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Abstract Explosive growth in geospatial data and the emergence of new
spatial technologies emphasize the need for automated discovery of spatial
knowledge. Spatial data mining is the process of discovering interesting
and previously unknown, but potentially useful patterns from large spatial
databases. The complexity of spatial data and intrinsic spatial relationships
limits the usefulness of conventional data mining techniques for extracting
spatial patterns. In this chapter we explore the emerging field of spatial data
mining, focusing on four major topics: prediction and classification, outlier
detection, co-location mining, and clustering. Spatiotemporal data mining is
also briefly discussed.
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1.1 Introduction

The explosive growth of spatial data and widespread use of spatial databases
have heightened the need for the automated discovery of spatial knowledge.
Spatial data mining [47, 39] is the process of discovering interesting and pre-
viously unknown, but potentially useful patterns from spatial databases. The
complexity of spatial data and intrinsic spatial relationships limits the useful-
ness of conventional data mining techniques for extracting spatial patterns.
Efficient tools for extracting information from geo-spatial data are crucial to
organizations which make decisions based on large spatial datasets, includ-
ing NASA, the National Geospatial-Intelligence Agency (NGA), the National
Cancer Institute (NCI), and the United States Department of Transportation
(USDOT). These organizations are spread across many application domains
including ecology and environmental management, public safety, transporta-
tion, Earth science, epidemiology, and climatology [37].

General purpose data mining tools like Clementine from SPSS, Enterprise
Miner from SAS, Data Mining extensions from relational database vendors
such as Oracle and IBM, public domain data mining packages such as Weka,
See5/C5.0 are designed for the purpose of analyzing transactional data. Al-
though these tools were primarily designed to identify customer-buying pat-
terns in market basket data, they have also been used in analyzing scientific
and engineering data, astronomical data, multi-media data, genomic data,
and web data. However, extracting interesting and useful patterns from spa-
tial datasets is more difficult than extracting corresponding patterns from
traditional numeric and categorical data due to the complexity of spatial data
types, spatial relationships, and spatial autocorrelation.

Specific features of geographical data that preclude the use of general pur-
pose data mining algorithms are: i) the spatial relationships among the vari-
ables, ii) the spatial structure of errors, iii) mixed distributions as opposed
to commonly assumed normal distributions, iv) observations that are not in-
dependent and identically distributed, v) spatial autocorrelation among the
features, and vi) non-linear interactions in feature space. Of course, one can
apply conventional data mining algorithms, but it is often observed that these
algorithms perform more poorly on spatial data. Many supportive examples
can be found in the literature; for instance, parametric classifiers like max-
imum likelihood classifier(MLC) perform more poorly than non-parametric
classifiers when the assumptions about the parameters (e.g., normal distri-
bution) are violated, and the per-pixel based classifiers perform worse than
Markov Random Fields (MRFs) when the features are auto-correlated.

In this chapter we present major accomplishments in the emerging field of
spatial data mining, especially in the areas of prediction and classification,
outlier detection, spatial co-location rules, and clustering techniques. Spa-
tiotemporal data mining along with research needs are also briefly discussed.
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1.2 Spatial Data

The data inputs of spatial data mining are more complex than the inputs
of classical data mining because they include extended objects such as points,
lines, and polygons. The data inputs of spatial data mining have two distinct
types of attributes: non-spatial attributes and spatial attributes. Non-spatial
attributes are used to characterize non-spatial features of objects, such as
name, population, and unemployment rate for a city. They are the same as
the attributes used in the data inputs of classical data mining. Spatial at-
tributes are used to define the spatial location and extent of spatial objects [8].
The spatial attributes of a spatial object most often include information re-
lated to spatial locations, e.g., longitude, latitude and elevation, as well as
shape. Relationships among non-spatial objects are explicit in data inputs,
e.g., arithmetic relation, ordering, isinstance-of, subclass-of, and membership-
of. In contrast, relationships among spatial objects are often implicit, such
as overlap, intersect, and behind. One possible way to deal with implicit
spatial relationships is to materialize the relationships into traditional data
input columns and then apply classical data mining techniques such as those
described in [33, 51, 1, 2, 21]. However, the materialization can result in
loss of information. Another way to capture implicit spatial relationships is
to develop models or techniques to incorporate spatial information into the
spatial data mining process.

