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3.1 INTRODUCTION

Navigation systems that guide objects moving from one place to

another have progressed recently with the rapid advances in

positioning, communication, and spatial data storage and processing

technologies. The easy availability of satellite-based global positioning

systems has revolutionized all forms of automated navigation. Other

positioning technologies such as handsets that use user input and

networks that use one of the many location-determining methods are also

showing continued advances. The proliferation of such location-aware

devices provides us with opportunities to develop a diverse range of

location-based applications, many of which will use user location-specific

information.

Location-based services (LBS) provide the ability to find the

geographical location of a mobile device and then provide services

based on that location [OpenLS]. The Open GIS Consortium (OGC)

recently initiated the OpenLS standard, which addresses the technical

specifications for LBS, to enhance a range of personal, governmental,

industrial, and emergency mobile applications. Location-based systems

and geographic information systems (GIS) share many common features.

At the heart of the OpenGIS Location Services (OpenLS) standard lies

the GeoMobility server, which comprises abstract data types (ADTs) and

the core services through which a service provider can provide location

application services and content to any service point on any device. The

core services are location utilities services, directory services, presentation

service, gateway service, and route determination service.

These location-based application services require a spatial database

(SDB) server, which provides effective and efficient retrieval and

management of geospatial data. Spatial database systems serve various

spatial data (e.g., digital road maps) and nonspatial information (e.g.,

route guidance instruction) on request to the client. SDB servers provide

efficient geospatial query-processing capabilities such as find the nearest

neighbor (e.g., gas station) to a given location and find the shortest path

to the destination. The SDB system acts as a back-end server to the

GeoMobility server. Thus SDB servers play a crucial role in implement-

ing efficient and sophisticated navigation system applications. This

chapter introduces navigation systems from a spatial database perspective.

Section 3.2 briefly reviews the history of navigation systems and

provides a generic architecture of a typical navigation system based on
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OpenLS specifications. In the subsequent sections, each component of

this architecture is presented in detail. Section 3.3 presents various

components of SDBs using a digital road map as an example. Section 3.4

introduces gateway service, and Section 3.5 addresses location utility

service. Section 3.6 presents the components of directory service. Section

3.7 addresses route determination service and Section 3.8, presentation

service. The chapter concludes with a discussion on future research needs.

3.2 NAVIGATION SYSTEMS

A modern navigation system is an integrated collection of position and

orientation sensors and computing and communication hardware and

software used to facilitate the movement of people, vehicles, and other

moving objects from one place to another. It includes methods for

determining position, course, and distance traveled. The platform could

be anything from land-based vehicles to space-based satellites. So while

navigation is the process that guides the movement of an object between

two points in space, navigation systems are the hardware and software

components that facilitate automated and intelligent navigation. As such,

navigation systems cover a broad spectrum of integrated technologies

that allow accurate determination of the geographic coordinates of the

(moving) objects, their velocity, and height.

The history of navigation is as old as human history, although early

navigation was limited to following landmarks and memorizing routes.

Historical records show that the earliest vehicle navigation dates back to

the invention of the south-pointing carriage in China around 2600 B.C. A

brief discussion of other historic vehicle navigation systems can be found

in [Zha97]. Well-known navigation devices that were extensively used in

early navigation are the magnetic compass and the odometer. The 17th-

century discovery of chronometer by John Harrison provided accurate

local time at sea, which helped in solving the long-known problem of

estimating longitudes. The use of navigation devices in automobiles

began in the early 20th century. Many modern-day automobiles are

equipped with devices that are capable of determining the current

location and then dynamically displaying and updating the current

position on digital road maps.

Over the centuries, various kinds of technologies have been tried

for navigation. The discovery of global positioning systems (GPS) has
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changed the face of modern navigation forever. In modern vehicle

navigation, the second-generation guidance system developed by the U.S.

Department of Defense in the mid-1980s, known as the Navigation

Satellite Timing and Ranging (NAVSTAR) global positioning system, is

becoming widely used. The positional accuracy of civilian GPS receivers

has been improved to þ/� 10 meters. Submeter accuracy can also be

obtained through differential GPS. Navigation inside confined spaces,

such as buildings, can be achieved through indoor location-sensing

devices. The commonly used sensors for indoor navigation are infrared

and short-range radios. Some example indoor navigation systems are

Active Badges [WHFG92], Active Bat [HHSþ 99], ParcTAB

[AGSþ 93], and the Cricket system [PCB02].

This ability to accurately determine the position of moving objects

gave rise to new services known as location-based services. LBS uses

accurate and real-time positioning systems and GIS to determine the

location of a moving object. The information generated by these systems

is sensitive to the current position of the user and can be used to advise

users about current conditions such as weather and traffic. Thus

navigation systems are the backbone of the location-based services.

The OGC recently initiated the OpenLS standard to address the

technical specifications for LBS. The core of LBS applications is the

back-end SDB server, which provides efficient storage, management,

and processing capabilities for geospatial data. The limitations of earlier

navigation systems, which were confined to simple positioning devices

and paper-based maps (e.g., road maps, navigation charts), have been

diminished with the availability of accurate digital road maps and digital

communication systems. The SDB server provides dynamic information

on demand to aid automated navigation. Thus navigation systems along

with SDBs provide us with opportunities to develop innovative

applications ranging from a simple trip plan to complex mobile object

monitoring and management systems.

The general architecture of a modern navigation system is shown in

Figure 3.1. The components can be broadly classified into four

subsystems: the SDB server, the GeoMobility server, communication

systems, and the location-aware clients. Client-side components include

position-aware devices that range from personal digital assistants (PDAs)

and cellular phones to cars, ships, airborne vehicles, and laptops. The

client can be totally independent; in that case, the devices can also

include small (static) SDBs (e.g., CD/DVD-ROMs); however, in many
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location-based service applications, the client depends on a server for

various services and communicates with the server through wireless and

Internet network technologies.

The server-side components include a Web server, a large SDB server,

and the application server. The client and server interact through wireless

communications. Client-side devices use various visual interfaces (e.g.,

graphical user interface [Bon93; Mac96; ST91], voice recognition

[YLM95; Rab95]) to interact (query and presentation) with the server.

Building applications that integrate heterogeneous technological pieces in

a viable way is impossible without the help of standards, and OpenLS

[OpenLS] is such a standard. Several other standards are similar or

address specific issues; for example, Location Interoperability Forum’s

(LIF) standard addresses location determination methods, and ISO TC/

204 deals with navigation data formats. The discussion in this chapter is

based on the OpenLS standard and describes how the various subsystems

work together to form various navigation system applications.

3.2.1 Spatial Database Server

An SDB [Guting94; SCRþ 99; SC02; RSV01] management system aims

at the effective and efficient management of data related to a space in the

physical world (e.g., geographic or astronomical space). An SDB server

is an essential component for building efficient navigation system
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Figure 3.1 Architecture of a modern navigation system.
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applications. It provides conceptual, logical, and physical data modeling

facilities to build and manage spatial databases. It serves various spatial

(e.g., digital road maps) and aspatial information (e.g., route guidance

instructions) on request to the client. It also provides various geospatial

query-processing capabilities, such as find the nearest neighbor (e.g.,

restaurant) to a given location and find the shortest route between two

points. It acts as a back-end SDB server to the GeoMobility server.

Commercial examples of SDB management systems include Oracle

Spatial [SDC], DB2 Spatial Extender [DB2Spatial]), and ESRI’s Spatial

Database Engine [ESRI].

