yd = {(ψ̂1, v1, m̂1) ∈ (H1
−δ(R−))3 : v1(0) = 0}

in the Dirichlet case. In both cases, L∗ is defined by the formula

(3.19) L∗
 ψ̂1

v1

m̂1

 =

− d

dx
+

 0 1− 3ψ2
cl/d 0

−1 0 0
0 −1 0

 ψ̂1

v1

m̂1

 =

−ψ̂′1 + (1− 3ψ2
cl/d)v1

−v′1 − ψ̂1

−m̂′1 − v1

 .
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Searching for the kernel of L∗ reduces to solving

v′′1 + (1− 3ψ2
cl/d)v1 = 0,

ψ̂1 = −v′1,
m̂′1 = −v1(3.20)

with appropriate boundary conditions given by (3.17) and (3.18), respectively. The equation
for v1 is again the linearization of the equation for ψcl/d, hence we obtain solutions

(ψ̂1, v1, m̂1) = (−αψ′′cl/d, αψ
′
cl/d,−αψcl/d + β),

for arbitrary constants α and β. Choosing δ sufficiently small guarantees that these are the
only possible solutions, as the other linearly independent solution of the equation for v1 must
grow exponentially with some fixed rate, since the Wronskian is constant. For clamped bound-
ary conditions (3.17), we obtain β = 0, hence the cokernel is spanned by ecl

∗ = (−ψ′′cl, ψ
′
cl,−ψcl).

Dirichlet boundary conditions (3.18) force α = 0, since ψ′d(0) 6= 0, so in this case the cokernel
is spanned by ed

∗ = (0, 0, 1). Note that constants and asymptotically constant functions are
allowed in our space due to the exponential weight, now appearing with opposite sign −δ for
the L2-dual of L2

δ . In either case, the cokernel is one dimensional, as claimed.
To complete the proof, one needs to verify that L has closed range. To see this, note that

the operator ρ : (ψ̂1(x), v1(x), m̂1(x)) 7→ (e−δxψ̂1(x), e−δxv1(x), e−δxm̂1(x)) is an isometric
isomorphism from (L2

δ(R−))3 → (L2(R−))3. The conjugate operator Lρ := ρ ◦ L ◦ ρ−1 (fixing
η and cx and viewing L as a function of its first three arguments only) is then of the form
∂x + A(x), where x 7→ A(x) is a continuous mapping with limit A− := limx→−∞A(x) a
hyperbolic matrix. The proof that the range of L is closed then follows by applying the
argument of [35, Theorem 2.1], to Lρ and making use of this isomorphism.

In order to solve (3.5) using the implicit function theorem, we make use of our farfield-core

decomposition to treat η as a variable. Provided the linearization ∂ηF (u
cl/d
0 ) does not lie in

the range of L, appending η as a variable increases the dimension of the range of the derivative
of F by 1, and hence the derivative becomes invertible. The implicit function theorem then
gives the existence of a unique solution (ψ̂(cx), v(cx), m̂(cx), η(cx); cx) near u0 in Xcl/d × R2

(in particular for sufficiently small cx), depending smoothly on cx. Thus, the argument is
complete once we prove the following lemma:

Lemma 3.3 (Transversality). The derivative ∂ηF (u
cl/d
0 ) does not lie in the range of L.

Proof. The range of L is orthogonal to the kernel of L∗. In §3.2, we computed the projec-

tions of ∂ηF (u
cl/d
0 ) onto the respective adjoint kernels, and found them to be nonzero, which

proves the lemma.

Remark 3.4 (Geometry). The fact that ∂ηF (u
cl/d
0 ) does not lie in the range, or, equiva-

lently, that the scalar product with the kernel of the adjoint does not vanish, has an equiv-
alent geometric interpretation in terms of transversality, hence the name of Lemma 3.3. In
the Dirichlet case, both unstable manifold η = 1 and the subspace of solutions satisfying
the boundary conditions are one-dimensional. Adding η as a parameter, we merely consider
the center-unstable manifold, now two-dimensional, and show that it intersects the boundary
subspace transversely, which in turn is seen inspecting the phase portrait.



GROWING STRIPES, WITH AND WITHOUT WRINKLES 17

4. Moderate growth rates: from oblique stripes to zigzags through homoclinic bifur-
cations. We analyze the Cahn-Hilliard approximation (2.13) for moderate speeds cx > 0 with
clamped or Dirichlet boundary conditions at x = 0. We investigate existence of heteroclinic
orbits using numerical continuation, finding a solution set that we refer to as the kink-dragging
bubble in §4.1. We then analyze the endpoint of maximal cx where a saddle-node bifurcation
gives rise to time-periodic solutions, §4.2, which in turn disappear in a detachment process
for yet larger speeds, §4.3. The analysis here completes the picture within the Cahn-Hilliard
approximation schematically represented in the left panel of Fig. 4.

4.1. The kink-dragging bubble. Having established existence of oblique stripe formation
for small cx in the previous section, we pursue moderate values of cx using heteroclinic con-
tinuation. The results here extend the light gray existence region in the left panel of Fig. 4 to
the dark region and discuss in particular the upper boundary of dark gray existence.

We solve (3.1) numerically setting cy = −ηcx,
ψx = v
vx = −ψ + ψ3 +m in − L < x < 0,
mx = cx(ψ − η)

{
ψ = 0, τv + (1− τ)m = 0, at x = 0,
ψ = η, v = 0, at x = −L,

The parameter τ interpolates between Dirichlet boundary conditions ψ = ψxx = 0 at τ = 0
and clamped boundary conditions ψ = ψx = 0 at τ = 1.

Note that the three-dimensional ODE is equipped with 4 boundary conditions. The re-
sulting overdetermined system is solved by leaving the asymptotic angle η as a free variable,
a procedure which mimics well the Fredholm analysis in §3.1. The number of boundary
conditions at x = −L can also be understood as defining a one-dimensional linear subspace
which approximates the one-dimensional unstable manifold of the equilibrium ψ = η at ze-
roth order. We used arc-length continuation with parameter cx starting at cx = 0; see Fig. 7
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Figure 7. Bifurcation diagrams of heteroclinic orbits in (4.1) for several values of the boundary homotopy
parameter τ , plotting η = ψ(x = −L) (orientation of oblique stripes) as a function of speed cx; solid lines
correspond to linearly stable, dashed to unstable solutions.

for results. The saddle-node bifurcation occurs at cosn
x = 0.136, ηosn = 0.704 for clamped

boundary conditions and cosn
x = 0.322, ηosn = 0.681 for Dirichlet boundary conditions. Note

that the saddle-node is apparently degenerate in the projection onto η in the case of clamped
boundary conditions, a fact that we corroborated by computing the kernel at the saddle-node
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location which exhibits a zero η-component. We illustrate how the “folding” at the saddle-
node changes orientation near τ = 1 by continuing the homotopy past τ = 1. Incidentally, we
found that cosn

x is minimal at τ = 1.
Fig. 8 shows selected solutions profiles and spectra of linearized operators obtained from

linearizing (2.13) at these stationary solutions. We notice that, continuing through the saddle-
node, solution profiles turn non-monotone at the bifurcation point and, continuing back to
cx = 0 on the unstable branch, ultimately develop a kink. In an unbounded domain, solutions
on the unstable branch converge locally uniformly as cx ↘ 0 to the reflected solution with
η = −η(cx = 0), while a kink near x = −∞ mediates a jump back from η = −1 to η = +1.