Non-spatial Relationship Spatial Relationship
Arithmetic Set-oriented: union, intersection, membership, . . .
Ordering Topological: meet, within, overlap, . . .
Isinstance-of Directional: North, NE, left, above, behind, . . .
Subclass-of Metric: e.g., distance, area, perimeter, . . .
Part-of Dynamic: update, create, destroy, . . .
Membership-of Shape-based and visibility

TABLE 1.1: Relationships among Non-spatial Data and Spatial Data

Spatial datasets are discrete representations of continuous phenomena. Dis-
cretization of continuous space is necessitated by the nature of digital repre-
sentation. There are two basic models to represent spatial data, namely, raster
(grid) and vector. Satellite images are good examples of raster data. On the
other hand, vector data consists of points, lines, polygons and their aggregate
(or multi-) counter parts. Spatial networks are another important data type.
This distinction is important as many of the techniques that we are going to
describe now favor one or more of these data types.

Statistical models [11] are often used to represent observations in terms of
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random variables. These models can then be used for estimation, description,
and prediction based on probability theory. Spatial data can be thought of
as resulting from observations on the stochastic process Z(s) : s ∈ D, where
s is a spatial location and D is possibly a random set in a spatial framework.
Here we present three spatial statistical problems one might encounter: point
process, lattice, and geostatistics.

Point process: A point process is a model for the spatial distribution of the
points in a point pattern. Several natural processes can be modeled as spatial
point patterns, e.g., positions of trees in a forest and locations of bird habitats
in a wetland. Spatial point patterns can be broadly grouped into random or
non-random processes. Real point patterns are often compared with a random
pattern (generated by a Poisson process) using the average distance between
a point and its nearest neighbor. For a random pattern, this average distance
is expected to be 1/(2 ×

√
density). where density is the average number of

points per unit area. If for a real process, the computed distance falls within
a certain limit, then we conclude that the pattern is generated by a random
process; otherwise it is a non-random process.

Lattice: A lattice is a model for a gridded space in a spatial framework.
Here the lattice refers to a countable collection of regular or irregular spatial
sites related to each other via a neighborhood relationship. Several spatial
statistical analysis, e.g., the spatial autoregressive model and Markov random
fields, can be applied on lattice data.

Geostatistics: Geostatistics deals with the analysis of spatial continuity and
weak stationarity [11], which is an inherent characteristics of spatial datasets.
Geostatistics provides a set of statistics tools, such as kriging, to the interpo-
lation of attributes at unsampled locations.

One of the fundamental assumptions of statistical analysis is that the data
samples are independently generated: like successive tosses of coin, or the
rolling of a die. However, in the analysis of spatial data, the assumption
about the independence of samples is generally false. In fact, spatial data
tends to be highly self correlated. For example, people with similar char-
acteristics, occupation and background tend to cluster together in the same
neighborhoods. The economies of a region tend to be similar. Changes in
natural resources, wildlife, and temperature vary gradually over space. The
property of like things to cluster in space is so fundamental that geographers
have elevated it to the status of the first law of geography: ”Everything is
related to everything else but nearby things are more related than distant
things” [49]. In spatial statistics, an area within statistics devoted to the
analysis of spatial data, this property is called spatial autocorrelation.

Knowledge discovery techniques which ignore spatial autocorrelation typ-
ically perform poorly in the presence of spatial data. Often the spatial de-
pendencies arise due to the inherent characteristics of the phenomena under
study, but in particular they arise due to the fact that the spatial resolution
of imaging sensors are finer than the size of the object being observed. For ex-
ample, remote sensing satellites have resolutions ranging from 30 meters (e.g.,
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FIGURE 1.1: A spatial framework and its four-neighborhood contiguity ma-
trix.

the Enhanced Thematic Mapper of the Landsat 7 satellite of NASA) to one
meter (e.g., the IKONOS satellite from SpaceImaging), while the objects un-
der study (e.g., Urban, Forest, Water) are often much larger than 30 meters.
As a result, per-pixel-based classifiers, which do not take spatial context into
account, often produce classified images with salt and pepper noise. These
classifiers also suffer in terms of classification accuracy.

The spatial relationship among locations in a spatial framework is often
modeled via a contiguity matrix. A simple contiguity matrix may repre-
sent a neighborhood relationship defined using adjacency, Euclidean distance,
etc. Example definitions of neighborhood using adjacency include a four-
neighborhood and an eight-neighborhood. Given a gridded spatial framework,
a four-neighborhood assumes that a pair of locations influence each other if
they share an edge. An eight-neighborhood assumes that a pair of locations
influence each other if they share either an edge or a vertex.