3.2.2 Open Location Services and GeoMobility Server

The OGC is an international consortium for developing publicly

available geoprocessing specifications. Most of these specifications have

been adopted by the industry, and as a result an extremely successful

interoperable geospatial infrastructure now exists. The OGC recently

initiated an Open Location Services Initiative [OpenLS], which aims

at the development of interface specifications that facilitate the use of

location and other forms of spatial information in the wireless Internet

environment. The purpose of the Initiative is to produce open

specifications for interoperable location application services that will

integrate spatial data and processing resources into the telecommuni-

cations and Internet services infrastructure [OpenLS]. The OpenLS

specification allows the deployment of interoperable location-based

products and services that will have a far-reaching impact on industry and

society.

The GeoMobility server is an OpenLS platform through which content/

service providers can deliver and service location-based applications. The

core services are Location Utilities Service, Directory Service, Presentation

Service, Gateway Service, and Route Determination Service.

^ Location Utilities Service. The OpenLS utilities specification provides

two services, geocoding and reverse geocoding, and an abstract data type

named as Address. The geocoder service is a network-accessible service

that transforms a description of a location into a normalized description

of the location with point geometry. The reverse geocoder service maps

a given position into a normalized description of a feature location.
^ Directory Service. The directory service provides a search capability for

one or more points of interest (e.g., a place, product, or service with a
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fixed position) or area of interest (e.g., a polygon or a bounding box).

An example query is ‘‘Where is the nearest Thai restaurant to the

EE/CS department?’’
^ Presentation Service. This service deals with visualization of the spatial

information as a map, route, and/or textual information (e.g., route

description).
^ Gateway Service. This service enables obtaining the position of a

mobile terminal from the network.
^ Route Determination Service. This service provides the ability to find

a best route between two points that satisfies user constraints.

This service and other network analysis capabilities are described in

Section 3.7.

3.2.3 Communication Systems

Telecommunications have undergone significant changes in the last 30

years. In the 1970s, analog communications gave way to digital

communications and circuit-switching technology gave way to packet-

switching technology. In the early 1980s, the original ARPANET began

to evolve into the current Internet. In its early days, the Internet

comprised a handful of small networks at universities and defense

establishments. Explosive growth of the Internet began during the late

1980s, at the same time personal computers revolutionized the home

computing environment.

The Internet can be viewed as the interconnection of thousands

of Local Area Networks (LANs) and Wide Area Networks (WANs).

Ethernet is the most widely installed LAN technology to connect multiple

computers together to enable applications such as file sharing, electronic

mail, and Internet access. WANs are simply the interconnection of

two or more LANs using some form of telecommunication medium.

Asynchronous Transfer Mode (ATM) has been widely adopted for WAN

interconnections. Most modern WAN protocols, including TCP/IP and

X2.5, are based on packet-switching technologies. ATM combines the

best of both worlds (i.e., the guaranteed delivery of circuit-switched

networks and the efficiency of packet-switched networks).

The most recent advance in telecommunications is wireless telephony,

commonly known as cell phones. Cell phone usage grew exponentially

in the United States during the 1990s. More history of communications

can be found in [ComSoc]. Today, wireless communication plays an

3.2 Navigation Systems 47



important role in navigation systems. It is what makes user mobility over

large geographic areas possible. Both analog and digital wireless systems

are used in current communication systems. However, some wireless

communication applications such as paging may still need access to wired

networks (e.g., Public Switched Telephone Network), and the Internet

readily provides countless access points for wireless subnetworks. Some

navigation systems such as short-range beacons (used for vehicle to

roadside communications) also need wired networks to transfer

information from the beacon heads to the navigation management

center. Navigation devices communicate with the roadside beacon

acceptor, which then transfers information to the navigation center.

Location-based services are thus dependent on both wired and wireless

networks.

3.2.4 Location-Aware Clients

Client-side devices in the architecture of a modern navigation system

consist of three basic components: a position and orientation module, a

computing module consisting of display and storage, and a communica-

tion module. Each client-side module may not necessarily be equipped

with all three modules but still can be part of a location-based

application. For example, a PDA without a positioning module can

utilize the gateway service to obtain its current location. Client-side

devices vary widely in nature and function; example devices include but

are not limited to PDAs, cell phones, laptops, and land, sea, and airborne

vehicles. Client devices may additionally be equipped with visual display

units (e.g., touch screens) and voice recognition systems. Stand-alone

(or thick) clients can store SDBs locally, either on CD-ROMs, DVDs, or

hard disks; however, many location-based clients may need to access

GeoMobility Servers.

3.3 SPATIAL DATABASES

3.3.1 Digital Road Maps

Location-based services depend heavily on digital road maps, postal

addresses, and point-of-interest data sets. These maps are indispensable

for any location-based utility that involves position- (e.g., street address)

or route-based queries. Current road navigation systems use digital road
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maps available on CDs or DVDs, but many applications (e.g., emergency

services) require dynamic updates from back-end SDB servers.

Traditionally, digital road maps were available through governmental

departments (e.g., state departments of transportation); however, due to

commercial demand, several private-sector companies have begun to offer

digital road maps with additional points of interest and areas of interest

information. Table 3.1 summarizes various digital road map sources

along with important characteristics. Given a wide variety of hetero-

geneous digital road map databases, it is imperative to understand data

quality before building any LBS application.

Table 3.1 Digital road map sources.

Source Provider Coverage Comments

TIGER [TIGER] U.S. Department
of Commerce,
Census Bureau

USA Aggregated from
many sources,
e.g., USGS,
State DOTs, etc.
Accuracy inadequate
for OLSs in many areas

State base map
[MNDOT]

State department
of transportation,
e.g., MN/DOT

Minnesota, USA Digitized from 1:24000
USGS paper map

Navtech
[NAVTECH]

Navigation
Technologies
Corporation

USA,
North America,
Western Europe

Cleaner version of
TIGER file
Best accuracy for
urban areas

Etak [ETAK] Tele Atlas USA, Canada,
Western Europe,
Hong Kong,
Singapore

Best accuracy for
urban areas

GDT [GDT] Geographic data
technology

USA, Canada Better accuracy for
nonurban areas

Digital Map 2500
[GSI93]

Geographical Survey
Institute (GSI),
Japan

Japan The spatial data
framework (SDF2500)
includes roads and
railways for city planning
and as well for Japan
as a whole

Philips-Digital
Map Data
[PDMD03]

Graticule Great Britain,
Europe

Street data specialized
for navigation available
at different scales
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Data quality refers to the relative accuracy and precision of a particular

GIS database. These facts are often recorded as a part of metadata. Digital

road maps are an important category of geospatial data. The purpose of

a geospatial data quality report is to provide detailed information for a

user to evaluate the fitness of geospatial data for a particular use.

To provide a data quality report based on geospatial data standards, a

digital data producer is urged to include the most rigorous and

quantitative information available on the components of data quality.

In fact, data quality is a part of the geospatial metadata defined by

the Federal Geographic Data Committee (FGDC) [FGDC01]. The

metadata standard documents the content, quality, condition, and other

characteristics of data so that geospatial digital data users can evaluate the

data fitness for their purpose. This standard provides a common set of

terminology and definitions for the documentation of spatial data,

including information on identification, data quality, spatial data

organization, spatial reference, entities and attributes, distribution

information, and metadata references. There are several map accuracy

standards, including the well-known National Map Accuracy Standard

(NMAS) [NMAS] and the American Society for Photogrammetry and

Remote Sensing (ASPRS) standard [ASPRS]. There are four components

of data quality standards:

1. Lineage. Refers to the narrative of source materials (e.g., USGS quad

sheets) used and procedures (e.g., map projection, map generalization)

applied to produce the product.

2. Positional Accuracy. Defines expected error in position of features (e.g.,

landmark points). For example, an NMAS-compliant map guarantees

90% of features within 40 feet of their true position at 1:24,000 scale.