The linearized spectra, computed in large domains, approximate the extended point spec-
trum and the absolute spectrum in the unbounded domain; see [36]. We computed the curves
given by the absolute spectrum of −∂4

x + (1 − 3η2)∂2
x + cx∂x via continuation as outlined in

[34]. We confirmed that most eigenvalues cluster on these curves, with the exception of a
simple isolated real eigenvalue that crosses the origin in the saddle-node bifurcation.

The rightmost points of the absolute spectrum are pinched double roots which are stable
as long as the selected state η(cosn

x ) is convectively stable (which is true for all computed
profiles, here since η > 1/

√
3 is linearly stable). Note that the spectrum in the unbounded

domain contains a branch of continuous spectra, inherited from the linearization at ψ ≡ η,
that can be readily computed using the Fourier transform as

λ = −k4 + (1− 3η2)k2 + cxik, k ∈ R.

The zero mode λ = k = 0 is caused by neutral mass conservation at x = −∞.
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Figure 8. Bifurcation diagrams for (4.1), τ = 0 (left) and τ = 1 (center), with computed profiles in insets
and red markers for values from direct simulations. The right figure shows the spectrum of the linearization
at the critical equilibrium, demonstrating that the saddle-node bifurcation is caused by an isolated eigenvalue.
Blue superimposed lines show absolute spectra; see text for details.

In order to further demonstrate the nature of the saddle-node bifurcation, we investigated
perturbations of the unstable equilibrium close to the saddle-node in direct simulations. We
found the typical separation of the neighborhood of the unstable equilibrium by a codimension-
one stable manifold. Perturbations on either side of this manifold lead to either release of a
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single kink and convergence to the reflected, negative, stable equilibrium, or to convergence
to the stable equilibrium nearby after annihilation of the trapped kink in the unstable profile
at the boundary x = 0, respectively; see Figure 9.
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Figure 9. Space-time plots of perturbations of the unstable solution profile, resulting in either release (left)
or annihilation (right) of the kink; see text for details.

4.2. Kink-shedding — saddle-node on a limit cycle. This section is concerned with
zigzagging past the saddle-node, near the lower boundary of the orange region in the left panel
of Fig. 4. The simulations in Fig. 9 suggest that heteroclinic orbits connect the two saddle-
node equilibria conjugate by reflection ψ → −ψ, in a locally uniform sense, thus forming a
(double, since there are two equilibria) saddle-node bifurcation on a limit cycle. One therefore
expects to observe, for parameter values cx just past the saddle-node, a periodic orbit with
large temporal period, due to slow passages near the region in phase space where the saddle-
node was located. This periodic orbit corresponds to periodically changing the sign of ψ,
which in turn yields a zigzag or wrinkled pattern in the original Swift-Hohenberg equation.
One can therefore infer leading-order asymptotics of the period of the periodic orbit from the
leading-order expansion of dynamics on the center-manifold, only. We shall compare such
predictions with periods measured in direct simulations, here.

Before calculating this expansion, we notice however a technical difficulty for the problem
posed on the unbounded half line. The kink released by the perturbation from the unstable (or
the saddle-node) equilibrium travels to the left from x = 0 with speed cx but never vanishes,
such that the heteroclinic solution converges to the opposite saddle-node equilibrium locally
uniformly, but not in any translation-invariant norm that one may want to use to establish well-
posedness of the equation. The problem is reflected in the presence of essential spectrum in
the linearization at the equilibrium ψ∗(x; cx), stemming from the linearization at the constant
η∗,

spec (−∂4
x + (1− 3η2)∂2

x + cx∂x) = {λ = −k4 + (1− 3η2)k2 + ik, k ∈ R},

which touches the origin at λ = 0. Similar to the nonlinear considerations in §3, the essential
spectrum can be stabilized in exponentially weighted norms

‖u(x)‖δ = ‖u(x)e−δx‖L2(R−), δ & 0,

but nonlinear analysis is typically not feasible in such norms. It is therefore not clear how the
subsequent computer-supported analysis of the saddle-node could be made more rigorous.
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We computed an eigenfunction e associated with the kernel at the saddle-node and an
associated adjoint eigenfunction e∗ to obtain an expansion for an effective equation on a
center manifold,

(4.1) A′ = α(cx − cosn
x ) + βA2 + O

(
(cx − cosn

x )2 + |cx − cosn
x ||A|+ (|A|+ |cx − cosn

x |)3
)
,

where

(4.2) α =

∫ 0

−∞
e∗(x)

(
ψcl/d(x; cosn

x )
)
x

dx, β =

∫ 0

−∞
e∗(x)

(
3ψcl/d(x; cosn

x )e2(x)
)
xx

dx,

with normalizations∫ 0

−∞
e∗(x)e(x)dx = 1,

∫ 0

−∞
e(x) · exp(x/10)dx = 1,

Note that the second normalization is as usual somewhat arbitrary, fixing the length of the
vector e(x) used to coordinatize the center manifold. Since e∗ is exponentially localized, all
integrals converge, and we find for clamped and Dirichlet boundary conditions, respectively,

αcl = −0.493 . . . , βcl = −0.0297 . . . , αd = −0.959 . . . , βd = −0.0297 . . . .

From the expansion, we compute a leading order passage time near the saddle-node T
which gives frequency ω and spacing L of kinks

(4.3) T =
π√

αβ(cx − cosn
x )

ω = 2
√
αβ(cx − cosn

x ), k = ω/cx, L = 2π/k.

We compare the predictions with measurements in direct simulations and find agreement,
for speeds cx very close to criticality; see Fig. 10. Agreement is much better for Dirichlet
boundary conditions. A tentative explanation for the discrepancy in the clamped case is as
follows. The eigenfunction associated with the saddle-node is exponentially localized; see
the degeneracy of the saddle-node in Fig. 7. The heteroclinic orbits correspond to global
excursions that converge back to this equilibrium, but in a leading direction not associated
with this eigenfunction but with continuous spectrum reflecting the slow shedding of a kink. In
this sense, the excursion can be understood as a codimension-two heteroclinic loop connecting
symmetric saddle-node equilibria, where heteroclinics enter the critical equilibrium along a
direction other than the saddle-node, leading to changed asymptotics. Unfortunately, the
direction associated with this flip of the heteroclinic is not hyperbolic as in [5] and we are not
aware of good heuristics for predicted asymptotics in this case.

On the other hand, the presence of a flip bifurcation usually marks the boundary between
a heteroclinic orbit to a saddle-node bifurcation on a limit cycle and a heteroclinic orbit to
a hyperbolic equilibrium. For moderate domain sizes and clamped boundary conditions, the
limit of time-periodic orbits is indeed a heteroclinic loop to the unstable equilibrium resulting
from the saddle-node bifurcation. In particular, one finds a small region of coexistence of
periodic orbits and stable equilibria, that is, of wrinkled and oblique stripes; see Fig. 11.