Figure 1.1(a) shows a gridded spatial framework with four locations, A, B,
C, and D. A binary matrix representation of a four-neighborhood relationship
is shown in Figure 1.1(b). The row-normalized representation of this matrix
is called a contiguity matrix, as shown in Figure 1.1(c). Other contiguity ma-
trices can be designed to model neighborhood relationship based on distance.
The essential idea is to specify the pairs of locations that influence each other
along with the relative intensity of interaction. More general models of spa-
tial relationships using cliques and hypergraphs are available in the literature
[52]. In spatial statistics, spatial autocorrelation is quantified using measures
such as Ripley’s K-function and Moran’s I [11].

1.3 Prediction and Classification

Given a sample set of input-output pairs, the objective of supervised learn-
ing is to find a function that learns from the given input-output pairs, and
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predicts an output for any unseen input (but assumed to be generated from
the same distribution), such that the predicted output is as close as possible
to the desired output. The name “supervised” comes from the fact that the
input-output example pairs are given by an expert (teacher). Examples of
the supervised learning include thematic map generation (classification) from
satellite images, tumor or other organ recognition from medical images, recog-
nition of hand written characters from the scanned documents, prediction of
stock market indexes, and speech recognition. The input-output pairs, also
called training samples, or training dataset, is denoted by (xi, yi), where xi’s
are often vectors of measurements over the attribute space. For example, in
remote sensing image classification, the input attribute space consists of vari-
ous spectral bands or channels (e.g., blue, green, red, infra-red, thermal, etc.),
and the input vectors (xi’s) are reflectance values at the ith location in the
image, and the outputs (yi’s) are thematic classes such as forest, urban, water,
and agriculture. Depending on the type of output attribute, two supervised
learning tasks can be distinguished:

• Classification: In classification, the input vectors xi are assigned to a
few discrete numbers of classes yi.

• Regression: In regression, also known as function approximation, the
input-output pairs are generated from an unknown function of the form
y = f(x), where y is continuous. Typically regression is used in predic-
tion and estimation, for example, share value prediction, daily temper-
ature prediction, and market share estimation for a particular product.
Regression can also be used in inverse estimation, that is, given that we
have an observed value of y, we want to determine the corresponding x
value.

Classification can be viewed as a special case of regression. In this section
we specifically consider the problem of multi-spectral remote sensing image
classification. Image classification can be formally defined as finding a func-
tion g(x) which maps the input patterns x onto output classes yi (sometimes
yi’s are also denoted as ωi). The main objective is to assign a label (e.g. Wa-
ter, Forest, Urban) to each pixel in the classified image, given corresponding
feature vector xj in the input image.

The prediction of events occurring at particular geographic locations is very
important in several application domains. Crime analysis, cellular networks,
and natural disasters such as fires, floods, droughts, vegetation diseases, and
earthquakes are all examples of problems which require location prediction.
In this section we present two spatial data mining techniques, namely the
Spatial Autoregressive Model (SAR) and Markov Random Fields (MRF). Be-
fore explaining the techniques, we introduce an example application domain
to illustrate different concepts in spatial data mining.
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1.3.1 An Illustrative Application Domain

We are given data about two wetlands, named Darr and Stubble, on the
shores of Lake Erie in Ohio USA in order to predict the spatial distribution of
a marsh-breeding bird, the red-winged blackbird (Agelaius phoeniceus). The
data was collected from April to June in two successive years, 1995 and 1996.

A uniform grid was imposed on the two wetlands and different types of
measurements were recorded at each cell or pixel. In total, values of seven
attributes were recorded at each cell. Domain knowledge is crucial in deciding
which attributes are important and which are not. For example, Vegetation
Durability was chosen over Vegetation Species because specialized knowledge
about the bird-nesting habits of the red-winged blackbird suggested that the
choice of nest location is more dependent on plant structure, plant resistance
to wind, and wave action than on the plant species.

Our goal is to build a model for predicting the location of bird nests in the
wetlands. Typically the model is built using a portion of the data, called the
Learning or Training data, and then tested on the remainder of the data,
called the Testing data. In the learning data, all the attributes are used to
build the model and in the testing data, one value is hidden, in our case the
location of the nests.

The fact that classical data mining techniques ignore spatial autocorrela-
tion and spatial heterogeneity in the model-building process is one reason
why these techniques do a poor job. A second, more subtle but equally im-
portant reason is related to the choice of the objective function to measure
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classification accuracy. For a two-class problem, the standard way to measure
classification accuracy is to calculate the percentage of correctly classified ob-
jects. However, this measure may not be the most suitable in a spatial context.
Spatial accuracy−how far the predictions are from the actuals−is as impor-
tant in this application domain due to the effects of the discretization of a
continuous wetland into discrete pixels, as shown in Figure 1.3. Figure 1.3(a)
shows the actual locations of nests and 1.3(b) shows the pixels with actual
nests. Note the loss of information during the discretization of continuous
space into pixels. Many nest locations barely fall within the pixels labeled
‘A’ and are quite close to other blank pixels, which represent ’no-nest’. Now
consider two predictions shown in Figure 1.3(c) and 1.3(d). Domain scientists
prefer prediction 1.3(d) over 1.3(c), since the predicted nest locations are
closer on average to some actual nest locations. The classification accuracy
measure cannot distinguish between 1.3(c) and 1.3(d), and a measure of
spatial accuracy is needed to capture this preference.