New standards (e.g., ASPRS) revised this accuracy for well-defined

points.

3. Attribute Accuracy. Defines expected error in attributes (e.g., road

names). For example, a road map may claim 90% accuracy for a road

name attribute.

4. Completeness. Defines the fraction of real-world features depicted on a

map. For example, a road map includes 99% of available streets.

For current digital road maps, positional accuracies, which are of

the most concern in navigation systems, vary greatly for different map

50 C H A P T E R 3 Navigation Systems: A Spatial Database Perspective



sources. Following is a summary of accuracy claims from different

sources:

^ TIGER: mean error¼ 281 feet (90 m), Median error¼ 166 feet

(50 m). 90th percentile from 110 m to 440 m across different sources

^ Basemap: 40 feet at 1:24,000 scale, 166 feet at 1:100,000 scale

^ NavTech: 97% accuracy, percent error¼ linear combination of 13

component errors

^ Etak: 40 feet at 1:24,000 scale (cover 70% population), 166 feet at

1:100,000 scale (cover 25% population), 90% of tested points less

than threshold

^ GDT: In enhanced regions, 5 m to 7 m

3.3.2 Data Model of Digital Road Maps

This section presents techniques related to the data modeling of a

location-based application. The focus is a digital road map. Database

applications are modeled using a three-step design process [EN01]. In the

first step, all of the available information related to the application is

organized using a high-level conceptual data model. The second step, also

called the logical modeling phase, is related to the actual implementation

of the conceptual data model in a commercial database management

system (DBMS). The third and final step, modeling of the physical design,

deals with the nuts and bolts of the actual computer implementation of

the database applications.

CONCEPTUAL DATA MODEL

At the conceptual level, the focus is on the data types of the application,

their relationships, and their constraints. The actual implementation

details are left out at this step of the design process. Plain text combined

with simple but consistent graphic notation is often used to express the

conceptual data model. The Entity Relationship (ER) model is one of the

most widely used conceptual design tools, but it has long been recognized

that it is difficult to capture spatial semantics with ER diagrams. The first

difficulty lies with geometric attributes, which are complex, and the

second difficulty lies with spatial relationships. Several researchers have

proposed extensions to the existing modeling languages to support

spatial data modeling. The pictogram-enhanced ER (PEER) model
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proposed in [SVCB99] is used to show the conceptual model of a

digital road map.

Figure 3.2 shows a PEER diagram for a digital road map. Spatial

networks (e.g., road maps) are modeled as graphs, where vertices

are points embedded in space. Graph consists of a finite set of vertices and

a set of edges. In a digital road map, vertices represent road intersections

and edges represent road segments, which are lines connecting two

intersections. Sometimes labels (e.g., name) and weights (e.g., miles,

travel time) are attached to each vertex and edge to encode additional

information. A road segment is modeled with (a range of ) street

addresses, which is commonly used in geocoding (i.e., assigning a

coordinate to a given address such as ‘‘511 Washington Ave’’) and

reverse geocoding (i.e., finding the address given a coordinate), as

suggested in [VW01]. The street addresses are divided into left-side

addresses and right-side addresses. Each side keeps two end addresses:

from and to. The zip code information of a street address is used

for searching a map when the exact address is unknown. The left-side

and right-side zip codes are also attached to the road_segment. Two

edges are adjacent if they share a common node. A sequence of

adjacent edges constitutes a path. At the conceptual level, a path is

modeled as a street. This diagram also includes Point of Interest (POI)

and Gazetteer entities for supporting directory service of the OpenLS

standard.
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Figure 3.2 A PEER diagram for a digital road map.
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LOGICAL DATA MODEL

The logical modeling phase is related to the actual implementation of the

conceptual data model in a commercial DBMS. Data are organized using

an implementation model without any regard to actual storage details.

Examples of implementation models are hierarchical, network, relational,

and object-oriented models. A hybrid object-relational data model is also

gaining popularity and being implemented in current commercial SDBs.

[SVCB99] provided the grammar-based translation scheme for mapping

a pictogram-extended ER model onto an object-relational model. This

mapping uses OGC simple feature specification for SQL [OGC98]. The

SQL functions (methods) specified by the OGIS specification fall into three

categories: (1) basic functions on the Geometry data types, (2) operators

for testing topological relationships, and (3) functions that support spatial

analysis. The OGIS standard specifies the data types and the operations

on these data types that are essential for spatial applications such as GIS.

Although relational database management systems (RDBMS) provide

a fixed set of data types, object-relational database management systems

(ORDBMS) support recently standardized SQL3, which allows user-

defined data types. This mechanism allows user-defined complex spatial

data types such as point, line, and polygon. The actual mapping between

a PEER model and OGIS/SQL3 logical model is guided through the

definition of grammar and the translation rules. In general, entity

pictograms translate into appropriate data types in SQL3, and the

relationship pictograms translate into spatial integrity constraints.

Table 3.2 shows a relational schema for the digital road map example.

There are six tables: Road_Map, Road_Intersection, Road_Segment,

Street, POI, and Gazetteer. The Road_Map table is represented as an

adjacency_list graph in order to support routing algorithms (see Section

3.7). The relationships of left-side and right-side zip codes, and the four

street address relationships for geocoding, are placed as attributes in the

road_segment relation. In addition, commercial database companies have

introduced the notion of providing application-specific packages, which

provide a seamless interface to the database user. For example, Oracle

provides a Spatial Data Cartridge package [SDC] for GIS-related

applications.

PHYSICAL DATA MODEL

In the physical data modeling phase, issues related to storage, indexing,

and memory management are addressed. Physical database design is
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critical to ensure reasonable performance for various queries written in an

elegant but high-level logical language such as SQL, which provides no

hints about implementation algorithms or data structures. Historically,

physical database design techniques such as Bþ tree index are credited for

the large-scale adoption of relational database technology by providing

reasonable response time for SQL queries of many kinds. Well-known file

organizations are hashed files and ordered files; however, ordered file

organization cannot be used directly for spatial objects (e.g., location of a

city) because no total order is defined on points in a multidimensional

space. This situation has given rise to several mapping techniques such

as Z-order and Hilbert curves, also known as space-filling curves. Even

though there is no ideal mapping technique, the mapping of points in

multidimensional space into one-dimensional values will enable the use

of the well-known Bþ tree indexing structure.

A fundamental idea in spatial indexing is the use of approximations.

This allows index structures to manage an object in terms of one or more

spatial keys, which are much simpler geometric objects than the object

Table 3.2 Relational schema for a digital road map.

Table Name Primary Key Attributes Secondary Indices

Road_Map
(A nested table)

Map_Id Cover_area, nodes with
adjacency lists

CCAM on road map

Road_Intersection Intersection_Id Coordinate
Road_Segment Segment_Id Begin_intersect_Id,

End_intersect_Id, R-Tree
Shape, Bþtree
Street_Id, Distance, Bþtree
Left_ zipcode, Right_ zipcode,
Left_from_street_addr,
Left_to_street_addr,
Right_from streetaddr,
Right_to_street_addr

Street Street_Id Street_name, Street_type, Direction,
Speed, Oneway

POI POI_Id Type, Bþtree
Name, Address, R-Tree
Coordinate

Gazeter Type Name,
Address
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itself. The prime example is the bounding box (the smallest axis-parallel

rectangle enclosing the object). For grid approximations, space is divided

into cells by a regular grid, and the object is represented by the set of cells

that it intersects. Well-known spatial indexing structures are R-tree and

several variants of it. An R-tree is a height-balanced tree that is the natural

extension of a B-tree for k-dimensions. Objects are represented in the R-

tree by their minimum bounding rectangle (MBR). Figure 3.3 shows a set

of spatial objects (MBRs) in a two-dimensional space and an R-tree for

the set of MBRs. These well-known indexing methods provide efficient

query processing involving point and range queries.

