Coherent Structures in Spatially Extended Systems

Arnd Scheel
University of Minnesota

collaborators

Arien Doelman, Richard Kollár, Björn Sandstede, Guido Schneider

Research supported by NSF

Coherent structures — why do we care?

- I Example: oscillations & small inhomogeneities
- II Example: inhomogeneities & small oscillations
- **III** Physics of coherent structures
- IV Spatial dynamics of coherent structures

- Example: oscillations & small inhomogeneities
- II Example: inhomogeneities & small oscillations
- **III** Physics of coherent structures
- IV Spatial dynamics of coherent structures

Oscillatory media

Oscillatory reaction

$$U_t = F(U) \in \mathbb{R}^N, \qquad U_*(-\omega_* t) = U_*(-\omega_* t + 2\pi)$$

Diffusion

$$U_t = D\Delta U + F(U), \qquad x \in \Omega \subseteq \mathbb{R}^n, \ D = \operatorname{diag} d_j > 0, \ \mathsf{Neumann} \ \mathsf{b.c.}$$

Example: FitzHugh-Nagumo

$$u_t = \Delta u + rac{1}{\mu}[u(1-u)(u-a)-v]$$
 $v_t = \Delta v + u - \gamma v + b$

Oscillatory media

Oscillatory reaction

$$U_t = F(U) \in \mathbb{R}^N, \qquad U_*(-\omega_* t) = U_*(-\omega_* t + 2\pi)$$

Diffusion

$$U_t = D\Delta U + F(U), \qquad x \in \Omega \subseteq \mathbb{R}^n, \ D = \operatorname{diag} d_j > 0, \ \mathsf{Neumann} \ \mathsf{b.c.}$$

Example: FitzHugh-Nagumo

$$u_t = \Delta u + rac{1}{\mu}[u(1-u)(u-a)-v]$$
 $v_t = \Delta v + u - \gamma v + b + arepsilon$

Periodic orbits are robust size of perturbation \ll spectral Floquet gap

Robustness — inhomogeneities

$$\varepsilon = -0.05$$

$$arepsilon=0$$

$$\varepsilon=0.05$$

$$u_t = \Delta u + rac{1}{\mu} u (1-u) (u-a)$$

$$v_t = \Delta v + u - v + b + rac{arepsilon}{1 + |x/3|^2}$$

with $a=0.34, b=-0.045, \mu=0.08$ on $\Omega=\{|x_j|\leq 90\}$

Robustness — inhomogeneities

$$\varepsilon = -0.05$$

$$arepsilon=0$$

$$\varepsilon=0.05$$

$$u_t = \Delta u + rac{1}{\mu} u (1-u) (u-a)$$

$$v_t = \Delta v + u - v + b + rac{arepsilon}{1 + |x/3|^2}$$

with $a=0.34, b=-0.045, \mu=0.08$ on $\Omega=\{|x_j|\leq 90\}$

Coherent structures — what makes it difficult?

! Robustness analysis of the linearized the period map Φ ! Small spectral gaps in $|x| \leq L$

Floquet spectrum of Φ clusters near $\lambda = 0$:

$$\lambda_0=0>\lambda_1\sim -rac{d}{4L^2}\geq \ldots$$

In our example L=90, and

$$\lambda_1 \sim 3 \times 10^{-5}$$

Fredholm boundaries in \mathbb{R}^n

- ullet Φ is not Fredholm when posed on $L^2(\mathbb{R}^n)$
- Φ is Fredholm with index -1 when posed on $L^2_\eta(\mathbb{R}^n)$, $0<\eta\ll 1$, where $L^2_\eta=\{U;\ \mathrm{e}^{\eta|x|}U(x)\in L^2\}$, U radially symmetric

Inhomogeneities: main results

$$U_t = D\Delta U + F(U) + \varepsilon G(|x|), \ x \in \mathbb{R}^n, \ |G(r)| \leq C(1+r)^{-2-\delta}$$

Theorem [Kollár&Scheel]

Assume minimal critical spectrum, normal dispersion, then

where

- $\delta\omega = \omega \omega_*$
- ullet sources correspond to $\delta\omega>0$

For anomalous dispersion, replace $\delta\omega\mapsto -\delta\omega$

- Example: oscillations & small inhomogeneities
- II Example: inhomogeneities & small oscillations
- **III** Physics of coherent structures
- IV Spatial dynamics of coherent structures

Chemical flip-flops

Turing patterns, turing spots, waves, splitting CIMA reaction

[Castets, Dulos, Boissonade, De Kepper]

Chemical flip-flop

[Perraud, De Wit, Dulos, De Kepper, Dewel, Borckmans]

Turing spots and Hopf bifurcation

Reaction-diffusion system

$$U_t = DU_{xx} + F(U;\mu), \qquad x \in \mathbb{R}, \ U \in \mathbb{R}^N$$

Turing spot (standing pulse)

$$Q(x) = Q(-x)
ightarrow 0 \; \mathsf{for} |x|
ightarrow \infty$$

"self-organized inhomogeneity"

