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Oscillatory media

Oscillatory reaction
U, = F(U) € RY, U, (—wyt) = U, (—wst + 27)
Diffusion

U, = DAU+F(U), x € Q) CR", D=diagd; > 0, Neumann b.c.

Example: FitzHugh-Nagumo

ut:Au—l—%[u(l—u)(u—a)—v] —_| Z \f\j

vi = Av+u—~yv+0b
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-
vi = Av+u—~vyv+b+e

g=0
f=0
Periodic orbits are robust m
size of perturbation < spectral Floguet gap




Robustness — inhomogeneilties

e = —0.05 e=20 e = 0.05

1
uy = Au + —u(l — u)(uw — a)
v

ve=Av+u—v+b+
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with @ = 0.34,b = —0.045, . = 0.08 on = {|z;| < 90}
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Coherent structures — what makes it difficult?

I Robustness analysis of the linearized the period map P |

Small spectral gapsin |z| < L
Floquet spectrum of & clusters near A = O:

d
A0:O>A1N—EZ...

A o

In our example L = 90, and

A ~3x107°

Fredholm boundaries in  R"™
e & is not Fredholm when posed on  L?(R™)

* & is Fredholm with index -1 when posed on Lf7 (R™),

0 < K1,
where L2 = {U; e"*IU(x) € L?}, U radially symmetric



Inhomogeneities: main results

Ui = DAU + F(U)+¢G(jz|), = € R", |G(r)| < C(1 4 1)~

Theorem [Kollar&Scheel]

Assume minimal critical spectrum, normal dispersion , then
dw dw ow oW
0w ~ €
dw ~ e e
Q bdd. n=2 n=3 dw =0
/ € € €

where
® dw = W — W,
® sources correspondto  dw > 0

For anomalous dispersion , replace dw +— —dw
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Chemical flip-flops

Turing patterns, turing spots, waves, splitting CIMA reaction

[Castets,Dulos, Boissonade,De Kepper]
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Chemical flip-flop
[Perraud, De Wit, Dulos, De Kepper, Dewel, Borckmans]




Turing spots and Hopf bifurcation

Reaction-diffusion system
Ui = DUp+F(U; ), x€R,U€ERY
Turing spot (standing pulse)

Q(x) = Q(—=x) — Ofor|xz| — oo JL

"self-organized inhomogeneity" ! X

Hopf bifurcation

temporal oscillations phase waves

U = F(U; p) t

undergoes supercritical Hopf at

U=0,u=20



One-dimensional target patterns and spiral waves

Theorem [Sandstede&Scheel]
Assume e standing pulse

e Hopf, outside Benjamin-Feir
* minimal critical spectrum

Then unique 1ld-target patterns and 1d-spiral waves bifurca

X

* There do not exist patterns with homogeneous oscillations |
the far field

* The 1d-target or the 1d-spiral is stable, the other one is
unstable

n
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Physics of oscillations — modulations

Modulations of the phase:

Ansatz
U(t,x) = U (P(T, X) —wit)+...,

with
®=&(X,T), X =cz,T =¢e’t

gives viscous eikonal/Burgers equation for P, u=>x

1 1 F,2 144
* d effective diffusion * Derivation: [Howard,Kopell]
e (2 nonlinear dispersion * Validity: [Doelman, Sandstede,

S., Schneider] , Memoirs AMS



Physics of osclillations — nonlinear dispersion

Wave trains U = Uy (kx — wt; k), 27-periodic

—wU! = k?’DU!” + F(Uy), x€S'

Dispersion relation w = Q(k) — Q" in eikonal eq.
Phase speed con = 2(k)/k
Group velocity cg = Q' (k)

"NAAA. /@22?