For the digital road map example, Bþ tree can be used on street

address attributes of road_segment for geocoding (see Table 3.2). For

example, to transfer from a given address, ‘‘511 Washington Ave,

Minneapolis, MN’’ to a coordinate, first find the road segment using

secondary indices on street addresses and then search for a coordinate

of the given address through connected road segments. For reverse

geocoding (i.e., finding the street address given a coordinate), we can use

an approximation method using a spatial index (e.g., R-tree in which the

road segment is indexed in terms of one spatial key). The nearest road

segment object to a query point gives the street address. Similarly, in the

POI table, Bþ tree can be used for text-based searches (e.g., name) and

R-tree, which is defined on point coordinates, might be used for

supporting proximity queries (point query, range query, and nearest

neighbor query).

Several location-based services, especially those that deal with network

databases (e.g., road networks), have to deal with efficient network

computations. Figure 3.4 shows three different representations of a graph.

Figure 3.3 A collection of spatial objects and its R-tree hierarchy.
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The Adjacency-matrix and the Adjacency-list are two well-known main-

memory data structures for implementing graphs. In the Adjacency-
matrix, the rows and the columns of a graph represent the vertices of the

graph. A matrix entry can be either 1 or 0, depending on whether there

is an edge between the two vertices, as shown in Figure 3.4(b). The

Adjacency-list structure is efficient for queries that involve enumerating

the vertices of a graph: Find all neighbors of v. The Adjacency-list data

(d) Node and Edge Relations

Node (R) Edge (S)

ID X Y 
1 1 0 
2 4 4 
3 0 4 
4 4 4 
5 6 4 
6 7 4 
7 8 4 
8 6 0 
9 9 0 
10 0 5 

Src Dst Dist
1 2 3 
1 3 4.1 
2 3 5.6 
2 4 4 
3 4 4 
3 10 1 
4 5 2 
5 6 1 
5 8 4 
6 7 1 
7 9 4.1 

ID X Y Succ. Pred. 
1 1 0 (2,3) 
2 4 4 (3,4) (1) 
3 0 4 (4,10) (1,2)
4 4 4 (5) (2,3)
5 6 4 (6,8) (4) 
6 7 4 (7) (5) 
7 8 4 (9) (6) 
8 6 0 (9) (5) 
9 9 0 (8) 
10 0 5 (3) 

(e) Denormalized Node Table

(a) Example network graph

3 3

4

4 2 1 1

4.1

5.6 4.14

0,0 1 2

3

1

4

8

6 7

9

5 10 
1

(c) Adjacency-list(b) Adjacency-matrix

1 2 3 4 5 6 7 8 9 10 
1 0 1 1 0 0 0 0 0 0 0 
2 0 0 1 1 0 0 0 0 0 0 
3 0 0 0 1 0 0 0 0 0 1 
4 0 0 0 0 1 0 0 0 0 0 
5 0 0 0 0 0 1 0 1 0 0 
6 0 0 0 0 0 0 1 0 0 0 
7 0 0 0 0 0 0 0 0 1 0 
8 0 0 0 0 0 0 0 0 1 0 
9 0 0 0 0 0 0 0 0 0 0 
10 0 0 0 0 0 0 0 0 0 0 

Destination

S
o
u
r
c
e 

1 …..   2 3 
2 3 4 
3 4 
4 5 
5 6 8 
6 7 
7 9 
8 9 
9 N 
10 N 

Figure 3.4 Three different representations of a graph.
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structure is an array of pointers. Each element of the array corresponds

to a vertex of the graph, and the pointer points to a list of immediate

neighbors of the vertex, as shown in Figure 3.4(c); however, main-

memory data structures are not suitable for database applications because

the database is usually too big to fit in main memory at one time.

Directed graphs can be implemented in a relational model using a pair

of relations for the nodes and edges of the graph. The Node (R) and

the Edge (S) relations are shown in Figure 3.4 (d). A denormalized

representation is shown in Figure 3.4 (e). The directed graph

representation is often used to speed up shortest path computation.

This representation of a node table contains coordinates, a list of

successors, and a list of predecessors. This representation is used to model

the digital road map example (Road_Map table in Table 3.3).

[SL97] have proposed a new spatial access method called the

Connectivity-Clustered Access Method (CCAM) for general network

databases. CCAM clusters the nodes of the network via graph partition.

In contrast with the previous topological ordering-based approach,

CCAM assigns segments to the data page by a graph partitioning

approach, which tries to maximize the connectivity residue ratio. Each

data page is kept at least half full whenever possible. In addition, an

auxiliary secondary index is used to support the Find(), get-a-Successor(),

and get-Successors() operations. Bþ tree with Z-order can also be used to

Table 3.3 Query types for directory service.

Type Subtype Query Attribute Query Example

Attribute
Query

Unique Attribute
Query

A unique identifier
(e.g., the name
(of restaurant), address)

Where is the Red Dragon
Chinese restaurant?

Property
Attribute Query

Some property or attribute
(e.g., the type of restaurant,
named reference category,
keyword list)

Where are the
Chinese restaurants?

Proximity
Query

Point Query Pointed location
(e.g., highlighted location)

Where am I?

Range Query Spatial region within some
distance of some other location
(e.g., within boundary)

Which Chinese restaurants
are within 500 meters
of my hotel?

Nearest Neighbor
Query

Some point location
(e.g., nearest (to my hotel))

Where is the nearest
Chinese restaurant to my hotel?
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index road maps. Other access methods, such as the R-tree or Grid File,

can alternatively be created as secondary indexes in CCAM to suit an

application.

3.4 GATEWAY SERVICE

Gateway service is the interface between the Open Location Services

Platform and Mobile Positioning Servers through which the platform

obtains near real-time position data for mobile terminals.

Positioning and orientation devices are vital to any navigation system.

This chapter is concerned only with land-based navigation systems, so

here positioning means the determination of the coordinates of a vehicle,

person, or any moving object on the surface of the earth. There are three

types of positioning systems commonly in use: stand-alone, satellite-

based, and terrestrial radio-based [Zha97].

3.4.1 Stand-Alone Positioning Systems

Deduced (or ‘‘dead’’) reckoning (DR) is the typical stand-alone technique

to determine ‘‘current position’’ with reference to a ‘‘starting position,’’

and was commonly used by sailors before the development of celestial

navigation. In order to determine the current position, DR incrementally

integrates the distance traveled and the direction of travel relative to the

known start location. In earlier times, direction used to be determined by

magnetic compass, and the distance traveled was computed by the time of

travel and the speed of the vehicle. In modern land-based navigation,

however, various sensor devices can be used to compute accurate direction

and distance traveled by the vehicle. Example sensors are differential

odometers, gyroscopes, magnetic compasses, and transmission pickup

sensors.

3.4.2 Satellite-Based Positioning Systems

The Navigation Satellite Timing and Ranging (NAVSTAR) global

positioning system is the well-known satellite-based positioning technol-

ogy that is widely used in modern vehicle navigation. GPS consists of

three parts: (1) the space segment (which is a constellation of 24

operational satellites), (2) the user segment (GPS receivers), and (3) the

control segment (consisting of monitoring stations, ground antennas, and
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the coordinating master control station). The 3D coordinates (latitude,

longitude, and altitude) of a GPS receiver can be calculated from the

simultaneous observation of three or more satellites with a positional

accuracy of 10 meters. Using differential GPS, which combines signals

from satellites and ground-based sources with known fixed locations, a

positional accuracy of submeter can be achieved. Following is a sample

format of GPS data (GPGGA) from the Trimble GPS receiver, where

$GPGGA is the message id ($GP) followed by time, position, and fix

related data (GGA), and UTC represents coordinated universal time.