Hopf bifurcation

$$U_t = F(U;\mu)$$

undergoes supercritical Hopf at

$$U=0, \mu=0$$

One-dimensional target patterns and spiral waves

Theorem [Sandstede&Scheel]

- **Assume** standing pulse
 - Hopf, outside Benjamin-Feir
 - minimal critical spectrum

Then unique 1d-target patterns and 1d-spiral waves bifurcate:

- There do not exist patterns with homogeneous oscillations in the far field
- The 1d-target or the 1d-spiral is stable, the other one is unstable

- Example: oscillations & small inhomogeneities
- II Example: inhomogeneities & small oscillations
- III Physics of coherent structures
- IV Spatial dynamics of coherent structures

Physics of oscillations — modulations

Modulations of the phase:

Ansatz

$$U(t,x) = U_*(\Phi(T,X) - \omega_*t) + \dots,$$

with

$$\Phi = \Phi(X,T), \quad X = \varepsilon x, T = \varepsilon^2 t$$

gives viscous eikonal/Burgers equation for Φ , $u = \Phi_X$

$$\Phi_T = d\Phi_{XX} - \frac{1}{2}\Omega''\Phi_X^2$$
 $u_T = du_{XX} - \Omega''uu_X$

- d effective diffusion
- Ω nonlinear dispersion
- Derivation: [Howard, Kopell]
- Validity: [Doelman, Sandstede,
 S., Schneider], Memoirs AMS

Physics of oscillations — nonlinear dispersion

Wave trains $U=U_{\mathrm{wt}}(kx-\omega t;k)$, 2π -periodic

$$-\omega U_{\mathrm{wt}}' = k^2 D U_{\mathrm{wt}}'' + F(U_{\mathrm{wt}}), \qquad x \in S^1$$

Dispersion relation $\omega = \Omega(k) \longrightarrow \Omega''$ in eikonal eq.

Phase speed $c_{
m ph}=\Omega(k)/k$

Group velocity $c_{
m g}=\Omega'(k)$

Physics of oscillations — linear dispersion

Linearize at wave train $U_t = DU_{xx} + F'(U_{\mathrm{wt}}(kx - \omega t))U$

Floquet-Bloch $U(t,x)=\mathrm{e}^{\lambda t+
u x}U_{\mathrm{per}}(kx-\omega t)$ $U_{\mathrm{per}}(\xi)=U_{\mathrm{per}}(\xi+2\pi)$

Boundary-value problem for $V=U_{
m per}$

$$\lambda V - \omega rac{\mathrm{d}}{\mathrm{d}\xi} V = D(rac{\mathrm{d}}{\mathrm{d}\xi} +
u)^2 V + F'(U_{\mathrm{wt}}(kx - \omega t))V$$

Typically, solve for $\lambda = \lambda(\nu) \Rightarrow$ linear dispersion:

$$\lambda(\mathrm{i}\gamma) = -c_\mathrm{g}\mathrm{i}\gamma - d\gamma^2 + \mathrm{O}(\gamma^3) \qquad o ext{viscosity in eikonal eq.}$$

group velocity \sim slope of eikonal characteristics

Classifying coherent structures

Sink

 k_+, k_- free

$$c_{\rm g}^- > c_{\rm cs} > c_{\rm g}^+$$

Transmission

 k_+ free, k_- selected

$$c_{\rm g}^-, c_{\rm g}^+ < c_{
m cs}$$

Contact

 $k_+=k_-$ free

$$c_{\rm g}^- = c_{\rm cs} = c_{\rm g}^+$$

Source

 k_+, k_- selected

$$c_{\mathrm{g}}^- < c_{\mathrm{cs}} < c_{\mathrm{g}}^+$$

- I Example: oscillations & small inhomogeneities
- II Example: inhomogeneities & small oscillations
- **III** Physics of coherent structures
- **IV** Spatial dynamics of coherent structures

Characterizing coherent structures

Characterize coherent structures as

Periodic in comoving frame:

$$U=U(x-c_{
m cs}t,t)=U(x-c_{
m cs}t,t+T)$$

Asymptotic to wave trains:

$$U(x-c_{\rm cs}t,t)\longrightarrow U_{\rm wt}(k_{\pm}x-\omega_{\pm}t+ heta_{\pm}(x);k_{\pm})$$

for
$$x o \pm \infty$$
, $\omega_{\pm} = \Omega(k_{\pm})$, asymptotic phases $heta'_{\pm}(x) o 0$

Conditions at ∞ and periodicity imply Rankine-Hugoniot!

