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Equilibrium as the most natural state

Aristotle (384-322 BC):.

For heavenly objects, natural motion is mo-
tion in a circle with the same speed. For base
objects, natural motion Is rest.

The natural state of motion is uniform motion.




Equilibrium statistics

Clausius (1822-1888).

The entropy of an isolated system not in
equilibrium will tend to increase over time,
approaching a maximum value at equilibrium.

observed an oscillating chemical reaction.

Turing (1912-1954).

suggested that the simple interplay of diffu-
sion and reaction is responsible for compli-

cated biological patterns.



The most likely state
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(a) Initial condition
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(b) After mixing

(b) After expansion into vacuum +GasA «GasB

but. ..

Initial Bizture of Uncooled Rice and Split Peas After Fotation About Horizontal Azxisat 15 rpm for 2 hours

[James Kakalios], gr oups. physi cs. um. edu/ sand/ axi al . sht m



More unlikely things

somewhere in the desert
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Faraday experiment chaos.ph.utexas.edu/research/granular.html

— Watch the vibrated cornstarch movie —


http://chaos.ph.utexas.edu/research/rddeegan/cornstarch.avi

Diffusion

@“ﬁ'. Two containers, par- d

(a) Initial condition . — U1 = d('U;Q — ’U,]_)
ticles hop randomly dt

between left and right d
. —ug = d(u; — u2)
uy and wu, densities dt

oo
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L

(b) After expansion into vacuum

Of course we could look at more containers

d .
aui = d((wir1 — us) — (ui — ui—1)), 1=1,...,m

and even a continuum of containers
Opu(t, ) = dOu(t, ), r € R
or arrays of containers

Oiu(t,x) = dAu(t, x), x € R™, A=08% +...+ ajn

L1



Diffusion and convergence to equilibrium

Lur = dy(uz — ur) L (u1 +uz) =0

Suy = dy(us — uz) at (U1 — u2) = —2dy(u1 — uz)

2d.,t

...S0 Uy —ugs ~ e — 0

More compact Matrix notation U = (uy,u2)7,

Eigenvalues X of D, are A = 0, —2d,,, all negative

No Patterns!



Reaction

Activator-inhibitor systems:

( )

SU=U-V d | U U 1

<V =8U — 5V 14 14 8

\ /

The eigenvalues of R are —1, —3, negative, so

(U, V) ~ au/ve_t + bu/ve_3t — 0 fort — o

Think mice ( U) multiplying, owls (V) eating mice

...and they all die in the end




Reaction & Diffusion

Owls and mice, in Wisconsin and in Minnesota:
U = (UW9 UM)a V = (VW9VM)

Both react ( feed) and diffuse ( migrate )

d U U U
- =D + R , Wwhere

—dq, du 0 0 1 0 -1 0
du —day 0 0 o 1 0 —1
D = A=
0 0 —doy do 8 0 -—5 0
0 0 do —doy o 8 —0 -5

We need the eigenvalues of D + R. We'd hope

eigenvalues (R) + eigenvalues (D) = eigenvalues (R + D)



Turing patterns

eigenvalues (R) 4+ eigenvalues (D)# eigenvalues (R + D)

... In most cases

In fact, Alan Turing observed that
eigenvalue (R+D) > 0if d, > d,

The sum of stable mechanisms creates instability and patterns!

Since owls cross the Mississippi more
easily than mice, we actually do expect
d, > d,, and many mice in MN

...orin Wi




Oscillations

. dUu=U-V
Back to reaction only: |
5V =8U + uV
Computing eigenvalues shows
p<-—1. (U, V)—0
p=—1. (U,V) ~ sin(wt)
p>-—-1. (U V)—> o
Activator-Inhibitor systems can create oscillations!

chemical reactions (BZ, CIMA), gas discharges, semi conduc

Relatve Concentration of Broemeus Acid Verses Time 20 ns

1 —

|
|
05| h

| ||I
n A
a 5 10 15 20 s _.xn 35

|| “
A i L

|

! s,
v

. | g

(1]

45 al

Watch the BZ reaction oscillate —

tors



Nonlinear activator-inhibitor

Rates do not depend linearly on concentrations

d
- = f(U,V), ouvf>0,0vf <0
d
- = g(U,V), Oug >0, Oyg <0

Ex: FitzHugh-Nagumo, up <1

f = %[U(l _U)(U —a) — V]

g=U—-7V -p

— Nonlinear Oscillations —



Coupled oscillators

Two diffusively coupled oscillators ~ w; = (U;, V;)

d
aul = d(’l,l,g — ’U,l) —|— F(ul)

d

aUQ = d('u,l — Uz) —I— F(’U,z)

typically synchronize: (w1, us) — (us(wt), u.(wt))

Proof: Weak coupling or being close to synchrony allows one to linea rize
d /
So T = d(uz —u1) + F' (ux(wt))uz
d

S = d(ui — uz) + F/'(ux(wt))us
and solutions are (Floguet theory)

w1 + us ~ up(wt)e™, wu; —us ~ uF(wt)e(A_zd)t

Now A < O since the single oscillator is stable, so w3 — uz — 0.



Synchronization and averaging

Varying parameters typically changes the frequency: we ass ume
d
u.(wt) solves L= F(u;w)

This is a diffusively coupled family of  m oscillators

d .
T d(ujr1 + uj—1 — 2uj) + F(uj;w;), —m<jsm

Take all w equal w; = w, for 3 # 0, then detune wp: wg — wx ~ 0
Fact: Again all oscillators synchronize, but at which frequency?

m = 2: Wsyn ~ owo + (1 — a)ws
m = 106°: Wsyn — Wy = OW ~ 10767

m = oo: Wsyn — Wx = 0w = 07



The many ways to reach consensus. ..

One’s a little slow All equal One’s a little fast
[ ]
— movie — | — movie — — movie —

€

atu:Aqu%u(l—u)(u—a), 00 = Av+u—v+b+ e

with a = 0.34.b = —0.045. 1 = 0.08 0on 2 = {|x;| < 90}.



A Theorem

u, = DAu + F(u)+eG(|z)), © € R, |G(r)| < C(1 +7) 7272

Define M = fT,w u?d(7) - G(|z|) with u2d(1) € Ker £24
Theorem [Koéllar&Scheel]
n < 2. Me > 0: sources , with
dw ~ (Meg)?/(2=m) n < 2
dw ~ exp(—1/(Meg)), n = 2
Me < 0: contact (dw = 0)
n > 2. Me > 0: contact (dw = 0)
Me < 0: contact (dw = 0)



Excitable media

More activator-inhibitor dynamics

U = f(Ua V)
Vi=g(U,V)

U, = AU + f(U, V)
Vi = g(Ua V)

— movie — — movie — — movie —



From simple to complicated patterns — spiral waves

d
U DAu + f(u), ué€ X = C?*@R",RY)

Spiral
Instabilities —
click on pictures

to play movies

Two routes to chaos (ex. FHN, Roessler):

Hopf bifurcation Period-doubling
two frequencies half frequency

©
N—/




Break-up and routes to turbulence

Transitions to turbulence can be different..
J ] v \
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— movie —

Hopf-breakup |




Summary

e Our world is not in equilibrium
...and this may well be a good thing

* Things do not always add up

... but you still need to know your math
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