This structure is confined to the National Marine Electronics

Association’s NMEA-0183 Version 2.30 format [NMEA].

$GPGGA UTC Latitude Lat :Dir: ðS=N Þ Longitude Long:Dir: ðE=W Þ Data Quality . . .

3.4.3 (Terrestrial) Radio-Based Positioning Systems

Radio-based positioning systems are designed for specific applications

(e.g., offshore navigation) and are generally managed by government and

military/naval agencies. Terrestrial positioning systems commonly employ

direction or angle of arrival (AOA), absolute timing or time of arrival

(TOA), and differential time of arrival (TDOA) techniques to determine

the position of a vehicle. The radio navigation systems commonly operate

in three frequencies: low (< 300 kHz), medium (300 kHz–0.3 MHz), and

high (0.3–10 GHz) frequency. Well-known radio navigation systems are

DECCA (operated by some European governments), Omega (developed

by the U.S. Navy Submarine Service), and LORAN-C (operated by the

U.S. Coast Guard).

Indoor navigation systems generally use infrared and short-range

radios. The mobile networking community uses a technique known as

Cell Identification (Cell-ID).

3.5 LOCATION UTILITY SERVICE

The OpenLS utilities specification provides two services: geocoder and

reverse geocoder, and an abstract data type named Address. The geocoder

service is a network-accessible service that transforms the description

of a location into a normalized description of the location with point
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geometry. Conversely, the reverse geocoder service maps a given

positioning into a normalized description of a feature location.

3.5.1 Geocoding

Geocoding is the process of assigning an x, y coordinate (e.g., latitude,

longitude) to a given address. Once such point geometry is computed,

the given address can be displayed on a map. ‘‘Address interpolation’’

is a well-known geocoding technique. Given a street segment with

start and end coordinates, and an associated address range (e.g., a

tuple from the Road_segment table defined in the Logical Data

Modeling section), we can interpolate the (approximate) location of

any given address that falls within the given range by simply dividing

the length of the road segment by the number of houses. In case of

ambiguities, the approximate location can be computed as the centroid

of the zip code.

3.5.2 Reverse Geocoding

As the name suggests, reverse geocoding is exactly the opposite of

geocoding (i.e., find the address given an x, y coordinate). Reverse

geocoding occurs virtually all the time; find an address (e.g., a landmark,

a restaurant) given my current location. But because the coordinates

predicted by the GPS receiver contain errors, we need to identify the most

likely segment of the road network given the predicted location. This task

is commonly known as map matching. Map-matching techniques can be

broadly classified as geometric, probabilistic, and fuzzy.

GEOMETRIC

The geometric techniques utilize only the predicted location(s) and the

road segments. The well-known geometric techniques are point-to-point

matching, point-to-curve matching, and curve-to-curve matching. In

point-to-point matching, the objective is to find the closet node ni to the

measured position p (e.g., the location predicted by GPS). Generally,

the Euclidean distance is used to find the distance between p and ni. The

number of nodes ni is quite large in a road network; however, this

number can be reduced using a range query with a suitable window size

and the appropriate spatial access method (e.g., R-tree, CCAM). In

point-to-curve matching, the objective is to find the closest curve from

the measured point. Here we find the minimum distance between a
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p and the line segments li. Both of these methods have limitations. A

more accurate geometric method, curve-to-curve matching, uses the

piecewise linear curve (generated by connecting the points predicted by

a GPS) to find the closest line segment. These methods are summarized

in Figure 3.5, and more details on these methods can be found in

[BK96].

PROBABILISTIC

Using sensor-specific error models, the probabilistic algorithms first

compute a confidence region along the measured track (e.g., GPS track).

A map overlay (or spatial join) of this estimated region with the road

network layer gives the road segment on which the vehicle is traveling.

If more than one road segment is found within the estimated region,

however, then the most probable road segment is estimated using various

checks (e.g., road network topology, history). More rigorous probabilistic

models for map matching can be found in [PSS01;KJL00].

point-to-point

Example Road Network

point-to-curve

matched
segments

curve-to-curve
GPS track

disadvantage

equi-distant

disadvantage

closest?p

p p

op

op

n1

n1
n2

n4

n1 n1

n3 n3

n2 n2

p6

p0

p

n5
n6

p

n2

n3
ni - nodes

op - GPS measured
       points

Figure 3.5 Geometric map-matching techniques.
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FUZZY LOGIC

Expert rules, such as amount of distance traveled and directional changes

in the heading of the vehicle, are assigned fuzzy membership functions. A

map-matching module then evaluates the sensor (GPS) measurements

and road networks to find the matching segment and position of the

vehicle. More details on probabilistic and fuzzy map matching can be

found in [Zha97].

3.6 DIRECTORY SERVICE

The directory service of location-based services provides a search capacity

for one or more Points of Interest (POI). A POI is a place, product, or

service with a fixed position, typically identified by name rather than by

address and characterized by type. A POI may be used as a reference or a

target point in many query types (see Table 3.3). The query types can be

divided into two types: (1) attribute queries, based on nonspatial

attributes, and (2) proximity queries, based on spatial attributes. An

attribute query is subdivided into a unique attribute query or a property

attribute query. The unique attribute query amounts to a pinpoint White

Pages query, which constrains the request by the identifier. The property

attribute query is a normal Yellow Pages query constrained by nonunique

attributes. Attribute queries are well supported by the query-processing

methods of traditional relational databases.

Proximity queries are based on spatial objects and are divided into

three types: point queries, range queries, and nearest neighbor queries.

3.6.1 Point Query (PQ)

Given a query point P, find all spatial objects O that contain it:

PQðpÞ ¼ fOj p 2 O:G 6¼ �g

where O:G is the geometry of object O. The spatial query-processing

method of a point query can be used by a spatial index. First, in the filter

step, the spatial objects are represented by simpler approximations such

as the MBR. Determining whether a query point is in an MBR is less

expressive than checking if a point is in an irregular polygon. The spatial

operator, contain, can be approximated using the overlap relationship

among corresponding MBRs. In the refinement step, the exact geometry

of each element from the candidate set is examined.
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3.6.2 Range Query (RQ)

Given a query polygon P, find all spatial objects O which intersect P.
When the query polygon is a rectangle, this query is called a window
query.

RQðpÞ ¼ fOjO:G \ P:G 6¼ �g

If records are ordered using a space-filling curve (say Z-order), then the

range of Z-order values satisfying the range query is determined. A binary

search is used to get the lowest Z-order within the query answer. The data

file is scanned forward until the highest Z-order satisfying the query is

found. Range query can also be processed in a top-down recursive

manner using spatial index structures (e.g., R-tree). These methods work

in the same manner as in the point query. The query region is tested first

against each entry (MBR, child-pointer) in the root. If the query region

overlaps with MBR, then the search algorithm is applied recursively on

entries in the R-tree node pointed to by the child-pointer. This process

stops after reaching the leaves of the R-tree. The selected entries in

the leaves are used to retrieve the records associated with the selected

spatial keys.

3.6.3 Nearest Neighbor Query (NNQ)

Given a query point P, find the spatial object O with the smallest distance

to P:

NNQðpÞ ¼ fOjdistðO:G;P:GÞ � distðO0:G; P:GÞg

Here O0are all other spatial objects except O. The most common type of

nearest neighbor search is the point k-Nearest Neighbor (KNN) query,

which finds the k point objects that are closest to a query point.

Conceptually, one strategy for the nearest neighbor query applies to a

two-pass algorithm. The first pass retrieves the data page D containing

query object P to determine dist, the minimum distance between any

objects in D to P. The second pass is a range query to retrieve objects

within distance dist of P for determination of the nearest object.

