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Abstract

We classify generic instabilities of wave trains in reaction-diffusion systems on the real

line as the wavenumber and system parameters are varied. We find three types of robust

instabilities: Hopf with nonzero modulational wavenumber, sideband, and spatio-temporal

period-doubling. Near a fold, the only other robust instability mechanism, we show that

all wave trains are necessarily unstable. We also discuss the special cases of homogeneous

oscillations and reflection symmetric, stationary Turing patterns.
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1 Wave trains in reaction-diffusion systems

We are interested in spatio-temporally periodic solutions in essentially one-dimensional sys-

tems of partial differential equations on large domains. As a prototype, we study reaction-

diffusion systems on the real line

ut = Duxx + f(u;µ), (1.1)

where u ∈ RN , x ∈ R, µ ∈ R, D = diag (dj) ≥ 0, and the nonlinearity f , referred to as

the kinetics, has sufficiently many derivatives. Our approach translates in a straightforward

manner to more complicated, dissipative physical systems such as fluid or optical instabilities.

The simplest patterns beyond spatially homogeneous equilibria are solutions which break one

of the two continuous symmetries, time and space translation, with a residual discrete spatio-

temporal symmetry, u = uwt(kx − ωt), u(ξ) = u(ξ + 2π). We refer to this type of solutions,
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Hopf Per. dbl. Sideband Pure Hopf Fold Turing

Generic ω, k 6= 0

Oscillation ω 6= 0, k = 0

Turing ω = 0, k 6= 0

Equilibria ω = k = 0

Table 1: Robust codimension-one instabilities of the given wave train type.

which are stationary in the comoving variable y = x − ω
k t, as wave trains. From a symmetry

point of view, wave trains possess maximal nontrivial isotropy in the group R × R of space

and time translations.

There are two special cases, k = 0 and ω = 0: the case k = 0 corresponds to a periodic

solution of the pure kinetics ODE, in absence of diffusion, which are spatially homogeneous

oscillations. The case ω = 0 corresponds to spatially periodic stationary solutions, which we

refer to as Turing patterns. These special cases are also distinguished in terms of symmetry,

because (1.1) possesses a reflection symmetry x → −x which leaves homogeneous oscillations

and (typically) Turing patterns invariant.

While wave trains are an interesting and common phenomenon in pattern-forming reaction-

diffusion systems such as variants of the Belousov-Zhabotinsky reaction or the Chlorite-Iodite-

Malonic-Acid reaction, they are predominant in a number of other non-equilibrium, damped-

driven physical systems. Here we only mention waves in various fluid experiments such as

Marangoni convection, Bénard convection, and the Taylor-Couette experiments; [3, 38, 6, 1, 4].

In order to map out qualitatively different dynamics in these extended systems, the stability of

wave trains and how stability is typically lost are of particular interest. In this article we give

a list of codimension-one instabilities of wave trains in terms of the modulational frequency

and wavenumber in the critical spectrum, and determine which of these instabilities may occur

in a robust fashion for wave trains, homogeneous oscillations, and Turing patterns.

Typical instabilities are:

Hopf: Critical nonzero frequency, and non-zero, non-resonant wave num-

ber

Period Doubling: Hopf with 1:2 resonance in wave number and frequency

Sideband: Critical frequency and wave number close to zero

Pure Hopf: Hopf with zero wave number.

Fold or Pitchfork: Critical frequency zero in addition to translational mode

Turing: Critical frequency zero and wave number non-zero .

Only three of these mechanisms are typical for generic wave trains, while all of them are robust

in reflection symmetric scenarios; see Table 1. Our main results give proofs of robustness. We

also argue for non-robustness, but only on the level of the dispersion relation. The dispersion

relation is an analytic function of frequency and wavenumber, whose roots correspond to
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spectrum of the linearization at a wave train of (1.1). Our results extend the simpler list

for the onset of instability at spatially homogeneous equilibrium points, k = ω = 0, where

unstable modes come as ei(αt−`x), leading to the four elementary instabilities Fold, Turing,

Pure Hopf, and oscillatory Turing (sometimes referred to as Turing-Hopf, here simply ’Hopf’);

[32, Def. 2.3].

Outline: We start with a review of robustness properties of families of wave trains in §2.
We then characterize linear stability and classify boundaries of stability in §3. We discuss

different directions in which this linear stability analysis can be complemented to a nonlinear

bifurcation theory, including modulation equations, bifurcation theory in spatial and temporal

dynamics, and absolute instabilities in §4.

2 Families of wave trains

Wave trains solve the boundary-value problem

k2Du′′ + ωu′ + f(u;µ) = 0 , u(2π) = u(0), (2.1)

where ′ = d
dx , and the linearization in a wave train uwt, given by

Lu := k2Du′′ + ωu′ + ∂uf(uwt;µ)u, (2.2)

defines a closed unbounded operator with compact resolvent on L2
per(0, 2π) with domain

H2
per(0, 2π) when k 6= 0 and H1

per(0, 2π) when k = 0 and ω 6= 0. Note that u′

wt always

contributes to the kernel of L owing to the spatial translation symmetry of (2.1).

