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Equilibrium as the most natural state

Aristotle (384-322 BC):

For heavenly objects, natural motion is mo-

tion in a circle with the same speed. For base

objects, natural motion is rest.

Galilei (1564-1642):

The natural state of motion is uniform motion.



Equilibrium statistics

Clausius (1822-1888):

The entropy of an isolated system not in

equilibrium will tend to increase over time,

approaching a maximum value at equilibrium.

Belousov (1893-1970):

observed an oscillating chemical reaction.

Turing (1912-1954):

suggested that the simple interplay of diffu-

sion and reaction is responsible for compli-

cated biological patterns.



The most likely state

but. . .

[James Kakalios], groups.physics.umn.edu/sand/axial.shtml



More unlikely things

somewhere in the desert

Faraday experiment chaos.ph.utexas.edu/research/granular.html

— Watch the vibrated cornstarch movie —

http://chaos.ph.utexas.edu/research/rddeegan/cornstarch.avi


Diffusion

Two containers, par-

ticles hop randomly

between left and right

u1 and u2 densities

d

dt
u1 = d(u2 − u1)

d

dt
u2 = d(u1 − u2)

Of course we could look at more containers

d

dt
ui = d((ui+1 − ui) − (ui − ui−1)), i = 1, . . . , m

and even a continuum of containers

∂tu(t, x) = d∂2
xu(t, x), x ∈ R

or arrays of containers

∂tu(t, x) = d∆u(t, x), x ∈ R
n, ∆ = ∂2

x1
+ . . . + ∂2

xn



Diffusion and convergence to equilibrium

d
dt

u1 = du(u2 − u1)

d
dt

u2 = du(u1 − u2)
=⇒

d
dt

(u1 + u2) = 0

d
dt

(u1 − u2) = −2du(u1 − u2)

. . . so u1 − u2 ∼ e−2dut → 0

More compact Matrix notation U = (u1, u2)
T ,

d

dt
U = DuU, Du =





−du du

du −du





Eigenvalues λ of Du are λ = 0, −2du, all negative

No Patterns!



Reaction

Activator-inhibitor systems:
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d

dt
U = U − V

d

dt
V = 8U − 5V
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The eigenvalues of R are −1, −3, negative, so

(U, V ) ∼ au/ve−t + bu/ve−3t → 0 for t → ∞

Think mice ( U ) multiplying, owls ( V ) eating mice

. . . and they all die in the end



Reaction & Diffusion

Owls and mice, in Wisconsin and in Minnesota:

U = (UW , UM), V = (VW , VM)

Both react ( feed) and diffuse ( migrate )

d

dt





U

V



 = D





U

V



 + R





U

V



 , where

D =







−du du 0 0

du −du 0 0

0 0 −dv dv

0 0 dv −dv






, R =







1 0 −1 0

0 1 0 −1

8 0 −5 0

0 8 −0 −5







We need the eigenvalues of D + R. We’d hope

eigenvalues (R) + eigenvalues (D)
?
= eigenvalues (R + D)



Turing patterns

eigenvalues (R) + eigenvalues (D) 6= eigenvalues (R + D)

. . . in most cases

In fact, Alan Turing observed that

eigenvalue (R + D) > 0 if dv ≫ du

The sum of stable mechanisms creates instability and patterns!

Since owls cross the Mississippi more

easily than mice, we actually do expect

dv ≫ du and many mice in MN

. . . or in WI



Oscillations

Back to reaction only:
d
dt

U = U − V

d
dt

V = 8U + µV

Computing eigenvalues shows

µ < −1: (U, V ) → 0

µ = −1: (U, V ) ∼ sin(ωt)

µ > −1: (U, V ) → ∞

Activator-Inhibitor systems can create oscillations!

chemical reactions (BZ, CIMA), gas discharges, semi conduc tors

Watch the BZ reaction oscillate —



Nonlinear activator-inhibitor

Rates do not depend linearly on concentrations

d

dt
U = f(U, V ), ∂Uf > 0, ∂V f < 0

d

dt
V = g(U, V ), ∂Ug > 0, ∂V g < 0

Ex: FitzHugh-Nagumo, µ ≪ 1

f =
1

µ
[U(1 − U)(U − a) − V ]

g = U − γV − β

u

v

f=0

g=0

— Nonlinear Oscillations —



Coupled oscillators

Two diffusively coupled oscillators uj = (Uj, Vj)

d

dt
u1 = d(u2 − u1) + F (u1)

d

dt
u2 = d(u1 − u2) + F (u2)

typically synchronize: (u1, u2) → (u∗(ωt), u∗(ωt))

Proof: Weak coupling or being close to synchrony allows one to linea rize

d

dt
u1 = d(u2 − u1) + F

′

(u∗(ωt))u1

d

dt
u2 = d(u1 − u2) + F ′(u∗(ωt))u2

and solutions are (Floquet theory)

u1 + u2 ∼ uF(ωt)eλt, u1 − u2 ∼ uF(ωt)e(λ−2d)t

Now λ ≤ 0 since the single oscillator is stable, so u1 − u2 → 0.



Synchronization and averaging

Varying parameters typically changes the frequency: we ass ume

u∗(ωt) solves
d

dt
u = F (u; ω)

This is a diffusively coupled family of m oscillators

d

dt
uj = d(uj+1 + uj−1 − 2uj) + F (uj; ωj), −m ≤ j ≤ m

Take all ω equal ωj ≡ ω∗ for j 6= 0, then detune ω0: ω0 − ω∗ ∼ 0

Fact: Again all oscillators synchronize, but at which frequency?

m = 2: ωsyn ∼ αω0 + (1 − α)ω1

m = 106: ωsyn − ω∗ = δω ∼ 10−6 ?

m = ∞: ωsyn − ω∗ = δω = 0 ?



The many ways to reach consensus. . .

One’s a little slow

— movie —

All equal

— movie —

One’s a little fast

— movie —

∂tu = ∆u +
1

µ
u(1 − u)(u − a), ∂tv = ∆v + u − v + b +

ε

1 + |x/3|2

with a = 0.34, b = −0.045, µ = 0.08 on Ω = {|xj | ≤ 90}.



A Theorem

ut = D∆u + F (u)+εG(|x|), x ∈ R
n, |G(r)| ≤ C(1 + r)−2−δ

Define M =
∫

τ,x
uad(τ) · G(|x|) with uad(τ) ∈ Ker Lad

∗

Theorem [Kóllar&Scheel]

n ≤ 2: Mε > 0: sources , with

δω ∼ (Mε)2/(2−n), n < 2

δω ∼ exp(−1/(Mε)), n = 2

Mε < 0: contact (δω = 0)

n > 2: Mε > 0: contact (δω = 0)

Mε < 0: contact (δω = 0)

−→



Excitable media

More activator-inhibitor dynamics

Ut = f(U, V )

Vt = g(U, V ) u

v

f=0

g=0

Ut = ∆U + f(U, V )

Vt = g(U, V )

— movie — — movie — — movie —



From simple to complicated patterns — spiral waves
d

dt
u = D∆u + f(u), u ∈ X = C2(Rn, R

N)

Spiral

instabilities —

click on pictures

to play movies

Two routes to chaos (ex. FHN, Roessler):

Hopf bifurcation

two frequencies

Period-doubling

half frequency



Break-up and routes to turbulence

Transitions to turbulence can be different. . .

Hopf-breakup I → →

Hopf-breakup II → →

— movie —



Summary

• Our world is not in equilibrium

. . . and this may well be a good thing

• Things do not always add up

. . . but you still need to know your math
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