This approach reuses the spatial index algorithm for spatial selection

(e.g., point query and range query). Most of the current research on

KNN query is based on utilizing different spatial index structures such

as R-trees or Quad-trees. The representative algorithm in a branch-and-

bound manner was proposed originally by [RKV95]. The algorithm
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traverses a spatial index tree in a depth-first manner to visit entries with a

minimum distance from a query point. A similar technique for moving

query point is described in [SR01].

Figure 3.6 shows a typical example of NNQ on a road network.

Consider a situation in which a mobile user is on his way to a destination

and wants to find the nearest gas station close to the route. Some recent

studies have proposed NNQ techniques to solve this problem. Figure 3.7

shows four different ways to find the nearest neighbor on a road network.

In the figure, the circle represents a current location on the route and the

large diamond represents the nearest neighbor found by each method.

Each method generates a different nearest neighbor. In Figure 3.7(a), the

route is regarded as several consecutive line segments. [TPS02] proposes

a continuous nearest neighbor search method for a query point (current

location of the user) that is moving on a trajectory. This approach

generates a result consisting of a set of <point, interval> tuples in which a

point is the nearest neighbor in the corresponding interval. Figure 3.7(b)

shows a neighborhood query generation model that takes account of

the current position and the past/future trajectories of the moving

points [IKK02]. Most NNQ methods use Euclidean distance as the

distance measure. In LBS, however, especially those that deal with

spatial network databases (e.g., road networks), the Euclidean distance

may not properly approximate the real road-distance. Figure 3.7(c)

presents [FW02]’s method for searching the nearest neighbor from a

Where is the
nearest gas

station?

e

: gas stations : route

s

Figure 3.6 An example of a nearest neighbor query.
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query point on the road network. The algorithm consists of two

interactive steps: a filtering step using Euclidean distance and a

refinement step using road-distance.

Figure 3.7(d) shows another variation of NNQ [SY03], which tries

to find the nearest neighbor having a minimum detour length from the

predetermined route. The nearest neighbor in Figure 3.7(d) is very

different from the other nearest neighbors in Figure 3.7. One approach

for this problem uses an approximation method of finding the closest pair

[CMTV00] between two spatial data sets (spatial object points and

intersect points of the route), where each set is indexed by an R-tree, and

rechecked it with the road-distance. Another approach uses an ‘‘Allocate’’

operation, which divides the road network into service areas of a given set

of spatial objects. For all points P in the service area of a spatial object Oi,

road_distance(P,Oi) <¼ road_distance(P,Oj), 8j 6¼I, only those service areas

that intersect with a given route are considered for determining the

nearest neighbor.

Most queries are composed from a fixed set of basic operations.

These basic relational operations form the building blocks for the

composition of all complex queries. Query processing maps high-level

queries into a composition of basic relational operators and then

optimizes them.

(a) NN of line segments (b) NN with adaptive distance

(d) NN of a point (d) NN of a route

Figure 3.7 Nearest neighbor methods illustrated on a road network.
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3.7 ROUTE DETERMINATION SERVICE

Route determination services address finding route and navigation

information between locations. Route determination should support the

following two services. The first deals with the determination of a new

route; given a start location, end location, optional waypoints, and a set

of route criteria, find the best path. Possible criteria are fastest, shortest,

easiest, pedestrian, public transportation, avoid locations/areas, avoid

highways, avoid tollways, avoid U-turns, and avoid ferries. The second

service deals with the determination of alternate routes. The new

(alternate) route should have minimal overlap with the existing route.

After determining the route, returned combined information are route

summary information, route maneuver and advisory information, route

geometry, maps of the route and maneuvers, and turn-by-turn

instructions, in presentation format.

3.7.1 Path-Query Processing

Path-query processing is an important ingredient in spatial network

applications. Support for navigation, route planning, and traffic

management essentially reduces to providing path options based on

some application-dependent criterion. For example, a well-known

graph operation is determining the ‘‘shortest’’ path between two

points A and B on a road network where the ‘‘shortest’’ criterion could

be based on distance, travel time, or some other user-specified constraint.

Underlying the computation of all path queries are graph traversal
algorithms, which search for paths by traversing from one node to

another along the edges of a graph. As we have seen before, searching for

paths is a recursive operation, and therefore the adjacency lists of nodes

have to be repeatedly transferred from secondary storage to the main

memory buffer. Graph traversal algorithms form the backbone of all

path computation algorithms. Examples of well-known graph traversal

algorithms are breadth-first, depth-first, and Dijkstra’s and best-first A*.

The description of breadth-first and depth-first search algorithms can

be found in any basic data structures textbook. Memory-bounded and

hierarchical search algorithms are described in the next subsection.

Examples showing how all of these algorithms work are provided at the

end of this section.
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DIJKSTRA’S ALGORITHM

Dijkstra’s algorithm can be used to solve the single-source (partial

transitive closure) problem. Given a source node v, Dijkstra’s algorithm

will compute the shortest path from the source node v to all other

reachable nodes using a best-first search where frontier nodes are ranked

by their path lengths to the source. Dijkstra’s algorithm is a classic

shortest-path search algorithm that can be found in many books,

including [SC02].

BEST-FIRST A* ALGORITHM

Best-first search has been a framework for heuristics that speed up

algorithms by using semantic information about a domain. A* (A-star) is

a special case of the best-first search algorithm. The cost function from

node s to d is of the form cost(s, d)¼ g(s, v)þ h(v, d), among which

cost(s, d) is total cost, g(s, v) is the cost from s to v, and h(v, d ) is the

estimated cost from v to d. It uses an estimator function h(v, d ) (also

known as f-cost) to estimate the cost of the shortest path between nodes v
and d. The A* search without estimator functions is not very different

from Dijkstra’s algorithm. The pseudo-code is shown in Figure 3.8. The

procedure terminates when it finds destination node d as the best node.

procedure A*(G(V,E),v,d,f);
{ 

var: integer; 
foreach  u in V do {if (v,u) is edge then g(v,u) = edge(v,u) else g(v,u) = inf;
g(v,v) = 0; path(v,u):= null} 
frontierSet := [v]; exploredSet := emptySet; 
while not_empty(frontierSet) do
{  

select w from frontierSet with minimum(g(v,w)+ h(w,d)); 
frontierSet := frontierSet - [w]; exploredSet := exploredSet + [w]; 
if(u = d) then terminate 
else { 

fetch( w.adjacencyList); 
foreach < u, g(w,u)> in w.adjacencyList 
if g(v,u) > g(v,w) + edge(w,u) then
{ 

g(v,u) := g(v,w) + edge(w,u); 
path(v,u) := path(v,w) + (w,u);

            if frontierSet ∪  exploredSet ∈  u then
                 frontierSet := frontierSet + [u]; 

} 
     } 

}
}

Figure 3.8 Best-first A�.

3.7 Route Determination Service 67



This procedure can terminate quickly if the shortest path from s to d has

fewer edges. It does not have to examine all nodes to discover the shortest

path, as in the case of many other algorithms (e.g., Dijkstra).

Furthermore, the estimator can provide extra information to focus the

search on the shortest path to the destination, reducing the number of

nodes to be examined. The best-first A* search algorithm is complete and

optimal.

MEMORY-BOUNDED SEARCH ALGORITHMS

Previously introduced algorithms assume that the system has unlimited

memory that can hold all information used in these search algorithms. In

reality, however, many systems have memory limitations, so we need

algorithms that work with given memory bounds.