$$c_{
m cs}=rac{\Omega(k^+)-\Omega(k^-)}{k^+-k^-}$$

Coherent structures satisfy modulated traveling-wave equation:

$$DU_{\xi\xi} + c_{cs}U_{\xi} + F(U) - U_{t} = 0, \qquad U(\xi, 0) = U(\xi, T)$$

Spatial dynamics

Modulated wave equation [looss, Mielke]

$$egin{pmatrix} u \ v \end{pmatrix}_{oldsymbol{\xi}} = egin{pmatrix} v \ D^{-1}[\omega u_{oldsymbol{ au}} - cv - F(u)] \end{pmatrix}$$

where $(u,v)(\xi,\cdot)$ is time-periodic with period 2π

- Parameters $(\omega,c)\mapsto (k_+,k_-)$ through Rankine-Hugoniot
- S^1 -Symmetry $(u,v)(au)\mapsto (u,v)(au+\sigma)$

Coherent structures are heteroclinic orbits that connect wave trains

Coherent structures as heteroclinic orbits

Sink

transverse heteroclinic codimension 0

Transmission

homo-/heteroclinic codimension 1

Contact

saddle-node homoclinic codimension 1

Source

heteroclinic codimension 2

Existence and robustness of coherent structures

Theorem [Sandstede,S.]

The four types of elementary coherent structures occur in open, nonempty classes of reaction-diffusion systems

$$F\in \mathcal{F}\subset C^2(\mathbb{R}^N,\mathbb{R}^N), \quad D\in \mathcal{D}\subset \mathbb{R}^N_+,$$

with spectra and multiplicities as described before.

⇒ Enables a pathfollowing approach to coherent structures

Spatial dynamics — Fredholm properties

Modulated wave equation is ill-posed, e.g. $u_x = v, \ v_x = \partial_t u, \qquad u \sim \mathrm{e}^{\nu x + \mathrm{i} \ell t}, \ \nu = \pm \sqrt{\mathrm{i} \ell}$

$$u_x = v, \ v_x = \partial_t u,$$

$$u \sim \mathrm{e}^{\nu x + \mathrm{i}\ell t}, \
u = \pm \sqrt{\mathrm{i}\ell}$$

Stable and unstable manifolds exist, both infinite-dimensional!

Define: • Intersection map

$$\iota:TW^{\mathrm{u}}_{-} imes TW^{\mathrm{s}}_{+} o X,\quad (w^{\mathrm{u}},w^{\mathrm{s}})\mapsto w^{\mathrm{u}}+w^{\mathrm{s}}$$

Linearized period-map

$$u(t=T,\xi) = \Phi[u(t=0,\xi)]$$

Proposition

Fredholm properties of ι and $\Phi - \mathrm{id}$ coincide,

Fredholm index
$$=i_{\mathrm{F}}(\iota)=i_{\mathrm{F}}(\Phi-\mathrm{id})=\dim W^{\mathrm{u}}_{-}(\lambda)-\dim W^{\mathrm{u}}_{+}(\lambda)$$

Spatial dynamics meets physics

Fredholm indices \sim multiplicities of solutions: compute them!

• homotope period map $\Psi_\lambda=\Phi-\mathrm{e}^{\lambda T}$ and associate spatial dynamics, $TW_\pm^\mathrm{u/s}(\lambda)$, and ι_λ :

$$egin{pmatrix} u \ v \end{pmatrix}_{oldsymbol{\xi}} = egin{pmatrix} v \ D^{-1}[\omega u_{ au} - cv - F'(u_*)u + \lambda u] \end{pmatrix}$$

- $ullet i_{
 m F}(\iota_{\lambda})=i_{
 m F}(\Psi_{\lambda})=\dim W^{
 m u}_{-}(\lambda)-\dim W^{
 m u}_{+}(\lambda)$
- ullet dim $W^{
 m u}_\pm$ changes when there are solutions ${
 m e}^{
 u x} U_{
 m per}(ki\xi-\omega t),
 u={
 m i}\gamma, ext{ at } \xi=\pm\infty$
- change of eigenvalue u when varying γ is

$$\partial_{\lambda} \nu = (\partial_{\nu} \lambda)^{-1} = (c_{\mathrm{g}})^{-1}$$

Fredholm indices are determined by group velocities!

Following coherent structures

Following heteroclinic and homoclinic orbits

 \iff

Following coherent structures in parameter space

or

Homoclinic and heteroclinic bifurcations

 \Longrightarrow

Phase transitions in non-equilibrium systems

Bifurcations I: contact ←→ transmission

Homoclinic saddle-node-flip [Chow,Lin]

- Codimension zero
- Unfolded by wavenumber $k_-=k_+$ and speed c
- Interpretation: Locking and unlocking from group velocity

Bifurcations II: contact ←→ source

Homoclinic saddle-node-double-flip

- Codimension one
- Unfolded by k_- , k_+ , and parameter arepsilon
- Example: oscillations with small inhomogeneities

Summary

I Example: oscillations & small inhomogeneities

II Example: inhomogeneities & small oscillations

III Physics of coherent structures

IV Spatial dynamics of coherent structures

Outlook

• higher dimensions: radial dynamics

• higher dimensions: beyond radial symmetry

• higher dimensions: line defects [Haragus&Scheel]

- boundaries and interaction
- stability: point spectra, essential and absolute spectra, extended point spectra, Evans functions, nonlinear stability