Patterns far from equilibrium

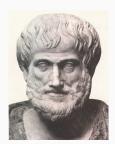
Arnd Scheel University of Minnesota

CAM Colloquium, University of St Thomas

February 21, 2007

Equilibrium as the most natural state

Aristotle (384-322 BC):



For heavenly objects, natural motion is motion in a circle with the same speed. For base objects, natural motion is rest.

Galilei (1564-1642):

The natural state of motion is uniform motion.

Equilibrium statistics

Clausius (1822-1888):

The entropy of an isolated system not in equilibrium will tend to increase over time, approaching a maximum value at equilibrium.

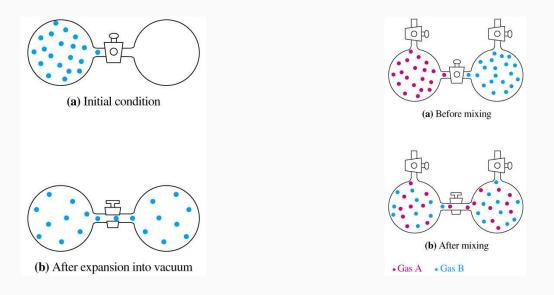
Belousov (1893-1970):

observed an oscillating chemical reaction.

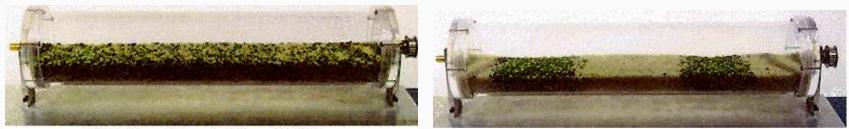
Turing (1912-1954):

suggested that the simple interplay of diffusion and reaction is responsible for complicated biological patterns.

The most likely state



but...



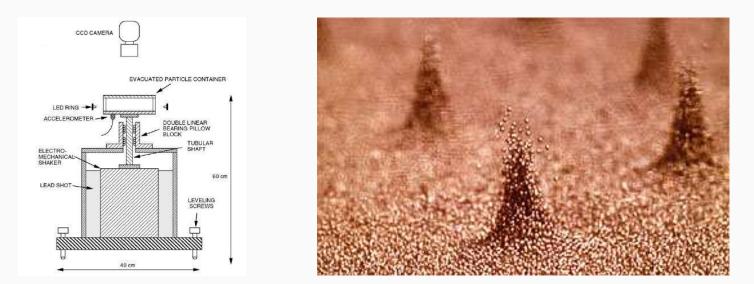
Initial Mixture of Uncooked Rice and Split Peas

After Rotation About Horizontal Axis at 15 rpm for 2 hours

[James Kakalios], groups.physics.umn.edu/sand/axial.shtml

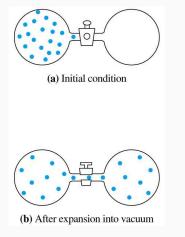
More unlikely things

somewhere in the desert



Faraday experiment *chaos.ph.utexas.edu/research/granular.html* — Watch the vibrated cornstarch movie —

Diffusion



Two containers, particles hop randomly between left and right u_1 and u_2 densities $\frac{\mathrm{d}}{\mathrm{d}t}u_1 = d(u_2 - u_1)$ $\frac{\mathrm{d}}{\mathrm{d}t}u_2 = d(u_1 - u_2)$

Of course we could look at more containers

$$rac{\mathrm{d}}{\mathrm{d}t}u_i=d((u_{i+1}-u_i)-(u_i-u_{i-1})),\qquad i=1,\ldots,m$$

and even a continuum of containers

$$\partial_t u(t,x) = d\partial_x^2 u(t,x), \qquad x \in \mathbb{R}$$

or arrays of containers

 $\partial_t u(t,x) = d\Delta u(t,x), \qquad x \in \mathbb{R}^n, \qquad \Delta = \partial_{x_1}^2 + \ldots + \partial_{x_n}^2$