Lemma 2.1 (Continuation of wave trains) Assume that (2.1) has a wave train solution

u∗

wt for some (k, ω, µ) = (k∗, ω∗, µ∗) where either k∗ 6= 0 or ω∗ 6= 0. Suppose that λ = 0 is

an eigenvalue of L of algebraic multiplicity 1. Then there exists a local family of wave trains

uwt(ξ; k, µ) with frequencies ω(k, µ) for (k, µ) ∼ (k∗, µ∗), which smoothly depends on (k, µ)

with uwt(ξ; k∗, µ∗) = u∗

wt(ξ) and ω(k∗, µ∗) = ω∗.

Proof. In case k∗ 6= 0, the derivative of (2.1) with respect to ω gives u′, an element of the

kernel of L, and by the assumption of algebraic multiplicity one of 0 in Ker (L), it does not lie

in its range. By the implicit function theorem we can solve for ω and u jointly as a function

of parameters such as k and µ.

In case k∗ = 0 we have ω∗ 6= 0 by assumption, and so we may precondition (2.1) for (k, ω) ∼
(k∗, ω∗) by writing

∂ξu + (k2D∂ξ + ω)−1f(u;µ) = 0.

Since f : H1
per(0, 2π) → H1

per(0, 2π) is smooth and (k2D∂ξ + ω)−1 : H1
per(0, 2π) → L2

per(0, 2π)

is continuous in k = 0 for ω 6= 0, we can again solve via the implicit function theorem by

exploiting simplicity of the zero eigenvalue of the linearization at k = 0.
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Remark 2.2 If u∗

wt is reflection symmetric, u∗

wt(ξ) = u∗

wt(−ξ), k 6= 0, ω = 0, then (2.1) can

be solved in the space of even functions for a family of even patterns. The spectral assumption

can thus be reduced to an assumption in the subspace of even functions.

We call the function ω = Ω(k) the nonlinear dispersion relation, the quotient ω/k =: cph the

phase speed and Ω′(k) the (nonlinear) group velocity.

From a slightly different view point on the boundary-value problem (2.1) we rewrite the system

as a first-order ODE

u′ = v, k2v′ = −D−1 (ωv − f(u;µ)) . (2.3)

and look for periodic orbits to this system with parameter ω given as a function of the period

2π/k. Due to the spatial translation symmetry of (2.1), the derivative (u′, v′) gives rise to

a trivial Floquet multiplier ρ = 1 near the periodic orbit. The geometric multiplicity of ρ

coincides with the geometric multiplicity of λ = 0 for L, however algebraic multiplicity one

of the unit Floquet multiplier ρ amounts to a different condition than algebraic multiplicity

one of λ = 0 for L: assuming ρ is algebraically simple, we would be able to solve for k (alias

the period) as a function of ω and µ, which appear explicitly in (2.3). Also, the limit k = 0 is

somewhat more difficult as it gives rise to a singular perturbation problem with slow manifold

v = f(u;µ)/ω and slow flow u′ = f(u;µ) + O(k2).

On the other hand, the symmetry x 7→ −x translates into a reversibility [5] for (2.3): solutions

(u, v)(ξ) yield solutions (u,−v)(−ξ) = R(u, v)(−ξ), with involution R : (u, v) 7→ (u,−v) and

symmetry plane Fix R = {(a, 0) | a ∈ R}. Reversible periodic orbits, that is, periodic orbits

that are invariant under R as a set, come in one-parameter families if the images of Fix R

under the period maps Φ2π/k, k ∼ k∗ of the flow Φx of (2.3) intersect Fix R transversely. We

may then vary ω or µ and find periodic orbits nearby.

We emphasize that the class of spatio-temporally periodic solutions of a single phase variable

does not include the interesting class of standing waves, u(t, x) = u(t + T, x) = u(t,−x) =

u(t, x + L), which are even and doubly periodic in x and t.

3 Stability: ODE and PDE spectra

The stability of a given wave train in the PDE is determined largely by spectral information.

We therefore study the eigenvalue problem to the linearization of (1.1) at a wave train uwt(kx−
ωt),

ut = Duxx + f ′(uwt(kx − ωt;µ)u. (3.1)

When ω 6= 0, this parabolic equation possesses a period-2π/ω map Φ and we denote the

spectrum of Φ considered on L2(R) by Σm. For convenience, we will mostly work with Floquet

exponents, i.e. the set Σ = {λ; e2πλ/ω ∈ Σm}. In order to describe the set Σ, it suffices to

consider solutions of (3.1) of the form

u(t, x) = eλt+νxw(kx − ωt), w(ξ) = w(ξ + 2π).

4



so that w satisfies

L(ν)w := D(k∂ξ + ν)2w + ω∂ξw + f ′(uwt(ξ);µ)w = λw. (3.2)

We let Σ(ν) denote the spectrum of L(ν) as an unbounded operator on L2
per(0, 2π).