We conclude with a more detailed description of the resulting (time-)periodic orbits in
Fig. 12. Solutions converge to stationary solutions of the Cahn-Hilliard equation (in the
steady frame) but develop characteristic non-monotone twin-horn structures as transients. It
would clearly be interesting to analyze this bifurcation in a more precise asymptotic analysis.
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Figure 10. Plot of L−2 from measured data close to cosnx , compared with the prediction (4.3), for Dirichlet
(left) and clamped (right) boundary conditions. Measurements of wavelengths were either direct as L, (◦) or
indirect through temporal periods 2π/ω, (∗).
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Figure 11. Critical speeds c
osn/hom
x over moderate sized domains, L = 7, 8, ..., 12, for clamped boundary

conditions. Left: chomx (the speed at which the periodic orbits disappear) and cosnx (the speed at which the saddle
node occurs) versus domain size. Both converge as L → ∞. Middle: log(|cosnx − chomx |) versus domain size,
showing that this difference converges to zero exponentially in L. Right: space-time demonstration of bistability
for L = 7, cx = 0.148. Initial data for the top right plot was a small perturbation of the equilibrium at the
saddle node; ψ maintains the half-heteroclinic profile, corresponding to oblique stripes (see Fig. 5). The bottom
right plot used low amplitude random initial data, and converges to a stable periodic orbit.

4.3. Kink-shedding beyond the saddle-node and detachment. We conclude the study
of the Cahn-Hilliard regime with predictions until detachment of zigzags, the upper boundary
of the orange region in the left panel of Fig. 4. From direct simulations, we find that the
wavelength continuously decreases until the kink-shedding detaches and we relax to ψ ≡ 0 as
the stable solution. In any bounded domain, this detachment transition induces a very steep
bifurcation, common for transitions between convective and absolute instabilities [21, 50, 38].
Speed and wavenumber converge to speed and wavenumber of the invasion front in the Cahn-
Hilliard equation, given by [41, Lemma 1.5]

clin
x =

√
2

27

(
−1 +

√
7
)(

2 +
√

7
)
∼ 1.62208, klin =

3(3 +
√

7)

8
√

5 +
√

7
∼ 0.765672.

The analysis in [15] demonstrates this limiting behavior in the case of the complex Ginzburg-
Landau equation and, making conceptual assumptions on existence [41] and transversality
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Figure 12. Profile snapshots (left) from direct simulations for cosnx < cx < clinx (left), showing characteristic
sequences of up-down kinks with decreasing spacing, and a characteristic overshoot in the form of twin-horns at
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boundary conditions, including predictions from linear spreading speed theory as in (4.4) near clin (left). Sample
solution profiles near detachment (right). Numerical details as in Fig. 12.

of the Cahn-Hilliard invasion front, should extend to the situation here; see [16] for such a
conceptual extension. Moreover, [15] gives a first-order correction to the selected frequency
near the linear front speed clin

x which is independent of the boundary conditions at x = 0,
obtained simply from the intersection of the absolute spectrum with the imaginary axis. The
somewhat lengthy calculation of this intersection yields

k(cx) =
3(3 +

√
7)

8
√

5 +
√

7
+

9
√

6(2 +
√

7)(4 +
√

7)

800 + 304
√

7
(cx − clin

x ) + O
(

(cx − clin
x )3/2

)
∼ 0.765672 + 0.196835(cx − clin

x ).(4.4)

with good agreement for both clamped and Dirichlet boundary conditions; see Fig. 13.

5. Perpendicular detachment, oblique reattachment, and all-stripe detachment. We
next move beyond the regime where the Cahn-Hillard phase approximation gives a good
description and use amplitude equations to explore speeds and wavenumbers further away
from ky = kzz and cx = 0; see the right panel of Fig. 4. Indeed, the phase approximation
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simply predicts stable perpendicular stripes for larger speeds and we will see how instabilities of
those correspond to the creation of amplitude defects. Our main focus is the upper boundary
of perpendicular stripe existence, the red region in Fig. 4, right panel, in §5.1 and stripe
detachment, the upper boundary in Fig. 4 center and right, in §5.2.

5.1. Detachment of perpendicular stripes and reattaching oblique stripes. We study
the reattaching of oblique stripes in amplitude equations (2.3),

(5.1) At = −(∂xx + 1− k2
y)

2A+ ρ(x)A− 3A|A|2 + cxAx.

Connections to the Swift-Hohenberg equation can be made more rigorous using spatial center-
manifold techniques; see for instance [43, §3] for such a derivation and [42] for the relevant
normal form analysis in the presence of a parameter step.

The subspaces A ∈ R and A ∈ iR are invariant and correspond to solutions that are even
with respect to reflections at y = 0 and y = π/ky, respectively. Several scalings are possible
in this equation and we shall fix throughout ρ(x) = −µsign(x), µ = 1

4 . Perpendicular stripes
in x < 0 correspond to solutions A ≡ const, oblique stripes to A ∼ exp(ikxx).

Continuing perpendicular stripes in cx: another saddle-node on a limit cycle. Perpendicular
stripes can be found as stationary solutions to (5.1) with A ∈ R, with boundary conditions
A(x)→ 0 for x→∞, A(x)→ r(ky) for x→ −∞, with r2(ky) = µ− (1− ky)2. We solved for
solutions using numerical continuation and found a saddle-node bifurcation at cpsn

x (ky) that
ends at wavenumbers ky = k±y with

k−y ∼ 0.781 . . . , k+
y =

√
4 +
√

3

2
= 1.19709 . . . ,

cpsn
x (k−y ) = 0, cpsn

x (k+
y ) =

1
4
√

27
= 0.43869 . . .(5.2)

see Fig. 14 where the saddle-node is shown in red. We will discuss the rationale for cpsn
x (k+

y )
and expansions for the saddle-node bifurcation for ky near this upper boundary in §5.2, and
analyze the behavior near k−y at the end of this section1. Continuing through the saddle-node,
one can follow the now unstable branch of perpendicular stripes in decreasing cx and observe
phenomena very similar to the kink shedding observed in the Cahn-Hilliard equation, §2. The
solution profile develops a kink which separates from the quenching line; see Fig. 14. The
kink typically possesses oscillatory tails, and therefore weakly locks to the quenching line,
thus leading to a snaking bifurcation diagram near cx = 0, that is, the speed oscillates around
0 while the distance of the kink from the quenching line increases. We emphasize that this
kink, while similar to the kinks discussed in §4, is however a kink in the amplitude of the
stripe rather than in its orientation.