Diffusion and convergence to equilibrium

$$\frac{d}{dt}u_{1} = d_{u}(u_{2} - u_{1}) \implies \frac{d}{dt}(u_{1} + u_{2}) = 0$$

$$\frac{d}{dt}u_{2} = d_{u}(u_{1} - u_{2}) \implies \frac{d}{dt}(u_{1} - u_{2}) = -2d_{u}(u_{1} - u_{2})$$

$$= -2d_{u}(u_{1} - u_{2})$$

$$= -2d_{u}(u_{1} - u_{2})$$

More compact Matrix notation $U = (u_1, u_2)^T$,

$$rac{\mathrm{d}}{\mathrm{d}t}U=D_{u}U, \quad D_{u}=\left(egin{array}{cc} -d_{u} & d_{u} \ d_{u} & -d_{u} \end{array}
ight)$$

Eigenvalues λ of D_u are $\lambda = 0, -2d_u$, all negative

No Patterns!

Reaction

Activator-inhibitor systems:

$$\left\{ egin{array}{c} rac{\mathrm{d}}{\mathrm{d}t}U = U - V \ rac{\mathrm{d}}{\mathrm{d}t}V = 8U - 5V \end{array}
ight\} \quad \Leftrightarrow \quad rac{\mathrm{d}}{\mathrm{d}t} \left(egin{array}{c} U \ V \end{array}
ight) = R \left(egin{array}{c} U \ V \end{array}
ight), \quad R = \left(egin{array}{c} 1 & -1 \ 8 & -5 \end{array}
ight)$$

The eigenvalues of R are -1, -3, negative, so

$$(U,V) \sim a_{u/v} \mathrm{e}^{-t} + b_{u/v} \mathrm{e}^{-3t}
ightarrow 0 \quad ext{for } t
ightarrow \infty$$

Think mice (U) multiplying, owls (V) eating mice ... and they all die in the end

Reaction & Diffusion

Owls and mice, in Wisconsin and in Minnesota:

 $U=(U_W,U_M),\ V=(V_W,V_M)$

Both react (feed) and diffuse (migrate)

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\begin{array}{c} U \\ V \end{array}\right) = \mathcal{D} \left(\begin{array}{c} U \\ V \end{array}\right) + \mathcal{R} \left(\begin{array}{c} U \\ V \end{array}\right), \quad \text{where}$$

$$\mathcal{D} = \begin{pmatrix} -d_u & d_u & 0 & 0 \\ d_u & -d_u & 0 & 0 \\ 0 & 0 & -d_v & d_v \\ 0 & 0 & d_v & -d_v \end{pmatrix}, \qquad \mathcal{R} = \begin{pmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \\ 8 & 0 & -5 & 0 \\ 0 & 8 & -0 & -5 \end{pmatrix}$$

We need the eigenvalues of $\mathcal{D} + \mathcal{R}$. We'd hope

eigenvalues (\mathcal{R}) + eigenvalues $(\mathcal{D}) \stackrel{?}{=}$ eigenvalues $(\mathcal{R} + \mathcal{D})$

Turing patterns

eigenvalues (\mathcal{R}) + eigenvalues $(\mathcal{D}) \neq$ eigenvalues $(\mathcal{R} + \mathcal{D})$

... in most cases

In fact, Alan Turing observed that

eigenvalue $(\mathcal{R} + \mathcal{D}) > 0$ if $d_v \gg d_u$

The sum of stable mechanisms creates instability and patterns!

Since owls cross the Mississippi more easily than mice, we actually do expect $d_v \gg d_u$ and many mice in MN ...or in WI

Oscillations

Back to reaction only:

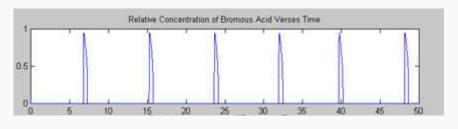
$$rac{\mathrm{d}}{\mathrm{d}t}U = U - V$$
 $rac{\mathrm{d}}{\mathrm{d}t}V = 8U + \mu V$

Computing eigenvalues shows

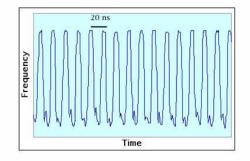
$$egin{aligned} \mu < -1 & (U,V) &
ightarrow 0 \ \mu &= -1 & (U,V) &\sim \sin(\omega t) \ \mu &> -1 & (U,V) &
ightarrow \infty \end{aligned}$$