In case ω = 0, equation (3.1) is autonomous and the spectrum of an arbitrary time-T map is

given by the exponential of the spectrum Σ of the operator on the right-hand side of (3.1).

Lemma 3.1 (Floquet-Bloch decomposition) It holds that

Σ =
⋃

ν∈iR

Σ(ν) =
⋃

ν∈i[0,k)

Σ(ν).

Proof. See [15] for a proof in the steady case ω = 0 and [27] for the relation to the period

map in the time-periodic case.

The lemma allows to define geometric and algebraic multiplicities for an element λ in the

spectrum Σ as the sum of all geometric or algebraic multiplicities of λ in Σ(ν) for all ν ∈ i[0, k)

so that λ ∈ Σ(ν).

We can obtain a very compact characterization of the eigenvalue problem by writing (3.2) as

a first-order ODE

k∂ξw = −νw + v, k∂ξv = −νv + D−1
(

−ω
ν

k
w +

ω

k
v − f ′(uwt(ξ)w + λw

)

.

We denote by Ψλ,ν the period-2π map of the non-autonomous ODE. The spectrum Σ(ν)

consists precisely of those λ for which Ψλ,ν possesses a fixed point.

Lemma 3.2 (Complex dispersion relation) The spectrum of Σ(ν) is given by the roots λ

of

d(λ, ν) := det (Ψλ,ν),

and algebraic multiplicity of the eigenvalue coincides with the order of the root of d.

Proof. The spectral characterization by roots follows also from the Floquet-Bloch decom-

position, and multiplicities coincide due to Jordan chains of the same length as the order of

the roots [15].

For λ = iα and ν = i` we obtain the usual linear dispersion relation d(iα, i`) = 0, which we

can typically solve locally for α(`); we call cg := − d
d`α(`) the (linear) group velocity, which

coincides with the nonlinear group velocity Ω′(k).

Since the boundary-value problem (3.2) is real and inherits possible symmetries of uwt(ξ), we

have

d(λ, ν) = d(λ̄, ν̄), (3.3)

and, if ω = 0 and u is even, or if k = 0, we have

d(λ, ν) = d(λ,−ν). (3.4)
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The Floquet covering symmetry induced by the logarithm translates into

d(λ, ν) = d(λ − iω, ν + ik), (3.5)

because for a solution w(ξ) = eiξw̃(ξ) of (3.2) we have L(ν)w = λw as well as

L(ν)eiξw̃(ξ) = L(ν + ik)w + iωw,

and hence L(ν + ik)w = (λ − iω)w.

Instabilities of spectrum through the imaginary axis are characterized by purely imaginary

λ = iα and ν = i`, which thus come as a sequence (±iα+imω,±i`− imk), m ∈ Z. We remark

that in the comoving spatial coordinate y = x − ω
k t the covering symmetry of the spectrum

becomes (λ, ν + imω/k), m ∈ Z, so marginally stable spectrum typically consists of a single

point or complex conjugate pair. In this setting closed curves of spectrum are possible, but in

coordinates y = x− ct with c 6= ω/k these become unbounded spiraling curves in the complex

plane with periodic real part.

Since d(0, 0) = 0, the following definition characterizes the “most stable”, and robust spectral

configuration for a wave train.

Definition 3.3 A wave train uwt is called strongly stable, if its dispersion relation satisfies

the following conditions.

(S) Stable for λ 6= 0: d(λ, i`) 6= 0 for all Reλ ≥ 0, λ 6= 0, and all ` ∈ R

(S0) Stable for ` 6= 0: d(0, i`) 6= 0 for all ` ∈ (0, k)

(LS) Long-wave stability: ∂λd(0, 0)∂ννd(0, 0) < 0

Our interest is the boundary of the set of strongly stable wave trains; we will argue in terms

of codimension and classify the codimension-one scenarios which might be encountered during

a parameter homotopy, fixing either k or µ.

More precisely, we say that an instability is robust, if the conditions for its onset are codimension-

1, i.e. in an m-parameter family of dispersion relations with the above properties the conditions

are satisfied on a m−1-dimensional manifold under generic conditions on the unfolding. Note

that it is sufficient to show robustness under perturbations of d, since d depends smoothly on

the coefficients of the ODE.

Notation: Whenever ∂λd 6= 0 for some λ = iα and ν = i`, we can solve d(λ, ν) = 0 for λ = λ(ν)

locally. We will refer to coefficients in the Taylor jet of this complex curve λ(ν) via

λ(ν − i`) = ia0 + a1(ν − i`) + a2(ν − i`)2 + a3(ν − i`)3 + a4(ν − i`)4 + R(ν − i`), (3.6)

where R(ν) = O((ν − i`)5), and a0 = α ∈ R. The coefficients aj ∈ C can be readily computed

by implicit differentiation, and inherit parameter dependence. Note that whenever in addition

λ(0) = 0, complex conjugation symmetry implies aj ∈ R.
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3.1 Generic wave trains, cg 6= 0, k 6= 0

The boundary of strong stability is characterized by four different conditions: d(iα, i`) = 0 for

α = 0, α 6= 0, or ∂λd(0, 0) = 0, or ∂ννd(0, 0) = 0. We claim that the following three conditions

are robust in the boundary of strong stability for wave trains with cg 6= 0 and k 6= 0, that is,

they occur in open subsets of the boundary of stability.