Let us consider a search tree of maximum depth m and branching

factor b. Let us also assume that a solution (destination node) can be

found at depth d. The time and space (memory) requirements for simple

breadth-first and depth-first search algorithms are O(bd), O(bd) and

O(bm), O(bm), respectively. It is easy to see that the memory

requirements are much higher as the problem size increases for

breadth-first as compared to depth-first search algorithms. Although

the depth-first search has modest memory requirements, it may get stuck

going down the wrong path. This pitfall can be avoided by limiting the

depth of the search path. Finding a good depth limit is not an easy task,

however, and this limitation has led to the development of the iterative

deepening search algorithm. The iterative deepening search algorithm

combines the benefits of depth-first and breadth-first algorithms; it is

optimal, complete, and has modest memory requirements O(bd). We

now present two algorithms, IDA* and SMA*, that are designed to work

with modest memory requirements.

IDA*

The IDA* algorithm is a logical extension of the iterative-deepening

search algorithm. The algorithm is similar to best-first A* presented

previously; however, instead of a best-first search strategy, we use an

iterative-deepening search. The algorithm [RN95] shown in Figure 3.9

proceeds in the same manner as depth-first; however, it uses a cost

function (f-cost) to limit the search depth, rather than a fixed depth-limit.

The f-cost of a node is given by f(n)¼ g(n)þ h(n), where g(n) is the cost

of the path from the start node to node n and h(n) is the estimated cost of
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the path from the node n to the destination node. First, each iteration

expands all of the nodes inside the contour for the current f-cost. If a

solution is not found, then the search extends over to the next contour

line (f-cost). Once the search inside a given contour is complete, a new

iteration is started, using a new f-cost for the next contour.

IDA* is complete and optimal under the same conditions as A*;

however, it requires memory proportional to the longest path it explores.

Although bd, branching factor time depth, is a good estimate of the

storage requirement in most cases, IDA* suffers from duplicate

computations because it remembers only the current cost between

iterations.

SMA*

The simplified memory-bounded A* algorithm tries to avoid the

duplicate computations of IDA* by remembering as much history

as the memory permits and not just the f-cost, as in the case of IDA*.

If there is no memory left and the algorithm still needs to generate a

successor, the most unpromising node (i.e., the shallowest and highest

f-cost node) is dropped from the queue. The SMA* algorithm is optimal

and complete if enough memory is available; otherwise, it returns the best

function IDA* (problem) returns a solution sequence 
inputs: problem, a problem 
local variables: f-limit, the current f-cost limit 

root, a node 
root ←MAKE-NODE(INITIAL-STATE[problem])
f-limit ← f-COST (root) 

loop do
solution,f-limit ← DFS-CONTOUR(root,f-limit) 
if solution is non-null then return solution
if f-limit = ∞ then return failure; end 

function DFS -CONTOUR (node, f-limit) returns a solution sequence and a
new f- COST limit 
inputs: node, a node 

f-limit, the current f-COST limit 
local variables: next-f , the f-COST limit for the next contour, initially ∞
if f-COST [node] > f-limit then return null, f-COST [node] 
if GOAL-TEST [problem] (STATE[node]) then return node, f-limit 
for each node s in SUCCESSOR (node) do

solution, new-f ←DFS-CONTOUR (s, f-limit) 
if solution is non-null then return solution, f-limit

next-f ← MIN (next-f,new-f);end 
return null, next-f

Figure 3.9 IDA� algorithm.
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solution that can be found using the given memory. A simplified SMA*

algorithm [Rus92] is shown in Figure 3.10. SMA* uses a binary tree of

binary trees data structure to store the current node (OPEN) sorted by f

and depth, respectively. MAX is a global variable used to represent the

maximum number of nodes that can be fit into memory, and the USED

variable is used to keep track of how many nodes are currently in

memory. Each node contains its g, h, and f-costs, as well as the minimum

f-cost of its examined successors. S(n) denotes n’s successor list. A node

with no unexamined successors is called complete.

HIERARCHICAL STRATEGIES

Hierarchical algorithms decompose a large spatial graph into a boundary

graph and a collection of fragment graphs, each of which is much smaller

than the original graph. Hierarchical graphs are particularly useful in

reducing input/output (I/O) costs and main-memory buffer requirements

for processing queries on graphs that are too large to fit inside the main-

memory buffers.

Algorithm SMA* (start):
OPEN = {start};
USED ← 1;

loop
if empty(OPEN) return FALSE;
best ←←←← deepest least-f-cost leaf in OPEN; 
if ( d = best ) return TRUE; 
u ←←←← next-successor(best); 
f(u) ←←←← max( f(best), g(u) + h(u));
if (completed(best)), BACKUP(best); 
if (S(best) all in memory, remove best from OPEN. 
USED ←←←← USED + 1;

if (USED > MAX) then
delete shallowest, highest-f-cost node in OPEN;
remove it from its parent’s successor list; 
insert its parent on OPEN if necessary; 
USED ←←←← USED - 1;

endif 
insert u in OPEN. 

end of loop

Procedure BACKUP(n) 
if n is completed and has a parent then

f(n) ← least f-cost of all successors; 
if f(n) changed, BACKUP(parent(n)).

Figure 3.10 The SMA� search algorithm.
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The basic idea of a hierarchical algorithm for computing a shortest

path is to decompose the original graph into a set of smaller-fragment

graphs and a summary graph called a boundary graph. Proper

construction of the boundary graph allows an optimality, preserving

decomposition of the shortest path query on the original graph into a set

of shortest path queries on the smaller graphs.

The hierarchical graph has a two-level representation of the original

graph. The lower level is made up of a set of fragments of the original

graph. The higher-level graph consists of the boundary nodes and is

called the boundary graph. Boundary nodes are defined as the set of

nodes that have a neighbor in more than one fragment, i.e.,

Ni 2 BN , 9Ei;j; Ei;kjFRAGðkÞ 6¼ FRAGð jÞ

Edges in the boundary graph are called boundary edges, and the

boundary nodes of a fragment form a clique (i.e., they are completely

connected). The cost associated with the boundary edge is the shortest-

path cost through the fragment between the boundary nodes. A boundary

edge is associated with a fragment identifier. A boundary path is the

shortest path through the boundary graph.

The hierarchical algorithm is composed of three steps: (1) finding the

relevant boundary-node pair in the boundary graph, (2) computing the

boundary path, and (3) expanding the boundary path. The first step in

determining the shortest path is to compute the boundary node through

which the shortest path leaves the source’s fragment and enters the

destination’s fragment. If both the source and destination are boundary

nodes, then the algorithm is trivial. If the source is an internal node

and the destination is a boundary node, then the boundary node

through which the shortest path leaves the source’s fragment is found

by querying the fragment graph for the cost of the path from the

source to all boundary nodes of that fragment, and by querying the

boundary graph for the cost of the shortest path from all boundary

nodes of the source’s fragment to the destination. The source-boundary-

destination path with the lowest aggregate cost determines the

appropriate boundary node.

The case where the source is a boundary node and the destination is an

internal node is similar, but the roles of the source and destination are

reversed. When both the source and destination are internal nodes, the

appropriate boundary node pair is found by querying the fragment
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graphs to determine the cost of the shortest path from the internal nodes

to all boundary nodes of the fragment. Next, the boundary graph is

queried to compute the shortest-path cost between all pairs of boundary

nodes. The path with the lowest aggregate cost determines the boundary-

node pair. Once the appropriate boundary-node pair has been

determined, the boundary graph is queried to determine the shortest

path between those boundary nodes. The final step is to expand

the boundary path by querying the fragments for the shortest path

through them. Adjacent nodes in the boundary path form source/

destination pairs on which the shortest-path query can be run on in a

fragment. For more details and related techniques, see [JHR95; JHR98;

JP02; JSQ00].