Interesting phenomena occur when, for smaller ky, the saddle-node interacts with the
snaking diagram. We explore this region in somewhat more detail in §6.2. We see that the

1Fig. 14 also shows a light-gray curve that is the continuation of the green spreading speed for smaller
values of ky. For this curve, the speed is in fact complex and we plotted the real part, only. It appears to
predict the saddle-node bifurcation surprisingly well, but we were not able to find any theoretical foundation
for this apparent coincidence.
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Figure 14. Bifurcation diagram (top left) for perpendicular stripes in NWS, (5.1); existence bounded by
red (saddle-node cpsnx , prediction (5.9) in blue, neighboring pitchfork to oblique in magenta, spreading speed for
oblique stripes in brown) and green (perpendicular detachment) curves, with marker at the junction (k+y , cx(k+y ))
(5.2); green shaded stability region bounded by zigzag czzx (light gray) and cross-roll ccr,±x (light blue) speeds,
marker (kty, 0) for Turing-type instability against amplitude modulations (5.6). Sample plots (top right) for
(ky, cx) = (0.781, 0) (black), at (ky, cx) = (0.9, 0.05) (stable, blue; unstable, red), and (ky, cx) = (0.9, 0.2412) at
the saddle-node (green). Transitions at boundaries underneath in simulation snapshots; see text for details.
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snaking diagram breaks up into isolas which resemble at first figure-eight shapes with pairs of
saddle-nodes. For yet smaller ky, two saddle-nodes disappear in a cusp bifurcation and only
an isola with two saddle-nodes remains, which eventually disappears when the two saddle-
node bifurcations coalesce in a parabolic catastrophe at the minimum value of ky for which
perpendicular stripes exist; see Fig. 22. Note that in this respect, the bifurcation diagram in
Fig. 14 is rather incomplete, omitting in particular many saddle-node bifurcations near the
lower range of ky-values.

Increasing cx past the saddle-node, one observes periodic kink-shedding similar to the
situation in §2, with some caveats. The kink-shedding is only observed in spaces of functions
that are even with respect to y = 0 and odd with respect to y = π/2, or y-translates of
functions in this subspace. Perturbations away from this subspace can lead to different phe-
nomenologies, associated with destabilization and bifurcations of perpendicular stripes prior
to the saddle-node in the (ky, cx)-plane. Those stability boundaries are shown in Fig. 14 and
we shall discuss them in somewhat more detail in the remainder of this section. The associated
phenomenologies are illustrated in direct simulations for the Swift-Hohenberg, also in Fig. 14
and discussed in more detail, below: We see periodic amplitude-kink shedding for cx past the
saddle-node, with random perturbations (1) and with even in y random perturbations (2),
evidencing the saddle-node on a limit cycle dynamics discussed in §5.1; crossing the zigzag
boundary near cx = 0.1, zigzag modulations spread into the domain (3); the zigzag instabil-
ity is suppressed for even initial conditions (4); parallel stripes just past the upper cross-roll
instability at cx = 0.2 (5) are suppressed for odd w.r.to y = π/(2ky) initial conditions (6); for-
mation of spotted defects on perpendicular stripes past the lower cross-roll boundary, visible
for even initial conditions (7), suppressed for even-odd initial conditions (8), eventually even-
odd destabilized to squares past the saddle-node (9); detachment of even-odd perturbations
of stripes past the spreading speed of perpendicular stripes (10).

Stability and instability of perpendicular stripes — pitchfork to oblique stripes. The lineariza-
tion at the quenched perpendicular stripes A∗(x) ∈ R exhibits a bifurcation in the direction of
complex A, breaking the reflection symmetry in y. We analyzed this bifurcation by studying
the linearized operator in the direction of Ai := ImA,

LiAi =
[
−(∂xx + 1− k2

y)
2 + ρ− 3(A∗)2

]
Ai.

This operator possesses essential spectrum up to the origin due to the marginal stability of
stripes in the far-field. For positive speeds, the essential spectrum can however be pushed
into the left half plane using exponential weights ‖A‖δ = supx(1 + exp(−δx))−1|A(x)|, see
[10], allowing us to track possible instabilities by eigenvalues emerging near λ = 0. By
gauge invariance (from y-shift symmetry), the operator possesses a zero eigenvalue in this
exponentially weighted space, given simply by A∗. Close to the saddle-node, an eigenvalue
crosses the origin. At criticality, the zero eigenvalue is a Jordan block of length two and as
expected the generalized eigenvector exhibits linear growth at x → −∞. Spatial dynamics
methods as in [37, 39] should allow one to confirm the observed bifurcation towards oblique
stripes at this parameter value. We show evidence for this bifurcation in the numerical study
of the full Swift-Hohenberg equation in §6.

The corresponding bifurcation curves are shown as the magenta curve in Fig. 14. Bifur-
cations happen very close to the saddle-node bifurcation except in a region ky = 1.12± 0.04,
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where the pitchfork is located on the unstable branch just past the saddle-node bifurcation. In
this region, perpendicular and oblique quenched stripes coexist, although the oblique stripes,
bifurcating from the unstable branch, are unstable against the saddle-node eigenfunction.

Stability and instability of perpendicular stripes – zigzag and cross-roll spreading. We recall
from the earlier discussion in the Cahn-Hilliard equation that perpendicular stripes are un-
stable for small speeds due to an absolute zigzag instability. In the amplitude equation, this
instability boundary can be computed from the linear spreading speed associated with the
zigzag-instability. Linearizing the amplitude equations at a perpendicular stripe, we find a
complex fourth-order linear equation

Ar,t = [−(∂xx + 1− k2
y)

2 + µ− 9r2(ky)]Ar,

Ai,t = [−(∂xx + 1− k2
y)

2 + µ− 3r2(ky)]Ai.

The zigzag instability is visible in the imaginary part. Computing the linear spreading speed
of instabilities in this equation [18] one finds

(5.3) czz(ky) =
4√
27

(
2 +
√

7
)√√

7− 1
(
1− k2

y

)3/2
,

which is in fact independent of µ.
The resulting stability boundary is shown in Fig. 14. It intersects the saddle-node bifur-

cation curve near ky = 0.920, cx = 0.278, thus marking the smallest wavenumber for which
there exist quenching rates at which straight perpendicular stripes can be observed.

In a domain of half the width y ∈ (0, π) with Neumann boundary conditions, the zigzag
instability is suppressed and perpendicular stripes are stable for smaller values of ky. A
subsequent instability is visible only in the coupled mode system for Aeiy +Beix + c.c,

At = −(∂xx + 1− k2
y)

2A+ µA− 3A(|A|2 + 2|B|2) + cxAx

Bt = 4Bxx + µB − 3B(|B|2 + 2|A|2) + cxBx.

Linearizing at A ≡
√
µ− (1− k2

y), we find a linear operator 4∂xx + µ− 6(µ− (1− k2
y)) which

becomes unstable outside of the interval(
k−ycr , k

+
ycr

)
=

(√
1−

√
µ/2,

√
1 +

√
µ/2

)
∼ (0.80402, 1.16342) for µ = 1/4.

This instability is known as the cross-roll instability. One readily finds an associated spreading
speed [18],

(5.4) ccr
x (ky;µ) = 4

√
2
(
1− k2

y

)2 − µ.
The upper boundary intersects the pitchfork bifurcation curve near ky = 1.168, cx = 0.504
thus marking the largest wavenumber for which there exist quenching rates for which straight
perpendicular stripes can be observed. The resulting stability boundaries are again depicted in
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Fig. 14. Phenomena associated with this instability, such as spotted defects on perpendicular
stripes, even-odd squares, and parallel stripes, are shown in Fig. 14, (5)–(8)2.