Hopf: We assume (LS) and (S0), and we assume that (S) is violated for a unique pair (up to

Floquet multiples) λ = ±iα 6∈ {0, iω/2}, ν = ±i` 6∈ {0, ik/2}, where d = 0 and for (3.6) we

have

a1 ∈ R \ {0}, Re(a2) > 0.

Period-Doubling: We assume (LS) and (S0), and that (S) is violated for a unique (up to

Floquet multiples) λ = iω/2, ν = −ik/2, where d = 0 and for (3.6) we have

a1 ∈ R \ {0}, Re(a2) > 0.

Sideband: We assume (S) and (S0), and that (LS) is violated so that at λ = ν = 0 for (3.6)

we have

a2 = 0, a4 < 0.

The following lemma gives assumptions on the unfolding that give a robust instability. We

denote by µ the unfolding parameter, and by µ̂ possible perturbation parameters.

Lemma 3.4 Hopf and Period-Doubling are robust if Re ∂µ(a0) 6= 0, and Sideband if ∂µ(a2) 6=
0.

Proof. We can always write the perturbed curve of critical eigenvalues as λ(ν) = a0(µ) +

a1(µ)ν̂ + a2(µ)ν̂2 + O(3), where ν̂ = ν − i`∗.

In the Hopf case, ω∗ 6= 0, a0(0) = iω∗. The onset of stability is depending on µ implicitly

through the equations

Re ν = 0, Re λ(ν) = 0, Imλ′(ν) = 0. (3.7)

We can solve these three (real) equations with respect to the (real) parameters µ,Re ν, Im ν.

Indeed, we can solve the first two equations by adjusting Re ν (trivially) and µ (by assumption).

We are then left with Im(a1 + a2ν + O(ν2)) = 0, evaluated in ν = i`. Since Re a2(0) 6= 0,

we may solve for Im ν as a function of µ by the implicit function theorem. In particular, the

solutions to the set of equations (3.7) depend smoothly on additional perturbation parameters

µ̂, which shows robustness. Note that by continuity, the stability condition Re(a2) > 0 is met

for small µ̂ as well.

In the period-doubling case, application of complex conjugation (3.3) and Floquet symmetry

(3.5) shows that

ds(λ, ν) := d

(

iω

2
+ λ, ν − ik

2

)

= d

(

− iω

2
+ λ̄,

ik

2
+ ν̄

)

= d

(

iω

2
+ λ̄,− ik

2
+ ν̄

)

= ds(λ̄, ν̄),
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so that ds maps R × R into R. The conditions ds(0, 0;µ) = 0,

∂µds(0, 0;µ) = ∂µd(iα/2,−i`/2;µ) 6= 0,

give a robust zero of the real function ds(λ, 0; 0) = 0; note that (ω, k) = (ω(µ), k(µ)). Hence,

perturbations of d cannot change the imaginary part of the perturbed roots, and the same

condition as for Hopf implies robustness with the additional constraint.

In the sideband case, note that all coefficients in (3.6) are real at ν = 0, and that λ(0; ·) ≡ 0

is enforced by translation symmetry. Hence, it is sufficient to adjust the quadratic coefficient,

which is guaranteed by our assumption.

Sideband instabilities and Hopf bifurcation are known to occur in the complex Ginzburg-

Landau equation, where wave trains are actually relative equilibria with respect to the gauge

symmetry. Period-Doubling occurs for wave trains with small wavenumber k ∼ 0 whenever

the homogeneous oscillations undergo a period-doubling bifurcation in the kinetics and has

been observed experimentally in the BZ-reaction [39].

Also, each of these bifurcations occurs in long wave-length limits, where the wave trains

converge to pulse trains. In the traveling wave equation in the comoving frame y = x − ω
k t

periodic orbits converge to a homoclinic orbit while ω/k converges to the speed of the pulse in

this limit. If the pulse possesses a weakly decaying oscillatory tail, the associated homoclinic

orbit is of Shil’nikov-type and spatial dynamics are particularly rich, including in particular

period-doubling cascades [33, 34]. Following these periodic orbits, one can study the stability

as solutions of the PDE [28] and find period-doubling as well as side-band instabilities. An

even richer scenario is encountered in the presence of reflection symmetry, where the traveling

wave equation is reversible [37, 14].

Without striving for the most general genericity result, we now give some results that indi-

cate why we believe our list contains all robust instabilities. The following lemma shows in

particular that, on the level of the dispersion relation d, the cases ` = 0, Pure Hopf, or α = 0,

Turing, are not robust.