We now briefly analyze how each algorithm described in the

previous section performs on the example graph shown in Figure

3.4(a). Let us assume that the source node is 1 and the goal node is 9.

The estimated cost h from a given node n to the goal node 9 is shown in

Table 3.4.

In the first iteration, Dijkstra’s algorithm explores edges (1,2) and

(1,3) and then selects node 2 (as cost(1,2) < cost(1,3)) and set cost

g(1, 2)¼ 3. In the next iteration, it picks node 3 (as the [cost(1,2)þ

cost(2, 4)] > [cost(1,3)þ cost(3,10)] and [cost(1,2)þ cost(2,3)] >

[cost(1,3)þ cost(3,10)]). Applying the same logic, it examines other

nodes from adjacency lists and puts them into the frontier set. This

process continues ÿmpro the algorithm finds the shortest path from node

1 to node 9.

On the other hand, best-first A* uses an improved heuristic cost

function, which also considers the cost between the current node and the

Table 3.4 Estimated cost to goal node (9).

Node (n) h(n)

1 8
2 5
3 9.8
4 6.4
5 5
6 4.5
7 4.1
8 3

10 10.3
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destination node. At first iteration, it picks up node 2 (because the

[g(1,2)þ h(2,9)] < [g(1,3)þ h(3,9)]). It then examines nodes 3 and 4,

which are neighbors of node 2. The cost through node

4(g(1,4)þ h(4,9) < g(1,3)þ h(3,9)) is minimum to reach node 9. So as

compared to Dijkstra’s, A* will not expand node 3 at this iteration.

Applying the same logic, best-first A* examines all necessary nodes in the

following iterations. Finally, it will find the shortest path from node 1 to

node 9. In the case of the IDA* algorithm, we first set the contour line to

be the f-limit of h(1,9), which is 8. In the first iteration, we find a new

f-limit by finding the minimum f-cost that is greater than the current

f-limit. This means the search expands from node 1 to node 2 because

g(1,2)þ h(2,9), which gives the new contour line, is less than

g(1,3)þ h(3,8). Applying similar logic, in the next iteration we find

the minimum cost of the path through 1-2-4 as the new f-limit. Finally,

we get path 1-2-4-5-6-7-9 as the optimal path.

To illustrate how SMA* works, we have chosen three memory bounds

of 5, 6, and 7 nodes, respectively. If we can store information for only one

node (i.e., node 1) and node 1 is not the destination node, we stop. When

we have enough memory to store information for two nodes, then we can

expand the search from node 1 to nodes 2, 3, and none of these are

destination nodes. Because we cannot find a path to the destination node,

we stop. As summarized in Table 3.5, we cannot find a solution up to a

memory bound of 5; however, for memory bound 6, we do find a

solution, although not an optimal one. For a memory bound of 7, we

find an optimal path.

In the case of the hierarchical strategy, we first cut the graph between

nodes 4 and 5 to get two fragments, {1, 2, 3, 4, 10} and {5, 6, 7, 8}. The

Table 3.5 Summary of path-finding results.

Algorithm Solution

Dijkstra 1,2,4,5,6,7,9
A* 1,2,4,5,6,7,9
IDA* f-limit¼ 16 1,2,4,5,6,7,9
SMA* Mem¼ 5 No solution

Mem¼ 6 1,2,4,5,8,9
Mem¼ 7 1,2,4,5,6,7,9

Hierarchical (with A*) 1,2,4,5,6,7,9
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boundary graph consists of nodes 4 and 5, and the edge (4,5). Now

finding the optimal path reduces to finding the optimal paths in these

two subgraphs and that pass though the boundary nodes; that is,

path(1,4)þ path(4,5)þ path(5,9). Using A* in the first fragment results

in the optimal path of 1-2-4, and in the second fragment results in 5-6-7-

9. The global optimal path is obtained by combining these subpaths.

Table 3.5 summarizes the results of applying all of these algorithms on the

network graph shown in Figure 3.4(a).

3.8 PRESENTATION SERVICE

Presentation services display road maps and overlay routes, points of

interest, object locations, and/or text information such as route

descriptions on a road map. Currently, most presentation services are

provided based on a visual interface framework; however, in the future a

voice-based user interface will likely be adopted, especially in in-vehicle

navigation systems, to help drivers who are already overloaded with

driving tasks. Apart from easy-to-use visual and audio interfaces,

presentation service requires efficient route-guidance algorithms to

dynamically process and present the guidance instructions.

Route guidance is the process that guides travelers along a route either

by prepared printouts of the desired route in pretrip guidance or by

output of an en route guidance module in real time. In either case, a

route-planning module and a positioning system are required. When

using prepared printouts or maps for pretrip guidance, an explicit route-

planning module is not required, but some route-planning function

should be executed before the traveling route has been acquired.

Nowadays, en route guidance is a desirable feature for in-vehicle

navigation systems. These display simple (visual or auditory) icons to

advise drivers of forthcoming actions (e.g., right/left-turn ahead) in real-

time. The idea is to convey route information to drivers that is relevant to

the next few minutes of driving based on current position and without

distracting drivers from driving tasks. Various guidelines for designing

in-vehicle information systems with applications to route guidance can be

found in [GLPS93].

There are two kinds of en route guidance models: a centralized model

and a distributed model. In a centralized model, the traveler

communicates with a management center, which traces the traveler’s
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location, speed, and other information. It is the management center’s

responsibility to compute the route and broadcast this information to the

traveler. In a distributed model, the route computation is performed by

the guidance unit at the hand of the traveler; such guidance units require

high computation ability.

In en route guidance, static route guidance assumes that the travel cost,

which includes travel distance, travel time, and minimum turn, is static.

In real situations, however, the travel cost varies at different times.

Dynamic route-guidance systems consider the changing situation,

calculate the travel cost on-the-fly with dynamic information, and

recommend new routes to the traveler.

3.9 CONCLUSION

Earlier navigation systems, which were limited to simple positioning

devices and static paper maps (e.g., road maps, navigational charts),

have evolved into much more sophisticated navigation systems

comprising satellite-based precise positioning systems (GPS)-enabled

portable digital assistants. These devices have local memories to support

small digital maps and have wireless communication ports for getting

dynamic spatial information from remote back-end SDB servers. Spatial

databases play a central role in modern location-based applications.

Location-based services will not achieve their full potential unless there

is a cohesiveness between disparate components and conformance with

open standards. Recent industry trends show that key players in

this sector (ESRI’s ArcIMS, Intergraph’s IntelliWhere, MapInfo,

Cquay, Webraska) are developing interfaces to standard open platforms,

such as OpenLS.

The current portable PDAs have limited memories and display

units. These limitations dictate the need for efficient main memory

spatial processing algorithms and intelligent user interfaces. Emergency

applications, which require real-time dynamic spatial data from remote

SDB servers, are limited by the limited bandwidth provided by present

wireless communication devices. In order to reduce the amount of

information transferred over networks, we need efficient compression

techniques. Additional research is needed to progressively transmit

the data based on importance. These research needs are summarized in

Table 3.6.
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Table 3.6 Research need in modern navigation systems.

Navigation System Component Research Needs

Server Gateway Indoor location sensing
100% coverage of location sensing
despite GPS shadows

Location utility Improving map accuracy
Improving effectiveness of map matching
using additional information such as
long-term and short-term histories

Directory Nearest neighbor (e.g., facility) to a route
(segment)

Route
determination
presentation

Alternate paths
Safe visual and audio interfaces
Cartographic generalization
Adaptive (client-specific) result generation

Client PDAs Improving memories, display sizes,
processing power
Computing under limited resources
Smart caching, prefetching

Communications Improving bandwidths
Efficient map compression algorithms
Progressive transmissions
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