Both zigzag and cross-roll instability are supercritical in the sense that cubic nonlinearities
in associated amplitude equations provide negative feedback and nonlinear saturation. From
this one expects [51] and observes numerically that linear spreading speeds give accurate
predictions for the associated absolute instability. Both can be eliminated from the Swift-
Hohenberg equation in the strip by restricting to even-odd initial conditions.

Blocking perpendicular stripes by amplitude modulations. The saddle-node curve in Fig. 14
terminates at cx = 0 for small ky, after reaching a minimal value of ky for finite cx. There
do not appear to be analytic predictions for either minimal ky-values or the limit at cx = 0
as those appear to be global bifurcations even at these limiting points. The fact that the
existence of quenched perpendicular stripes is limited can however be understood near cx = 0
from an amplitude modulational instability. In fact, inspecting the real amplitude equation
(5.1) with ρ(x) ≡ µ at a perpendicular stripe, we find, after shifting A = r(ky) + v so that
the perpendicular stripes correspond to u = 0, a Swift-Hohenberg equation with quadratic
nonlinearity,

(5.5) vt = −(∂xx + 1− k2
y)

2v + µeffv + γv2 − 3v3, µeff = µ− 9r2(ky), γ = −9r(ky).

This equation undergoes a weakly subcritical pattern-forming instability at ky = ky,a, with
selected wavenumber `a, with

(5.6) ky,a =

√
1−

√
2µ/3, `a = 4

√
2µ/3, (ky,a, `a) ∼ (0.7692, 0.6389) at µ = 1/4.;

see Fig. 14 for the location of the amplitude modulational instability relative to the saddle-
node. Phenomenologically, perpendicular stripes develop amplitude modulations in this in-
stability.

In the quenched problem with cx = 0, the perpendicular stripes are hyperbolic equilibria
prior to this instability, ky > ky,a. At the instability, they undergo a Hamiltonian Hopf
bifurcation with normal form given by a subcritical Ginzburg-Landau equation, CXX ± C +
C|C|2 = 0, after suitable scalings. Stable and unstable manifolds of the origin therefore
are contained in compact subsets of a small neighborhood of the origin in the normal form,
surrounded by families of invariant tori. Persistence results for such tori under non-normal
form perturbations using KAM theory would therefore bound the unstable manifold inside a
small neighborhood of the origin and make an intersection with the stable manifold of A = 0
at x = +∞ impossible close to criticality.

5.2. Detaching all stripes. Increasing the speed further, one eventually sees all stripes
detach: the trivial state occupies an increasingly large region in x < 0, behind the quenching
line, as cx increases, until this region eventually expands linearly in time. The quenching
process at this point ceases to create stripes and instead creates an unstable state, which is
invaded by a free invasion front [51] in a region well separated from the quenching line. We
briefly present predictions for this detachment process and, in particular, consequences for
stripe orientation.

2See also files sh *.m4v in the supplementary materials for movies of solutions
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Linear spreading speeds. Disturbances in the linearized Swift-Hohenberg equation with
simple y-dependence of the form eikyy solve

ut = −(∂xx + 1− k2
y)

2u+ µu.

Compactly supported initial conditions to this equation spread with the spreading speed
(5.7)

clin(ky) =


4(2−2k2y+

√
1−2k2y+k4y+6µ)

√
−1+k2y+

√
1−2k2y+k4y+6µ

3
√

3
, 0 < ky <

√
2+
√

3µ
2

4
√
−1+k2y−

√
4−8k2y+4k4y−3µ(−2+2k2y+

√
4−8k2y+4k4y−3µ)

3
√

3
,

√
2+
√

3µ
2 < ky <

√
1 +
√
µ.

In a frame moving with this speed, one observes oscillations with frequencies ωlin(ky) which
are in 1 : 1-resonance with patterns formed at wavenumbers ωlin(ky) = clin(ky)klin(ky), with

(5.8) klin(ky) =


3(3−3k2y+

√
1−2k2y+k4y+6µ)

3/2

8(2−2k2y+
√

1−2k2y+k4y+6µ)
, 0 < ky <

√
2+
√

3µ
2

0,

√
2+
√

3µ
2 < ky <

√
1 +
√
µ.

We refer to [18] for background and in particular for results that demonstrate that this speed
is non-increasing in |ky| more generally in isotropic systems.

The values for µ = 1/4 are included in Fig. 14 as the upper boundary. The cross-over

point ky =

√
2+
√

3µ
2 distinguishes between kx = 0, perpendicular stripes, and kx > 0, oblique

stripes, selected by the spreading in the leading edge.
It is worth noticing that, due to the monotonicity clin(ky) ↘ in ky > 0, parallel rolls

(ky = 0) always spread fastest and generic initial conditions in a system without or with fast
enough moving parameter step will lead to stripes oriented parallel to the growth interface.
In other words, all modes with ky 6= 0 decay pointwise in a window moving in the x-direction
with speed clin(ky = 0).

Quenched stripes near the linear spreading speed. Nevertheless, we observed oblique stripes
in the quenched system with values of cx up to the linear spreading speed for values of
ky ≤ 0.95. For larger values of ky ≥ 1, we noticed that oblique stripes selected in the quench-
ing process destabilize against parallel stripes well before the linear spreading speed of oblique
stripes in what appears to be related to the cross-roll instability. In fact, for ky close to the
cross-over, the perpendicular stripes are unstable against the cross-roll instability and, by con-
tinuity of spreading speeds [18], oblique stripes would be unstable against such perturbations
as well for values near the cross-over point. We did not attempt a more comprehensive study
of stability of oblique stripes far from the transition near perpendicular stripes.

Near the detachment, the results in [15] establish corrections to the wavenumber based
on absolute spectra. Based on these predictions, one concludes in this regime near the linear
spreading speed, that the transition from oblique to perpendicular stripes occurs at leading
order when the absolute spectrum, computed in the co-moving frame, possesses a triple point
at λ = 0. Some tedious algebra, solving{

d(0, ν; cx, ky) = 0,
d(0, ν + i`; cx, ky) = 0,

with d(λ, ν; cx, ky) = −(ν2 + 1− k2
y)

2 + µ+ cxν − λ,
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as one real and one complex equation for the three real variables (ν, `, cx) with parameter ky,
leads to the location of this triple point at

ctr(ky) =

4
(

2
√

3(1− k2
y) + 5

√
−4(1− k2

y)
2 + 7µ

)√
−3(1− k2

y) +
√
−12(1− k2

y)
2 + 21µ

21
√

7

= 2
√

2
(µ

3

)3/4
+ 4

√
2 +

√
3µ
(µ

3

)1/4
∆ky + O

(
∆k2

y

)
,(5.9)

for ∆ky = ky −
√

2+
√

3µ
2 . 0; see Fig. 14 for a comparison between these asymptotics, the

saddle-node of perpendicular stripes, and the pitchfork bifurcation of oblique stripes.