Lemma 3.5 Let d(λ, ν;µ) be a dispersion relation satisfying complex conjugation and Floquet-

covering symmetries, with a stable dispersion curve at the origin, and undergoing a Hopf

instability at λ = iα, ν = i`, with (α, `) 6∈ {(0, 0), (ω/2, k/2)}. Then we can find arbitrarily

close dispersion relations d̃ with the same properties, such that at onset α 6= α̃, and ` 6= ˜̀.

Proof.

Choose ε > 0, small, and consider the modified dispersion relation d + ε
∑

j dj . We will make

a sequence of choices for dj , all of which satisfy the complex conjugation and Floquet covering

symmetry, and respect the translation zero in λ = ν = 0. Moreover, the perturbations dj will

be bounded as Re λ → +∞ and therefore do not create new unstable eigenvalues for small ε.

We first choose

d1(λ) = c1(e
−2πλ/ω − 1) + c2(e

−2mπλ/ω − 1),
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with arbitrary constants cj ∈ R and m ∈ Z. Near λ = iα, we have

d1 = c1(e
−2πiα/ω − 1) + c2(e

−2mπiα/ω − 1) + O(λ − iα).

For α 6∈ {0, ω/2} we can find m ∈ Z so that with appropriate choice of cj , j = 1, 2, we can

assign to d1(iα) an arbitrary complex number.

Next, consider the perturbation

d2(ν) = c1(e
2πν/k − 1) + c2(e

2mπν/k − 1),

Again, we can assign an arbitrary complex number to d2(i`), provided ` 6∈ {0, k/2}.
We now consider

d3(λ, ν) = c1(e
−2c2(λ/ω+ν/k) − 1).

For (λ, ν) = (iω/2, 0) and (λ, ν) = (0, ik/2), d3 evaluates to c1e
−ic2 , again an arbitrary complex

number. Summarizing, we have shown that in all cases (α, `) 6∈ {(0, 0), (ω/2, k/2)} we can add

an arbitrary value to d at the critical root with a suitable perturbation.

Given the local expansion of d at λ̂ − λ − iα, ν̂ = ν − i`,

d(λ̂, ν̂) = dλλ̂ + dν ν̂ + . . . ,

we see that the solution curve λ̂(ν̂) is changed into

λ̂(ν̂) = εA + a1ν̂ + a2ν̂
2 + . . . , (3.8)

with A arbitrary. Choosing A appropriately, we can therefore adjust the value of the critical

frequency α in an arbitrary fashion with the perturbations d1, d2, d3.

It remains to show that we may change the critical wavenumber i` in an arbitrary fashion. We

may restrict to values of α 6∈ {0, ω/2} by first changing the onset as described above. It is now

sufficient to change the argument ∂λd while fixing the zero (iα, i`), since this would change

the coefficient a1 in the local expansion to purely imaginary, thus forcing a local maximum of

Reλ in ˆ̀ 6= 0. A perturbation with d1 and A real can then be used to shift the most unstable

value λ back on the imaginary axis. Consider therefore the perturbation

dm
4 (λ) = e−2πλ/ω(e−2πm(λ−iα)/ω − 1)(e−2πm(λ+iα)/ω − 1), m = 1, 2

which again satisfies the symmetry and decay requirements and respects the translational

mode at the origin. In addition, dm
4 respects the root λ = iα. Computing the derivative in

the root gives

∂λdm
4 = (ρ − 1)(ρm − 1), ρ = e−2πα/ω 6∈ R.

Since ∂λd2
4/∂λd1

4 = ρ + 1,

arg ∂λd1
4 6= arg ∂λd2

4,

so that either d1
4 or d2

4 changes the argument of ∂λd. This completes the proof.
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The Fold, where (S) and (S0) hold, but (LS) is violated with ∂λd(0, 0) = 0, is atypical for a

more subtle reason: at the fold, the dispersion relation d(λ, ν) possesses the expansion

d(λ, ν) = aλ2 + bν + O(ν2, λν, |λ|3 + |ν|3),

with a, b ∈ R. Typically, b 6= 0, so that for ν = i`, λ = ±c
√

i`, with c real, the continuous

spectrum in the bifurcation point extends into the unstable complex half plane. By continuity

of the spectrum, all wave trains close to a fold of wave trains are unstable. As we show in

[25], the saddle-node of a homogeneous oscillation may robustly give stable oscillations on one

branch of the fold. It is also accompanied by saddle-node bifurcations of wave trains. In this

example, the wave trains with non-zero wavenumber undergo a sideband instability before

entering the fold point.

3.2 Homogeneous oscillations: cg = 0, k = 0

The additional reflection isotropy of homogeneous oscillations enriches the scenario of possible

robust instabilities. The symmetry (3.4) implies that the set of spatial Floquet exponents ν is

reflection symmetric with respect to the imaginary axis as well, so that for marginally stable

spectrum d(iα, i`) = 0 implies ∂νd(iα, i`) = 0, in particular the coefficients in (3.6) of odd

powers vanish, so ∂νd(0, 0) = 0, hence cg = 0.