1.3.2 Modeling Spatial Dependencies Using the SAR and
MRF Models

Several previous studies [22], [45] have shown that the modeling of spatial
dependency (often called context) during the classification process improves
overall classification accuracy. Spatial context can be defined by the relation-
ships between spatially adjacent pixels in a small neighborhood. An example
spatial framework and its four-neighborhood contiguity matrix is shown in
Figure 1.1.

1.3.3 Logistic Spatial Autoregressive Model(SAR)

Logistic SAR decomposes a classifier f̂C into two parts, namely spatial
autoregression and logistic transformation. We first show how spatial depen-
dencies are modeled using the framework of logistic regression analysis. In the
spatial autoregression model, the spatial dependencies of the error term, or,
the dependent variable, are directly modeled in the regression equation[4]. If
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the dependent values yi are related to each other, then the regression equation
can be modified as

y = ρWy + Xβ + ǫ. (1.1)

Here W is the neighborhood relationship contiguity matrix and ρ is a pa-
rameter that reflects the strength of the spatial dependencies between the
elements of the dependent variable. After the correction term ρWy is intro-
duced, the components of the residual error vector ǫ are then assumed to be
generated from independent and identical standard normal distributions. As
in the case of classical regression, the SAR equation has to be transformed
via the logistic function for binary dependent variables.

We refer to this equation as the Spatial Autoregressive Model (SAR). No-
tice that when ρ = 0, this equation collapses to the classical regression model.
The benefits of modeling spatial autocorrelation are many: First, the residual
error will have much lower spatial autocorrelation (i.e., systematic variation).
With the proper choice of W , the residual error should, at least theoreti-
cally, have no systematic variation. In addition, if the spatial autocorrelation
coefficient is statistically significant, then SAR will quantify the presence of
spatial autocorrelation. It will indicate the extent to which variations in the
dependent variable (y) are explained by the average of neighboring observa-
tion values. Finally, the model will have a better fit, (i.e., a higher R-squared
statistic).

1.3.4 Maximum Likelihood Classifier (MLC)

Maximum likelihood classification is one of the most widely used parametric
and supervised classification technique in remote sensing field [18], [48].
Assuming that sufficient ground truth (training) data is available for each
thematic class, we can estimate the probability distribution p(x|yi) for a class
(yi) that describes the chance of finding a pixel from that class at the position
x. This estimated p(yi|x) can be related with the desired p(x|yi) using Bayes’
theorem:

p(yi|x) =
p(x|yi)p(yi)

p(x)
(1.2)

where p(yi) is the probability that class yi occurs in the image, also know as ‘a
priori’ probability, and p(x) is the probability of finding a pixel from any class
at location x. Since p(x) is constant, we can omit it from computation and
write the discriminant function g(x) by simplify eq 1.2 and taking logarithm
as follows:

gi(x) = ln p(x|yi) + ln p(yi), (1.3)

where ln is the natural logarithm. By assuming a multivariate normal model
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for class probability distributions, the discriminant function gi(x) for the max-
imum likelihood classification can be written as the following.

gi(x) = ln p(ωi) −
1

2
(x − mi)

tΣ−1
i (x − mi) (1.4)

MLC is an example of a Bayesian classifier; for more details refer to [35, 12].

1.3.5 Markov Random Field-based Bayesian Classifiers

The MLC presented above is a per-pixel based classifier and assumes that
samples are independent and identically distributed (i.i.d). Ignoring spatial
autocorrelation results in salt and pepper kind of noise in the classified images.
We now present Markov Random Field (MRF) based Bayesian classifiers that
model spatial context via the a priori term in Bayes’ rule. A set of random
variables whose interdependency relationship is represented by an undirected
graph (i.e., a symmetric neighborhood matrix) is called a Markov Random
Field [27]. The Markov property specifies that a variable depends only on its
neighbors and is independent of all other variables. The location prediction
problem can be modeled in this framework by assuming that the class label,
li = fC(si), of different locations, si, constitutes an MRF. In other words,
random variable li is independent of lj if W (si, sj) = 0.