Activator-Inhibitor systems can create oscillations!

chemical reactions (BZ, CIMA), gas discharges, semi conductors



Watch the BZ reaction oscillate —



Nonlinear activator-inhibitor

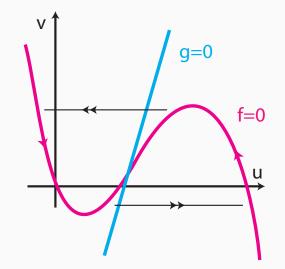
Rates do not depend linearly on concentrations

$$egin{array}{rcl} \displaystylerac{\mathrm{d}}{\mathrm{d}t}U&=&f(U,V),&&\partial_Uf>0,\;\partial_Vf<0\ \displaystylerac{\mathrm{d}}{\mathrm{d}t}V&=&g(U,V),&&\partial_Ug>0,\;\partial_Vg<0 \end{array}$$

Ex: FitzHugh-Nagumo, $\mu \ll 1$

$$f=\frac{1}{\mu}[U(1-U)(U-a)-V]$$

 $g = U - \gamma V - \beta$



- Nonlinear Oscillations -

Coupled oscillators

Two diffusively coupled oscillators $u_j = (U_j, V_j)$

$$\frac{\mathrm{d}}{\mathrm{d}t}u_1 = d(u_2 - u_1) + F(u_1)$$
$$\frac{\mathrm{d}}{\mathrm{d}t}u_2 = d(u_1 - u_2) + F(u_2)$$

typically synchronize: $(u_1, u_2) \rightarrow (u_*(\omega t), u_*(\omega t))$

Proof: Weak coupling or being close to synchrony allows one to linearize

$$\frac{\mathrm{d}}{\mathrm{d}t}u_1 = d(u_2 - u_1) + F'(u_*(\omega t))u_1$$
$$\frac{\mathrm{d}}{\mathrm{d}t}u_2 = d(u_1 - u_2) + F'(u_*(\omega t))u_2$$

and solutions are (Floquet theory)

$$u_1+u_2\sim u_{
m F}(\omega t){
m e}^{\lambda t}, \ \ u_1-u_2\sim u_{
m F}(\omega t){
m e}^{(\lambda-2d)t}$$

Now $\lambda \leq 0$ since the single oscillator is stable, so $u_1 - u_2 \rightarrow 0$.

Synchronization and averaging

Varying parameters typically changes the frequency: we assume

$$u_*(\omega t)$$
 solves $rac{\mathrm{d}}{\mathrm{d} t} u = F(u;\omega)$

This is a diffusively coupled family of m oscillators

$$rac{\mathrm{d}}{\mathrm{d}t}u_j = d(u_{j+1}+u_{j-1}-2u_j) + F(u_j;\omega_j), \qquad -m \leq j \leq m$$

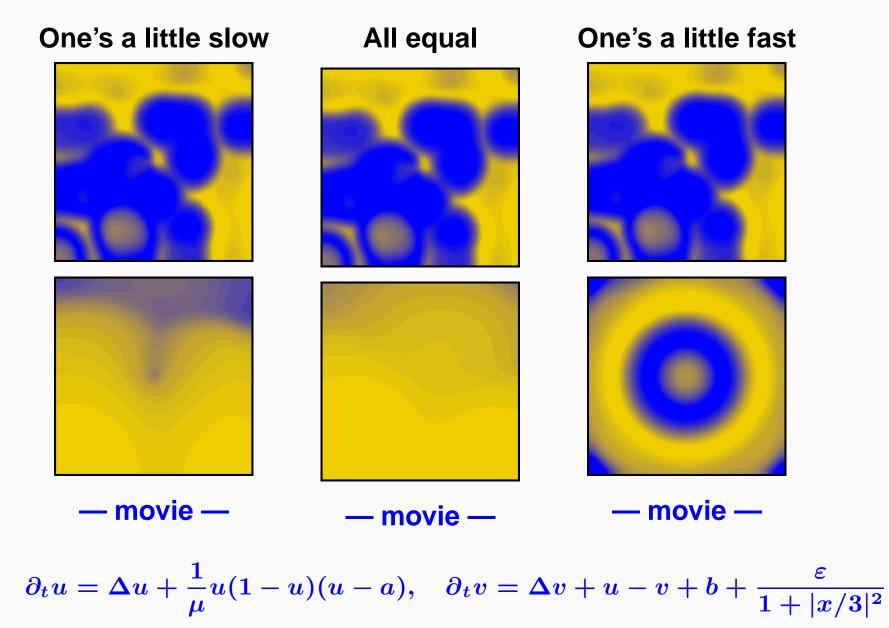
Take all ω equal $\omega_j \equiv \omega_*$ for $j \neq 0$, then detune ω_0 : $\omega_0 - \omega_* \sim 0$ Fact: Again all oscillators synchronize, but at which frequency?