Physics of oscillations — linear dispersion

Linearize at wave train Ui = DUy + F'(Uyi(kx — wt))U

Floquet-Bloch U(t,z) = eMTV2U, o (kx — wit)
Uper(§) = Uper (€ + 27)

Boundary-value problem for V' = Upe,

d d
AV — wd—€V = D(d_g +v)*V + F'(Uwi (kx — wt))V

Typically, solve for X = A(v) = linear dispersion:

A(iv) = —cgivy —dvy®* + O(+®)  — viscosity in eikonal eq.

group velocity ~ slope of eikonal characteristics

MWVWWWWWWWWWUWWWWWUW




Classifying coherent structures

Sink
ky,k_ free
— +

Cq > Ces > Cq

Transmission
k. free, k_ selected

Cg_a C;_ < Ccs

Contact
k+ = k_ free

= Ces = ¢

i

Source
ki, k_ selected

cg < Ces < c;f
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Characterizing coherent structures

Characterize coherent structures as

* Periodic in comoving frame:
U=U(x — cet,t) =U(x — cest,t +T)
e Asymptotic to wave trains:
U(x — cestyt) — Uyp(ktrx — wit + 0L (x); k1)
for £ — o0, w4 = Q(k+), asymptotic phases 6/ (x) — 0
Conditions at oo and periodicity imply Rankine-Hugoniot!

Q(ET)—Q(k—
Cos = QD) —20)

Coherent structures satisfy modulated traveling-wave equ ation:

DUE& + Cch£ + F(U) — U = 09 U(€7 O) — U(€7T)



Spatial dynamics

Modulated wave equation [looss,Mielke]

(z)g B (D—l[qu o F(u)])

where (u,v)(&, ) is time-periodic with period 27
* Parameters (w,c) — (k4,k_) through Rankine-Hugoniot

e Sl-Symmetry (u,v)(7) — (u,v)(T + o)

Coherent structures are heteroclinic orbits that connect w ave
trains



Coherent structures as heteroclinic orbits

Sink Contact
transverse heteroclinic saddle-node homoclinic
codimension O codimension 1
Transmission Source
homo-/heteroclinic heteroclinic

codimension 1 codimension 2



Existence and robustness of coherent structures

Theorem [Sandstede,S.]

The four types of elementary coherent structures occur in op en,
nonempty classes of reaction-diffusion systems

FecFccC?*RV,RY), D EDCRII,

with spectra and multiplicities as described before.

—> Enables a pathfollowing approach to coherent structures



Spatial dynamics — Fredholm properties

Modulated wave equation is ill-posed, e.qg. o | x
5
Uy = v, Vy = Ou, u ~ eVTT 1y — +4/if T
Stable and unstable manifolds exist, both infinite-dimensi onal!

Define: e Intersection map
L: TWE X TWE — X, (w",w’) — w" + w®
* |Linearized period-map
u(t =T,§) = @u(t = 0,8)]

Proposition
Fredholm properties of +and ® — id coincide,

Fredholm index = ip(¢) = ip(P — id) = dim WZ(A) — dim W ()



Spatial dynamics meets physics

Fredholm indices ~ multiplicities of solutions:  compute them!

e homotope period map ¥, = & — e** and

associate spatial dynamics, TWi/ >(A), and ¢y i

v D—lwu, — cv — F'(uy)u + Auj

(0, (ot ) =

e dim W} changes when there are solutions
e""Uper (ki — wt), v = iy, at £ = oo

e change of eigenvalue v when varying - is

source

v = (0,A)7" = (¢g) ™"

Fredholm indices are determined by group velocities!

transmission



Following coherent structures

Following heteroclinic Following coherent structures
and homoclinic orbits In parameter space
or
Homoclinic and Phase transitions in
heteroclinic bifurcations non-equilibrium systems

Two examples. ..



Bifurcations |I: contact <« transmission

L

Homoclinic saddle-node-flip  [Chow,Lin]

e Codimension zero

e Unfolded by wavenumber k_ = k, and speed c

e Interpretation: Locking and unlocking from group velocity
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Bifurcations |l: contact <« source

b A,

Homoclinic saddle-node-double-flip

e Codimension one
e Unfolded by k_, k., and parameter e
e Example: oscillations with small inhomogeneities

-z~ <
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Example: inhomogeneities & small oscillations

g U

\ % \V/
Physics of coherent structures

Al XY ¥

Spatial dynamics of coherent structures

et 0 gA 4




Outlook

* higher dimensions: radial dynamics

V /
r=0 r<+o0

* higher dimensions: beyond radial symmetry

* higher dimensions: line defects [Haragus&Scheel]

e boundaries and interaction

e stability: point spectra, essential and absolute spectra,
extended point spectra, Evans functions, nonlinear stabil
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