6. Back to Swift-Hohenberg: organizing stripe formation in the moduli space. We
present a conceptually simple object, the moduli space, that captures much of the phenomena
presented in this work, in particular many of the results from direct simulations as summarized
in the parameter landscape of stripe formation, Fig. 3. The moduli space is a variety in
(kx, ky, cx)-space, which encodes stripe formation at the rate cx with stripes of wave vector
(kx, ky) in the wake. We present a more precise definition and describe coarse features of
this object in §6.1. The remaining paragraphs zoom in on some of the finer structures of
the variety, relating to oblique detachment §6.2, perpendicular detachment, §6.3, and the
interaction of the two detachments, §6.4. A more detailed description of numerical strategies
used for computing this variety is included in the appendix.

6.1. The moduli space. Solutions that form stripes in the wake of the quenching step can
be stationary in an appropriately co-moving frame, hence solving the elliptic traveling-wave
equation

0 = −(∂xx + k2
y∂yy + 1)2u+ µ(x)u− u3 + cx(ux + kxuy),(6.1)

0 = lim
x→−∞

(u(x, y)− up(kxx+ y; k)) , 0 = lim
x→∞

u(x, y), u(x, y) = u(x, y + 2π).

Note that the vertical velocity satisfies cy = cxkx since asymptotic patterns are stationary
in a stationary frame. We emphasize that this system only captures the simplest solutions
that form stripes with a given wave vector — actual stripe formation could possess periodic
or even more complex temporal modulations. The system (6.1) comes with three parameters
(kx, ky, cx), and we define the moduli space as

M = {(kx, ky, cx)| there exists a solution to (6.1)}.

One can see using Fredholm theory that this moduli space would typically be a two-dimen-
sional surface, except at singularities (or bifurcation points). Roughly speaking, following
[40, 10], the Fredholm index of the linearization at solutions to (6.1) in exponentially weakly
localized spaces is given by the signed sum of the number of group velocities associated with
neutral or unstable modes pointed towards the quenching line. In our case, the only neutral or
unstable mode is associated with the translation of stripes, which possesses zero group velocity
in a steady frame, such that its group velocity in the co-moving frame points away from the
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Figure 15. Left: Coarse view of the moduli space computed via continuation in both ky and c, with dark
blue representing perpendicular stripes, color shading kx which roughly encodes the angle from perpendicular
(dark blue) to parallel (yellow). Right: A zoom into the region ky ∼ 1, showing in particular the touch-
down near cx = 0, ky = kzz, kx = 0 via the kink-dragging bubble which resembles a delicate arch in this view,
the perpendicular stripe detachment at finite cpsnx where a wing-like surface lifts up above the plane, and the
hyperbolic catastrophe where delicate arch and wing meet. Perpendicular stripes in dark blue, zig-zag critical
stripes with k2zz = k2x+k2y, cx = 0 as black line, detachment of oblique stripes cosnx at red curve via kink shedding
and at orange curve via final detachment.

interface, leading to a negative Fredholm index -1, in complete analogy to the calculation
in §3. The kernel of the linearization is typically trivial since y-derivatives generated by the
translation symmetry are not exponentially localized. As a consequence, the solution surface
has codimension 1 in the space of parameters (kx, ky, cx). Practically, this surface encodes the
regimes of existence for various orientations of striped patterns formed behind the quenching
line. When paired with stability information, it gives a recipe for how to select various
orientations of stripes through quenching rates and lateral aspect ratios.

The moduli space is shown in Fig. 15, and various cross-sections in ky and cx of the surface
are depicted in Fig. 18–21. The two key organizing elements, the oblique detachment and the
perpendicular detachment are both clearly recognizable as a delicate arch near cx = 0 and a
lift-off to a wing-shaped structure at larger cx. Both collide in the hyperbolic catastrophe3. In
the following, we explain in more detail the information contained in this surface, and how it
relates to our previous analysis. We encourage, however, at this point, a comparison with the
coarse information from the parameter landscape in Fig. 3. The moduli space is computed
using a continuation method based on the farfield-core decomposition outlined in [24], as well
as in §3.2; see the appendix for more detail about our implementation of this method and how
it was used to explore different regions of the surface.

6.2. Kink-dragging and the delicate arch. We next present continuation results of the
kink-dragging bubble, visible as the “delicate arch” in Fig. 15. As discussed in §2.4, y-
dependent patterned solutions with cx = 0 must select the critical zigzag curve {(kx, ky, cx) | cx =
0, k2

zz = k2
x + k2

y}. Indeed starting with kx = 0 and continuing in decreasing ky with cx = 0
fixed, oblique stripes bifurcated at the zig-zag critical wavenumber ky = kzz and the resulting

3See movie moduli.m4v in supplementary materials for an animated 360◦ tour of the moduli space.
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curve conserves the bulk wavenumber k = kzz; see the black curve in Fig. 16. These solutions
were then used as initial guesses to continue solutions in cx with ky fixed (blue curves in
Fig. 16, left panel; or Fig. 21, left panel)4.

0.98 0.985 0.99 0.995 1

0

1

2

3

4

5

6
10

-3

Figure 16. Top row: Moduli space of the kink-dragging bubble (left) as interpolated surface (colored)
from data obtained from numerical continuation for (6.1) in cx (blue dots), compared against Cahn-Hilliard
asymptotics (6.2) with Dirichlet boundary conditions (grey surface). Green and red curves denote the fold
curve in Swift-Hohenberg and Cahn-Hilliard respectively. Black curve gives the stationary zig-zag critical curve
{(kx, ky, cx) : k2zz = k2x + k2y, cx = 0} discussed in §2.3. Also shown, projection of saddle-node curves onto the
(ky, cx)-plane (right).

We also used the bifurcation curves obtained in §4.1 for the kink-dragging bubble in
the Cahn-Hilliard system (4.1) to obtain a prediction for the corresponding bubble in Swift-
Hohenberg. Letting (cx,ch, ηch(cx,ch)) denote the bifurcation curves for the speed and angle of
stripes in the Cahn-Hilliard system, appropriate scalings yield the Swift-Hohenberg prediction,

(6.2) ky = kzz − ζ, kx =
√

2 kzz ζ
1/2 ηch, cx = 8 ζ3/2cx,ch;

see Fig. 16. We find that the numerically predicted saddle-node curve (green) obtained from
(cosn
x,ch, η

osn
ch )(ζ), asymptotically agrees well with the saddle-node curve in Swift-Hohenberg (red

curve).