$$m=2$$
: $\omega_{
m syn}\sim \alpha\omega_0+(1-\alpha)\omega_1$

$$m=10^6$$
: $\omega_{
m syn}-\omega_*=\delta\omega\sim 10^{-6}$?

 $m=\infty$: $\omega_{
m syn}-\omega_{*}=\delta\omega=0$?

The many ways to reach consensus...



with $a = 0.34, b = -0.045, \mu = 0.08$ on $\Omega = \{|x_j| \le 90\}$.

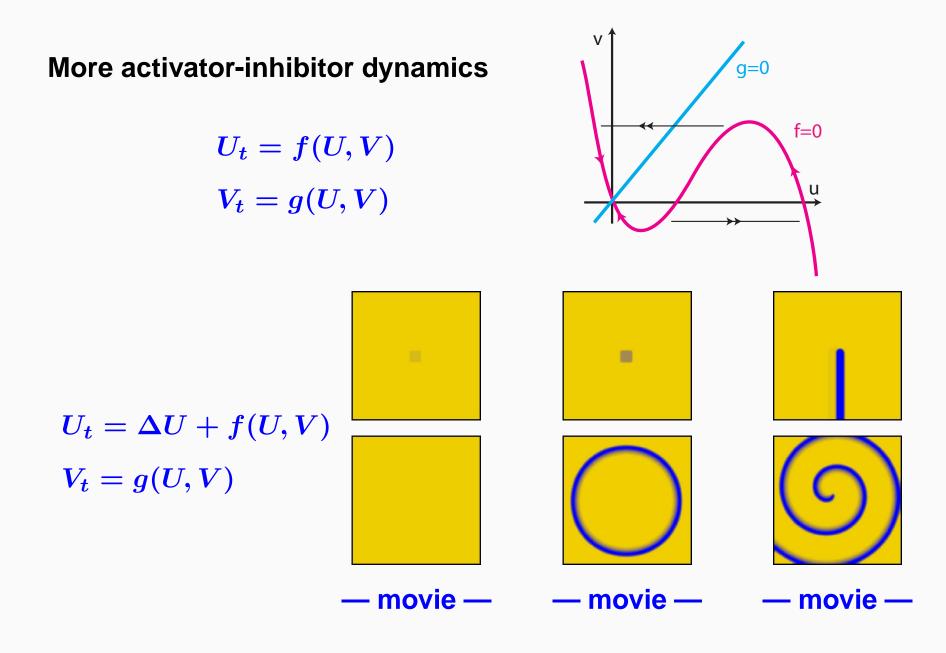
A Theorem

 $u_t = D\Delta u + F(u) + \varepsilon G(|x|), \ x \in \mathbb{R}^n, \ |G(r)| \leq C(1+r)^{-2-\delta}$

Define $M = \int_{\tau,x} u^{\mathrm{ad}}(\tau) \cdot G(|x|)$ with $u^{\mathrm{ad}}(\tau) \in \mathrm{Ker}\,\mathcal{L}^{\mathrm{ad}}_*$ *Theorem* [Kóllar&Scheel]