Hopf: We assume (LS) and (S0), and that (S) is violated for a unique pair of double Floquet

exponents (up to Floquet multiples) λ = ±iα 6∈ {0, iω/2}, ν = ±i` 6= 0, where d = 0 and for

(3.6) we have

Re(a2) > 0.

Pure Hopf: We assume (LS) and (S0), and that (S) is violated for a unique double pair (up

to Floquet multiples) λ = ±iα 6∈ {0, iω/2}, ν = 0, where d = 0 and for (3.6) we have

Re(a2) > 0.

Period-Doubling: We assume (LS) and (S0), and that (S) is violated for a unique double

(up to Floquet multiples) λ = iω/2, ν = 0, where d = 0 and for (3.6) we have

a2 > 0.

Sideband instability: We assume (S) and (S0), and that (LS) is violated so that at λ = ν = 0

for (3.6) we have

a2 = 0, a4 < 0.

Fold: We assume (S) and (S0), and that (LS) is violated so that at λ = ν = 0

d = 0, ∂λd = 0, ∂λλd 6= 0, ∂ννd(0, 0) 6= 0.

Note that the action of the reflection symmetry is trivial on the kernel since ν = 0, so we

expect the fold, which is typical for the pure kinetics.

10



Turing: We assume (S) and (LS), and that (S0) is violated at λ = 0, and a unique pair

ν = ±i` 6= 0, where d = 0 and for (3.6) we have

a2 > 0.

Using that λ(iα) = λ̃(α2), similar arguments with ρ = α2 as in the case of k 6= 0 show that

Hopf, Period Doubling and Sideband are robust. Pure Hopf is robust due to the symmetry: the

double Floquet exponent ν = 0 cannot be perturbed away from the origin at marginal stability.

The Turing instability is robust since we can conclude from the symmetry d(λ, ν) = d(λ,−ν)

that

ds(λ) := d(λ, i`) = d(λ,−i`) = d(λ, i`) = ds(λ);

hence ds : R → R and assuming ∂µd(0;µ = 0) 6= 0 gives a robust zero, so that the location

of marginal instability at (λ, ν) = (0, i`) is fixed. General perturbation may only change the

critical wavenumber `.

The symmetric sideband instabilities occur in the complex Ginzburg-Landau equation at the

Benjamin-Feir limit. Pure Hopf, Period-doubling bifurcations and folds can be detected in

the pure kinetics and yield PDE examples for near-identity diffusion matrices. Hopf bifurca-

tions can be realized in systems where a Hopf bifurcation is coupled to an oscillatory Turing

bifurcation of an equilibrium.

3.3 Turing patterns: ω = 0, k 6= 0, reflection symmetry

Again, the reflection symmetry leads to a scenario analogous to the case of the homogeneous

oscillations.

Hopf: We assume (LS) and (S0), and that (S) is violated for a unique pair of double Floquet

exponents λ = ±iα 6= 0, ν = ±i` 6∈ {0, ik/2}, where d = 0 and for (3.6) we have

Re(a2) > 0.

Pure Hopf: We assume (LS) and (S0), and that (S) is violated for a unique double pair (up

to Floquet multiples) λ = ±iα 6= 0, ν = 0, where d = 0 and for (3.6) we have

Re(a2) > 0.

Spatial Period-Doubling: We assume (LS) and (S0), and that (S) is violated for a unique

(up to Floquet multiples) λ = 0, ν = ik/2, where d = 0 and for (3.6) we have

a2 > 0.

Sideband instability: We assume (S) and (S0), and that (LS) is violated so that at λ =

ν = 0, where for (3.6) we have

a2 = 0, a4 < 0.
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Fold/Pitchfork: We assume (S) and (S0), and that (LS) is violated at λ = ν = 0, where

d = 0, ∂λd = 0, ∂λλd 6= 0, ∂ννd 6= 0.

As for homogeneous oscillations, a fold occurs, if the kernel lies in the reflection symmetric

subspace. The pitchfork corresponds to an odd action, such that the bifurcating patterns are

not reflection symmetric and typically travel, ω 6= 0.

Turing: We assume (S) and (LS), and that (S0) is violated at λ = 0, and a unique (up to

Floquet multiples) pair ν = ±i` 6∈ {0, ik/2}, where d = 0 and for (3.6) we have

a2 > 0.

The robustness of all cases follows as in the homogeneous case using symmetry.

A variant of the Hopf bifurcation occurs in the Taylor-Couette experiment, when Taylor vor-

tices destabilize to wavy vortices. The pure Hopf occurs in the Chlorite-Iodite-Malonic-Acid

reaction, where an oscillation destabilizes a Turing pattern. Sideband instabilities are common

at onset of convection patterns and well understood in the Ginzburg-Landau equation. Sta-

tionary bifurcations appear to be less commonly observed, although examples can be readily

constructed in amplitude equations.