6.3. Periodic detachment, oblique reattachment, and all-stripe detachment: the wing.

As predicted in §5.1, continuing perpendicular stripes in cx for ky fixed less than

√
4+
√

3
2 ∼

1.1971, the solution destabilizes in a saddle-node bifurcation, after which the unstable branch
undergoes a secondary pitchfork bifurcation from which the oblique stripes bifurcate5; see
Fig. 19. The bifurcating oblique stripes then continue up to the detachment curve (kx, ky, cx) =
(klin(ky), ky, clin(ky)) predicted by the linear spreading speed calculated in §5.2. Note that af-
ter the fold bifurcation, the perpendicular stripes develop a phase-kink in the vertical direction
(see solution (3) of Fig. 19), indicating how the nearby periodic solutions will evolve as shown

4See kink ky9.930188e-01.m4v in supplementary materials for movie solutions along a slice of the bubble.
5See movie ky1.064602e+00.m4v in supplementary materials for video of how solutions vary along this

slice of moduli space
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Figure 17. Left: Comparison of the pitchfork and saddle-node curves found in Swift-Hohenberg (blue and
green points) with predictions from Newell-Whitehead-Segel, Fig. 14 (magenta and red curves). Also plotted is
the perpendicular stripe detachment curve (yellow) and the projection of the oblique stripe detachment curve
(orange). Right: Plot of numerical detachment points (i.e. where the core solution dropped below a certain
max norm near the boundary of the far-field) for both oblique (blue x’s) and perpendicular (purple x’s) stripes

against the corresponding predictions from the linear spreading clin(ky) for both ky <
√

2+
√
3µ

2
(orange curve)

and ky >
√

2+
√
3µ0

2
(yellow curve).

in Fig. 14. Fig. 17 compares the saddle-node, pitchfork, and detachment points, to the corre-
sponding predictions from previous sections.

6.4. Hyperbolic and elliptic catastrophes at detachment interaction. Also, our solu-
tions show that some reattachment curves near the lower ky boundary of the perpendicular
attachment regime actually bend back and connect with the critical zigzag curve at cx = 0,
with the solution developing a kink at its interface6; see Fig. 21. This happens when the kink-
dragging bubble merges with the oblique-stripe reattachment surface, causing the top branch
of the kink-dragging bubble to continue to the all-stripe detachment curve and the bottom
branch of the bubble to connect with the perpendicular stripes. Locally, the reconnection can
be described by Morse theory as a family of hyperbolas forming a hyperboloid, δky ∼ κ2

1 − κ2
2

where κj are local coordinates in the (kx, cx)-plane.
Meanwhile, the saddle-node curve of perpendicular stripes reaches a minimum near ky ∼

0.777 before snaking around cx = 0; see Fig. 14. Towards these smaller ky-values, perpendic-
ular stripes are confined to a finite interval of cx-values where they form an isola between the
two branches of the saddle-node, before disappearing. Near the singularity, the isolas have
the shape of ellipses, forming a paraboloid, δky ∼ κ2

1 + κ2
2 for local coordinates κj in the

(cx, ‖w‖)-plane.
Increasing ky slightly from this elliptic singularity, ky ∼ 0.778, we observe two new saddle-

nodes emerging in a cusp singularity and the isolas form figure-eight shaped curves; see Fig. 22.
We also found a small branch of oblique stripes with kx ∼ 0 which bifurcates off and reattaches
to the upper branches of the figure-eight isolas7; see Fig. 23. We suspect that the isolas
continue into a more complex scenario of broken up snakes and ladders as observed for instance

6See Catastrophe ky8.42e-01.m4v and Catastrophe ky8.4712e-01.m4v in supplementary materials
for movies of how solutions vary around the catastrophe.

7See barba ky7.8e-01.m4v in supplementary materials for movie of solutions along this isola.
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Figure 18. Slices of the moduli space cx = 0.2949 (left, dotted red) and 0.0908 (left, solid blue) fixed with
solution profiles at various points along the surface (right)
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Figure 19. Cross-section of the moduli space for ky = 1.0646 fixed, near the oblique stripe reattachment
point (left), with solution profiles along the perpendicular and oblique curves (right). Profiles (1) and (2) lie on
the stable branch of the fold while (3) lies on the unstable branch.

0 0.2 0.4 0.6 0.8 1 1.2

10
-3

0.07

0.08

0.09

0.1

0.11

0.12

20 40

2

20 40

2

20 40

2

20 40

2

Figure 20. Cross section of kink-dragging bubble, continuation data with ky = 0.99302 fixed (left) and
solution profiles for points along kink-dragging curve (right), corresponding to labels in the left figure.
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Figure 21. Catastrophe where kink-dragging bubble merges with the oblique reattachment surface as ky is
decreased (left). Cross-sections on left for ky = 0.84712 (solid dark red), and ky = 0.842 (dashed blue) and
corresponding solution profiles (right).
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Figure 22. Isola curves of perpendicular stripes near the parabolic catastrophe, plotting L2-norm of the
core-solution against cx, for ky = 0.7779, 0.778, 0.779, 0.78 (from left to right).
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Figure 23. Perpendicular figure-eight isola (blue) for ky = 0.78, where a small branch of oblique stripes
(max kx ∼ 0.12) bifurcate as secondary pitchfork bifurcations (orange) .

in [26, 25].

7. Discussion. We analyzed the formation of stripes formed in the wake of a directional
quenching process, relating in particular orientation and wavelength to the speed of propaga-
tion of the quenching line. Our work here focused on a region of transition between stripes
formed perpendicular to the quenching line, and stripes formed at a small oblique angle. Our
major findings illustrate that this transition is in fact quite subtle, organized by a variety of
bifurcations of solutions, often accompanied by essential spectra.

While we present ample numerical evidence substantiating our predictions, more rigorous
results would clearly be desirable. We believe that approximation results for traveling waves
connecting the quenched Swift-Hohenberg problem and Cahn-Hilliard or Newell-Whitehead-
Segel equations should allow one to lift many of the results in §3–5 to the Swift-Hohenberg
model. More substantial insight is needed for predictions based on spreading speeds, which
suffer from the fundamental lack of understanding of invasion processes absent a comparison
principle; see for instance [18] for a review.

Among the key organizing recurring features are saddle-node bifurcations. Taking a per-
spective of increasing the rate of quenching cx for a fixed lateral wavenumber ky, we can
continue both perpendicular and oblique stripes until they undergo a saddle-node bifurcation.
In both cases, the saddle-node bifurcation marks the release of a defect (or kink) from the
quenching line. This kink is visible both in the continuation of the unstable branch from the
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saddle-node bifurcation point, as its distance from the quenching line increases with decreasing
quenching speed cx, and in the profiles visible for speeds past the critical saddle-node speed.
Both saddle-node bifurcations are of independent theoretical interest. First, the bifurcation
to periodic orbits resembles in many ways a saddle-node on a limit cycle, with many caveats
reflected in the asymptotics of period and in the lack of an actual homoclinic orbit connecting
the saddle-node equilibrium. Second, it would be very desirable to gain a theoretical un-
derstanding of the saddle-node that would ideally predict its location in the (cx, ky)-plane,
possibly also explain the presence of the additional nearby pitchfork bifurcation for perpendic-
ular stripes. Our analysis only gives such predictions near a detachment point and for small
speeds, only.

Beyond the transition from perpendicular to oblique stripes, we have analyzed detachment
[15, 16], ky ∼ 0 [14], and ky = 0, cx ∼ 0 [13] in prior work. From this “completist” perspective,
the major challenge appears to be a description of the moduli space in a vicinity of ky, cx = 0.

Our results are somewhat universal. Small speed predictions near the zigzag transition
should hold quite universally for systems with such an instability. Moderate speed predictions
should hold near onset, where amplitude equation approximations are valid. We did notice
however subtle differences varying µ or, more generally, setting ρ(x) = µ± for ±x > 0. From
this perspective, we hope that our computational approach in §6 will help compare different
systems systematically and quantitatively, in particular in regimes where subtle bifurcations
and multi-stability make a direct mapping of parameter space through direct simulations
unreliable. Interesting extensions here would include different types of parameter triggers,
boundary conditions at x = 0 rather than quenching, and non-variational effects, but also
systems such as reaction-diffusion models from morphogenesis, possibly far from onset.