 $egin{aligned} n &\leq 2 ext{:} \quad Marepsilon > 0 ext{:} ext{ sources, with} \ & \delta \omega &\sim (Marepsilon)^{2/(2-n)}, \ n < 2 \ & \delta \omega &\sim \exp(-1/(Marepsilon)), \ n = 2 \ & Marepsilon < 0 ext{:} ext{ contact } (\delta \omega = 0) \ & n > 2 ext{:} \quad Marepsilon > 0 ext{:} ext{ contact } (\delta \omega = 0) \ & Marepsilon < 0 ext{:} ext{ contact } (\delta \omega = 0) \ & Marepsilon < 0 ext{:} ext{ contact } (\delta \omega = 0) \ & Marepsilon < 0 ext{:} ext{ contact } (\delta \omega = 0) \end{aligned}$

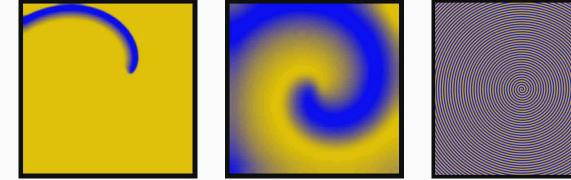
Excitable media



From simple to complicated patterns — spiral waves

$$rac{\mathrm{d}}{\mathrm{d}t}u=D\Delta u+f(u), \quad u\in X=C^2(\mathbb{R}^n,\mathbb{R}^N)$$

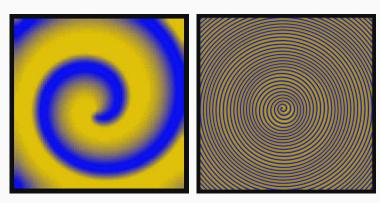
Spiral instabilities click on pictures to play movies

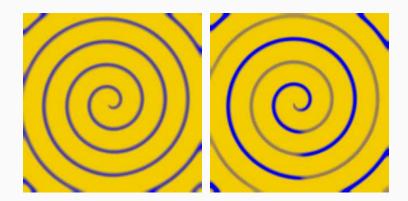


Two routes to chaos (ex. FHN, Roessler):

Hopf bifurcation two frequencies

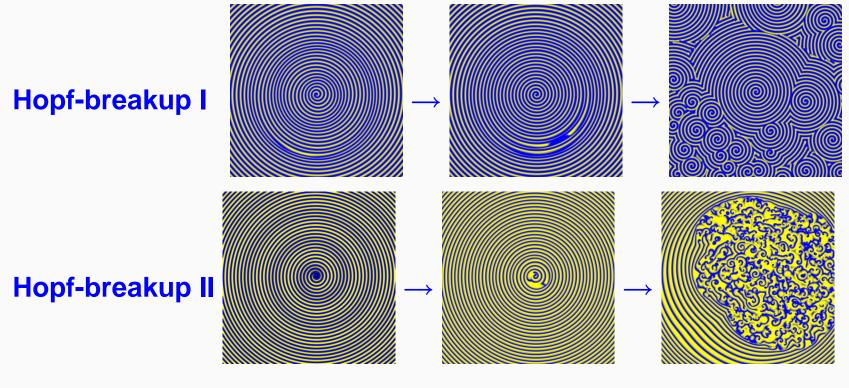
Period-doubling half frequency





Break-up and routes to turbulence

Transitions to turbulence can be different...



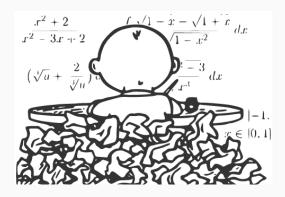
— movie —

Summary

• Our world is not in equilibrium

... and this may well be a good thing

• Things do not always add up



... but you still need to know your math

Acknowledgments and references

 Spiral dynamics joint work with Björn Sandstede [U Surrey]

Math references

www.math.umn.edu/ \sim scheel

- Numerics based on EZSpiral Dwight Barkley [Warwick]
- Period-doubling of spirals based on the Roessler model Ray Kapral [U Toronto]
- Experiments on segregation

Steve Morris [U Toronto], Jim Kakalios [UMN]

Faraday experiments and corn starch

Harry Swinney's group [UT Austin]

Owls and mice

Noah [Kaukasus], who let them on the ark...