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Simple and complicated patterns

Patterns in the Belousov-Zhabotinsky reaction

[Park,Lee] , [Zhou, Ouyang] , [Agladze, Krinsky, Pertsov]



From simple to complicated dynamics

Routes to chaos in dynamical systems

d

dt
u = f(u; µ), u ∈ X = R

N , µ ∈ R

Hopf bifurcations

1 frequency → 2 frequencies → 3 frequencies

periodic orbit → two-torus → strange attractors

Period doubling cascades



From simple to complicated patterns — spiral waves
d

dt
u = D∆u + f(u), u ∈ X = C2(Rn, R

N)

Spirals

↔

periodic orbits

Two generic instability mechanisms (ex. FHN, Roessler):

Hopf bifurcation
two frequencies

Period-doubling
half frequency

— click on images to play movies —



Bifurcations and spiral waves — oddities

More Hopf instabilities...

Drift Breakup



Euclidean symmetry

γ ∈ SE(2), rotations and translations

γ = (ϕ, z) ∈ S1 × C γ · x = eiϕ(x+ z) ∈ R
2 ∼ C

u(t, x)solution ⇐⇒ u(t, γ−1x) solution

usp(t, . ) usp(t,γ -1 . )

Spirals are relative equilibria

usp(t, x) = usp(0, γ−1(t)x) γ(t) = exp(ωspt∂ϕ)



Bifurcations from Relative Equilibria

[Barkley], [Sandstede,AS,Wulff],[Fiedler, Sandstede, A S, Wulff],

[Golubitsky, LeBlanc, Melbourne]

usp(t, . )

SE(2).usp(t, . )

V

Reduction to principal fiber

bundle

(γ, v) ∈ SE(2) × V

γ̇ = γ a(v) “group′′

v̇ = h(v) “shape′′



Resonances and drift

ϕ̇ = ωsp rotation

ż = eiϕv translation

v̇ = h(v) Hopf

Periodic Orbit v(t) =
∑

k vke
−ikωHt

Position ż =
∑

k vke
i(ωsp−kωH)t

Unbounded motion if ωH = ωsp/k for some k ∈ Z



The paradox

Spirals are relative equilibria =⇒ period-doubling is non-generic

. . . yet is is observed

More precisely. . .

Linearizing at a spiral wave usp(t, x) we find

Linearized period map: ∂uΦ2π/ωsp
, where

u(t) = Φt(u(0)) is the flow map

Linearization in corotating frame: L = D∆ + ωsp∂ϕ + f ′(usp)

Since spirals are equilibria,

∂uΦ2π/ωsp
= eL(2π/ωsp)

The doubling eigenvalue −1 cannot be simple!

. . . but we would expect multiple eigenvalues to split generi cally.



An explanation with caveats

λ = −1 is double eigenvalue of ∂uΦ since

α = ±iωsp/2 are eigenvalues of L∗

Problems:

• Genericity: Why is the Hopf frequency in exact

resonance?

• Drift: If there is an eigenvalue at λ = iωsp/2,

we expect drift!



Instabilities — linearization

Reaction-diffusion system

∂tU = D△U + F (U ; µ)

Spiral waves as rotating waves

U(t, x) = Usp(r, ϕ − ωspt)

Linearization in corotating frame

LspU = D△U + F ′(Usp; µ)U + ωsp∂ψU

Stability: Re spec L ≤ 0

Eigenvalues enforced by symmetry

• λ = 0 — rotation

• λ = ±iω — translation



Unbounded domains — the essential spectrum

Decompose the spectrum into continuous and discrete part:

spec Lsp: Lsp − λ not invertible

specess Lsp: Lsp − λ not Fredholm of index 0

specpt Lsp: Lsp − λ Fredholm of index 0, not invertible

Localized changes of the spiral shape are compact perturbat ion

of Lsp, and therefore leave specess Lsp unchanged

=⇒

Essential spectrum ∼ behavior in the far field

Point spectrum ∼ behavior in the core



Spectra of spiral waves

Spiral waves converge to wave trains

Usp(r, ϕ − ωspt) ∼ Uwt(kr + ϕ − ωspt)) for r → ∞,

they are asymptotically Archimedean

Theorem [Sandstede& AS]

The essential spectrum of Lsp

is given by the Floquet spec-

trum of the wave trains.

Fredholm

index -1
cg > 0

Im λ

Re λ



Spectra of wave trains

Instabilities of wavetrains close to homogeneous period-d oubling

t

x

t

x

temporal oscillations phase waves

t

x

t

x

temporal

period-doubling

spatio-temporal

period-doubling waves

Floquet theory: period-doubling

of wave trains is robust ∼ spatio-

temporal symmetry breaking

specessLsp at period-doubling

Fredholm

index -1
0< cg<< 1

Im λ

Re λ

iωsp

iωsp /2                        

cg < 0 

µ

µFredholm

index +1

Maximum at iωsp/2 is robust:

λ 7→ λ̄

λ 7→ λ + iωsp







fix max



Large domains [Sandstede,AS]

In a large disc |x| ≤ R, with ”compatible”boundary conditions

spec|x|≤RLsp
R→∞
−→ specabsLsp ∪ specexptLsp ∪ specbdyLsp

ess spec

point

spectrum

bounded

domain

Im λ

Re λ

resonance

poles

abs spec

[Barkley, Wheeler]

Absolute spectra are

determined by wave trains

only

=⇒

Robust ”absolute”

period-doubling in large

domains



A first summary

• spirals resemble wave trains in the far field

• wave trains possess an additional translational symmetry

• period-doubling is symmetry-breaking of wave trains

• rigorous decomposition on the linearized level:

spiral core ←→ point spectrum

far field ←→ essential and absolute spectra

• In unbounded and large bounded domains, period-doubling is

typical when caused by essential or absolute spectrum.

• Eigenfunctions predict a stationary line defect

• In the Roessler system, the instability appears to be caused by

boundary spectrum which happens to be resonant for a

similar reason . . .



Drift?

In a fixed bounded domain, the instability caused by the first

eigenvalue is a resonant Hopf bifurcation, so we predict dri ft:

We plot the position of the spiral tip and wait. . .

and wait some more. . .



Proofs: spatial dynamics ↔ functional analysis

ϕ

r

∂tu = D∆u + f(u)

0 = ωuϕ+D(urr+
1

r
ur+

1

r2
uϕϕ)+f(u)

u′ = v

v′ = −(
1

r
v +

1

r2
∂ϕϕu)

−D−1(ω∂ϕu + f(u))

r′ = 1



The spatial dynamics dictionary

↔

−ωuϕ = D∆u + f(u) ↔ Ur = F (∂ϕ, U, r)

λv = D∆v + f ′(usp)v ↔ Vr = A(∂ϕ, usp, r, λ)V

spiral wave ↔ heteroclinic orbit

linearization ↔ linear bundle

Fredhom properties ↔ hyperbolicity

eigenfunctions ↔ heteroclinic orbits

point spectrum instability ↔ non-transversality

essential spectrum instability ↔ bif’ of periodic orbits at ∞

. . . ↔ . . .



Summary: Bifurcations in large domains

• coherent structures: localized effects versus far field

• linear theory: point spectra versus essential and absolute

spectra

• period-doubling is a robust wave train doubling in the far fie ld

• nonlinear theory more generally?

• explain slow drift!

Things are not always what they seem to be —

but aren’t they pretty?
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