Our results on perpendicular stripes in §5 predicted transitions in direct simulations very
well. In particular, the far-field instabilities of perpendicular stripes appeared to be the only
limitations on observability other than the saddle-node and pitchfork bifurcations. We did not
attempt such a stability analysis for oblique stripes, which would be both algebraically and
computationally more involved, but would clearly complement and to some extent complete
the analysis, here.

Within the context of pattern formation, a very natural next question would point towards
growth patterns when spots, in particular on hexagonal lattices, are the preferred states.
Many of the tools here, in particular computational recipes from §6 and amplitude equation
approximations would still be available in this context. Changes in orientation of hexagonal
lattices with respect to the quenching line are however subject to more complex pinning effects,
as the lateral period for the creation of ideal energy-minimizing hexagons would be subject
to a wealth of resonances as the relative angle varies; we refer to [32] for a study of hexagonal
patterns formed in the wake of interfaces, with emphasis on periodicities and orientation of
lattices in the example of phyllotaxis.

Appendix A. Farfield-Core continuation and the moduli space. To explore the moduli
space, we use the general approach outlined in [24], as well as in §3.2, where heteroclinic
profiles are decomposed into a pure asymptotic state cut off away from negative infinity, and an
exponentially localized perturbation which glues the asymptotic state to another asymptotic
state at positive infinity. We use a cutoff function χ−(x) supported on x ≤ d+ 1 with χ− ≡ 1
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on x ≤ d to decompose solutions of (6.1) as

u(x, y) = w(x, y) + χ−(x)up(kxx+ y; k);

see Fig. 24 for a depiction of the various solution components.
We insert this Ansatz into (6.1) and use the fact that the stripe solution up is an easily

available solution for ρ ≡ µ to obtain the following nonlinear problem for (w; kx, ky, cx) on a
truncated domain

L (w + χ−up)− (w + χ−up)3 = 0, (x, y) ∈ (0, Lx)× (0, 2π)(A.1)

w = wxx = 0, (x, y) ∈ {0, Lx} × (0, 2π)(A.2)

∂jyw(x, 0)− ∂jyw(x, 2π) = 0, x ∈ (0, Lx), j = 0, ..., 3,(A.3) ∫ 2π

x=0

∫ 2π

y=0
u′p(kxx+ y; k)w(x, y)dy dx = 0,(A.4)

−
(
k2 d

2

dξ2
+ 1

)2

up + µup − u3
p = 0, ξ ∈ (0, 2π)(A.5)

dj

dξj
up(0)− dj

dξj
up(2π) = 0, j = 0, ..., 3.(A.6)

where L = −(∂xx + k2
y∂yy + 1)2 + ρ(x) + cx(∂x + kx∂y), and k2 = k2

x + k2
y, and where the

parameter jump is now located at Lq = 8Lx/10, ρ(x) ∼ −µsign(x− Lq).

20 40

2

20 40

2

20 40

2

Figure 24. Example of a farfield-core decomposition of a traveling wave solution u = w+χ−up, quenching
interface at x = 8Lx/10 ∼ 100 and far-field cutoff at x = 3Lx/10 ∼ 37.

This decomposition suppresses the continuous family of neutral modes, arising from the
asymptotic periodic pattern, in the spectrum of the linearization about a generic traveling
wave solution u(x, y) of (6.1). In the x-unbounded domain, one imposes exponential weights
on the perturbation w to obtain a Fredholm index -1 linearization in w which, after appending
the wavenumber parameter kx, yields a Fredholm index 0 problem, with trivial kernel whenever
the derivative with respect to kx does not belong to the range.

Truncating to x ∈ [0, Lx], we impose Dirichlet boundary conditions in x which are read-
ily found to be transverse to the unstable subspace of the asymptotic stripes and constant
state at x = ±∞. This implies that the truncated problem has the correct Fredholm in-
dex in (w, kx, ky, cx) and the perturbation w will be exponentially localized in the domain
for generic parameter values. This also implies that truncated solutions converge to the full
modulated traveling wave as Lx → ∞. Note also that since the quenching interface destroys
x-translational invariance, we need only one phase condition (A.4) to eliminate the multiplic-
ity from the translational mode ∂yup and fix the vertical phase of the solution. See [24, 31]
for more details about this approach.
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Using the above formulation, we implemented an arc-length continuation algorithm in
matlab2018a, solving for (w, kx) and continuing in either c or ky with the other fixed. We
roughly followed the approach outlined in [24, §3] and refer the reader there for more details
on the implementation. To discretize the problem, we used fourth-order finite differences in x
with Lx = 40π and approximately 500 grid points. We used a pseudo-spectral discretization
in y with 26 collocation points and the far-field periodic patterns up were also computed on
a periodic domain ζ ∈ [0, 2π) using a Fourier pseudo-spectral method with 26 collocation
points. The quenching interface was placed at x = 8Lx/10 and the cutoff-interface was placed
at d = 3Lx/10; see Fig. 24 for a depiction of the computational domain and the solution
decomposition. The Jacobian of the discretized system is formed explicitly in w while the
derivatives in parameters were approximated using a second-order finite difference. We used
the trust-region algorithm in matlab’s fsolve to perform the nonlinear Newton iterations.
Our initial guess for the nonlinear solver consisted of a piece-wise constant stripe solution,
rotated to have a specific wavenumber, and cutoff at the quenching interface. Throughout all
of this section we used the onset parameter µ = 0.25.

We explored the solution space starting from initial guesses along the line (kx, ky) =
(1, 0), keeping c ∈ (0, clin(0)) fixed and continuing in ky to track oblique solutions as they
continuously perturbed from parallel stripes, ky = 0. For large ky curves in parameter space
either run into the detachment curve predicted by clin(ky) (roughly in the region cx ≥ .55)
or the solution transitions, via a pitchfork bifurcation, through the family of perpendicular
stripes, to the opposite orientation of stripes with kx < 0. In the former cases, the core
solution w loses localization, bleeding into the far-field domain x ∈ (0, d) and the L2-norm of
the full solution u decays to zero as cx → clin(ky).

To explore the perpendicular stripe region we started from initial patterns along the line

(kx, ky) = (0, 1.12) for a range of cx. Continuing in increasing ky for cx < clin

(√
2+
√

3µ
2

)
∼

0.438691, the core solution once again loses localization as the detachment curve clin(ky) is
approached. For larger cx ∼ 0.5, continuation in ky gives an isola bounded by the two saddle-
node curves predicted by the Newell-Whitehead-Segel equation; see Fig. 14 and 17.

Fig. 15 combines these two sets of continuations, oblique/parallel and perpendicular
striped, to give an overview of the moduli surface and we find good agreement for all ori-
entations of stripes between the measured detachment points and predictions from the linear
spreading speed (5.7); see Fig. 18–21 for slices of the moduli space for select values of cx with
corresponding solution profiles8.
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