4 Discussion

4.1 Genericity

We did not claim and only provided little evidence that our lists are exhaustive for a given

class of PDE. Our non-robustness result, Lemma 3.5, relies on perturbations of the dispersion

relation. It is however not clear if reaction-diffusion systems provide a sufficiently large class

to realize the type of perturbations which are necessary here. A related difficulty stems from

the loss of information in passing to the determinant d: symmetry properties of the matrix

are only reflected in some crude form in the determinant. For instance, on the level of the

dispersion relation, it seems impossible to decide whether the eigenfunction is even or odd,

leading to the distinction of a Fold versus a pitchfork bifurcation in the Turing case. In this

case, the determinant is given through

d(λ, ν) = det (Φ0
λ − e2πν/k),

with Φ0
λ := Ψλ,0, and inherits a reversibility property

Φ0
λ = R(Φ0

λ)−1R, R(u, v)T = (u,−v)T ,

from the reflection symmetry.

4.2 Modulation equations

We do not attempt to derive or even justify amplitude equations in all the different sce-

narios. Modulations of the neutral mode in wave trains with ω = 0 are described by a
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Burgers equation, with viscosity and nonlinear flux given by expansions of the linear and

nonlinear dispersion relation, respectively [8]. Turing patterns are described by a nonlinear

phase-diffusion equation. In case of a sideband instability, the sign of the viscosity changes

and higher-order derivatives appear, leading to Cahn-Hillard type equations for Turing pat-

terns, Kuramoto-Sivashinsky equations for homogeneous oscillations, and singularly perturbed

Korteweg-deVries for generic wave trains. In case of an additional critical mode, Burgers or

phase diffusion equations are coupled to amplitude equation for the instability. For generic

wave trains, group velocities of wave trains and additional unstable modes typically differ,

leading to inconsistencies in the expansion. Generally, Hopf for generic and pure Hopf for

symmetric wave trains is modeled by a single complex Ginzburg-Landau equation and Hopf in

the symmetric case by a pair of coupled complex Ginzburg-Landau equations. Turing modes

are described by Ginzburg-Landau equations, the period-doubling mode by an Allen-Cahn

equation.

4.3 Bifurcations

Instead of trying to understand the nonlinear dynamics of the continuous band of unstable

and marginally stable modes via modulation equations, one can focus on solutions which are

periodic with a minimal period adapted to the instability. The simplest example here would be

to prescribe spatially periodic boundary conditions that accommodate both the wave train and

an unstable mode. More precisely, we consider the reaction-diffusion system in the comoving

frame y = x − ω
k t and L-periodic boundary conditions, L = 2πm/k. Here, m ∈ Z, so that

m/k ∼ j/` for some j ∈ Z, and 0 < ` ≤ k is the most unstable wavenumber. The wave

train then corresponds to a circle of equilibria, generated by the SO(2) symmetry of spatial

translations in periodic boundary conditions. The isotropy of the wave train is Zm, the cyclic

group, or Dm, the dihedral group in the case of reflection symmetric wave trains. Bifurcation

equations are skew products, where an equation for the “normal modes”, equivariant with

respect to the isotropy action [35, 16], couple to an equation for the motion along the circle

of equilibria [23, 13, 17].

This approach is limited in several ways. First, it is impossible to capture the onset when

` is non-resonant, a typical phenomenon except for the period-doubling case. Sideband in-

stabilities are particularly difficult to capture in this context. A first partial remedy would

be to study instabilities varying the period as an additional external parameter. Next, the

bifurcation diagram is difficult to interpret since it contains only stability information within

the prescribed period. A remedy for this drawback would be to complement the bifurcation

analysis within the class of periodic boundary conditions with a stability analysis for bifurcat-

ing wave trains in the class of bounded functions on the real line. This introduces yet another

parameter in the bifurcation analysis, namely the modulational wavenumber `, in the stability

analysis. As a prototype for such an analysis, we have studied the fold of a homogeneous wave

train in [25].

An alternative view would impose conditions on the temporal behavior rather than the spatial

behavior and focus on stationary or temporally periodic solutions in a frame y = x − ct. The
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spatial eigenvalue i` of the instability then corresponds to a purely imaginary Floquet exponent

of a periodic orbit in the spatial dynamics. Bifurcating spatial patterns include in particular all

harmonic and subharmonic resonant bifurcations from periodic orbits and reversible periodic

orbits, see e.g. [5, 36, 18] and the references therein. In this spatial dynamics picture, we

recover the difficulty of choosing a common spatial period for the wave train and the unstable

wavenumber in the form of frequency locking: for subharmonic bifurcations, above onset,

resonant bifurcating orbits dominate the dynamics also for non-resonant Floquet multipliers

`/k 6∈ Q. While this approach overcomes the obstacle of choosing an appropriate spatial

period, it lacks information on non-stationary or non-periodic temporal dynamics. A partial

remedy would be to complement this spatial dynamics analysis with a temporal stability

analysis for the bifurcating wave trains. [30, 7, 8, 19, 21]. Spatial dynamics also exhibit a

variety of coherent structures beyond periodic solutions, such as heteroclinic and homoclinic

connections between periodic orbits, corresponding to phase boundaries between different wave

trains, e.g. [29].

In summary, a complete understanding of spatially and temporally coherent structures in

typical bifurcations seems to be a challenging enterprise, certainly beyond the scope of this

article.

4.4 First unstable wavenumbers

So far, we have concentrated on instabilities of individual wave trains. Since wave trains

come in one-parameter families, there typically is a critical curve µ(k), in the (k, µ)-parameter

plane of existing wave trains, such that the wave trains with wave number k destabilize at

µ = µ(k). We refer to local maxima of this curve as first instabilities with corresponding first

unstable wave number. Since µ(k) = µ(−k), this view point justifies the exceptional treatment

that we gave to the case k = 0, since instabilities at k = 0 occur in a robust fashion as first

instabilities when µ(0) = 0, µ′′(0) > 0. We expect the list of typical bifurcations for first

instabilities to be the same as the list for instabilities of wave trains, since the restriction

µ′(k) = 0 is compensated for by an additional parameter.

The more global point of view on wave trains as families of solutions rather than individual

solutions also leads to a variety of new global questions: where do curves of wave trains

terminate, and what are stability properties at those end points. The most elementary end

points for paths of periodic orbits are Hopf bifurcations near equilibria and homoclinic and

heteroclinic bifurcations. We do not attempt to classify those bifurcations but refer to the

extensive literature on pathfollowing for periodic orbits [9, 11, 12], local bifurcations [19, 20],

and global bifurcations [28]. Our contribution here is to possible PDE instabilities on global

branches of periodics, away from those local and global bifurcations.

4.5 Absolute instabilities

Instabilities at non-symmetric wave trains are typically convective, that is, ∂νd 6= 0, so that

the linearization possesses a linear drift term λ = −cgν as a leading order term. Note that also
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for first instabilities, we expect this to be the case since the parameter k is needed to match

the condition µ′(k) = 0. The effect of a convective instability is that localized perturbations

will decay at each fixed point x of physical space, while their overall norm grows [2, 26].

In particular, the linearization at wave trains in bounded domains with separated boundary

conditions, for instance wave trains generated by a Dirichlet source on the boundary of a large

domain, will remain stable beyond the onset of the instability. The linear instability sets in

when the absolute spectrum of the linearization at the periodic orbit crosses the imaginary

axis. Roughly speaking, the absolute spectrum consists of semi-algebraic curves λ(γ) where

d(λ, ν1) = d(λ, ν2) = 0 and ν1 = ν2 + iγ, so that real parts of roots νj to d(λ, ν) = 0 have

a certain fixed distribution relative to Re ν1; for (1.1) with dj > 0, j = 1, .., n they should

be equi-distributed. In any large bounded domain with separated boundary conditions, the

spectrum of the linearization at a wave train is approximated by its absolute spectrum and

a finite number of eigenvalues. In particular, eigenvalue clusters accumulate at the semi-

algebraic curves, determined by the above condition on the dispersion relation. We refer to

[24] for a theoretical description of absolute spectra of wave trains and a practical guide to

the computation of these spectra.

We expect a similar classification as in Table 1 for absolute instabilities. Since absolute spectra

terminate in double roots of the dispersion relation, where ν1 = ν2, we find a first list of branch

points λ crossing at λ = 0 or λ = ±iω, with double root Im ν = 0 or Im ν 6= 0, leading to

four instability mechanisms similar to the classification four spatially homogeneous equilibria.

However, we also expect instabilities where curves of absolute spectrum touch the imaginary

axis with quadratic tangency; see [26, Example 2].

Note that for reflection symmetric wave trains, absolute and essential spectra coincide and

the previous classification applies to absolute instabilities as well.

4.6 Concluding remarks

We laid out a systematic approach to bifurcations from spatio-temporally periodic patterns in

extended domains in essentially one-dimensional media. As opposed to classifications based

on symmetry only, we allow for arbitrary wavenumber perturbations, but require marginal

stability with respect to all wavenumbers at criticality. As expected, spatio-temporal period-

doubling bifurcations and sideband instabilities enrich the list of instabilities as compared to

bifurcations from homogeneous equilibria. Somewhat surprisingly, the fold is expected to be

an uncommon phenomenon as the onset of an instability, because it is preceded by sideband

instabilities.

In many of the instabilities that we described, results on dynamics with periodic boundary

conditions or for pure traveling wave solutions are known. We expect that one will find

many interesting phenomena in the unfoldings of the associated bifurcations when effects

of large or unbounded domains are taken into account. We propose to study these effects

by complementing the bifurcation analysis in a periodic boundary condition setting with a

stability analysis on the entire real line, and give a prototypical example in [25]. On the other

hand, an analysis that imposes temporally instead of spatially periodic boundary conditions can
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provide different insight, in particular when complemented with a temporal stability analysis.

Some of the spatially coherent structures have been investigated in the case of stable wave

trains [8] (see also [22] for a stability analysis) and in the case of a period-doubling instability

[31], but the field is wide open for most of the other instabilities.
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