The Bayesian rule can be used to predict li from feature value vector X
and neighborhood class label vector Li as follows:

Pr(li|X,Li) =
Pr(X|li, Li)Pr(li|Li)

Pr(X)
(1.5)

The solution procedure can estimate Pr(li|Li) from the training data, where
Li denotes a set of labels in the neighborhood of si excluding the label at si,
by examining the ratios of the frequencies of class labels to the total number
of locations in the spatial framework. Pr(X|li, Li) can be estimated using
kernel functions from the observed values in the training dataset. For reliable
estimates, even larger training datasets are needed relative to those needed
for the Bayesian classifiers without spatial context, since we are estimating
a more complex distribution. An assumption on Pr(X|li, Li) may be useful
if the training dataset available is not large enough. A common assumption
is the uniformity of influence from all neighbors of a location. For computa-
tional efficiency it can be assumed that only local explanatory data X(si) and
neighborhood label Li are relevant in predicting class label li = fC(si). It is
common to assume that all interaction between neighbors is captured via the
interaction in the class label variable. Many domains also use specific para-
metric probability distribution forms, leading to simpler solution procedures.
In addition, it is frequently easier to work with a Gibbs distribution special-
ized by the locally defined MRF through the Hammersley-Clifford theorem
[7].
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A more detailed theoretical and experimental comparison of these methods
can be found in [42]. Although MRF and SAR classification have different
formulations, they share a common goal, estimating the posterior probability
distribution: p(li|X). However, the posterior for the two models is computed
differently with different assumptions. For MRF the posterior is computed
using Bayes’ rule. In logistic regression, the posterior distribution is directly
fit to the data. One important difference between logistic regression and MRF
is that logistic regression assumes no dependence on neighboring classes. Lo-
gistic regression and logistic SAR models belong to a more general exponen-

tial family. The exponential family is given by Pr(u|v) = eA(θv)+B(u,π)+θT
v u,

where u and v are location and label respectively. This exponential fam-
ily includes many of the common distributions such as Gaussian, Binomial,
Bernoulli, and Poisson as special cases.

CID C.Nane MLC MRF
1 1 Hardwood.1 79.82 95.34
2 2 Hardwood.2 82.96 87.18
3 3 Conifer 94.02 96.60
4 4 Agriculture 90.60 93.03
5 5 Urban 53.57 64.29
6 6 Wetlands 93.51 95.15
7 7 Water 100.00 100.00
8 O Overall 87.05 91.82

TABLE 1.2: MLC vs. MRF Classification Accuracy

Experiments were carried out on the Darr and Stubble wetlands to compare
the classical regression, SAR, and the MRF-based Bayesian classifiers. The
results showed that the MRF models yield better spatial and classification
accuracies over SAR in the prediction of the locations of bird nests. We also
observed that SAR predications are extremely localized, missing actual nests
over a large part of the marsh lands. We also compared performance of MRF
against MLC in a multi-class satellite image classification setting. We used a
spring Landsat 7 image, taken May 31, 2000, and clipped to the study region
(Carlton County, Minnesota). The final rectified and clipped image size is
1343 lines x 2019 columns x 6 bands. We trained MLC and MRF classifiers
using 60 labeled training plots and tested performance using an independent
test dataset consisting of 205 labeled plots. The accuracies are summarized
in Table 1.2 and Figure 1.4 shows small windows from the classified images.
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(a) RGB (b) MLC (c) MRF

FIGURE 1.4: Sample RGB image and corresponding MLC and MRF Classi-
fied output

1.4 Spatial Outlier Detection

Outliers have been informally defined as observations in a data set which
appear to be inconsistent with the remainder of that set of data [6], or which
deviate so much from other observations as to arouse suspicions that they
were generated by a different mechanism [17]. The identification of global
outliers can lead to the discovery of unexpected knowledge and has a num-
ber of practical applications in areas such as detection of credit card fraud
and voting irregularities, athlete performance analysis, and severe weather
prediction. This section focuses on spatial outliers, i.e., observations which
appear to be inconsistent with their neighborhoods. Detecting spatial outliers
is useful in many applications of geographic information systems and spatial
databases. These application domains include transportation, ecology, public
safety, public health, climatology, and location-based services.

We model a spatial dataset to be a collection of spatially referenced objects,
such as houses, roads, and traffic sensors. Spatial objects have two distinct
categories of dimensions along which attributes may be measured. Categories
of dimensions of interest are spatial and non-spatial. Spatial attributes of
a spatially referenced object include location, shape, and other geometric or
topological properties. Non-spatial attributes of a spatially referenced object
include traffic-sensor identifiers, manufacturer, owner, age, and measurement
readings. A spatial neighborhood of a spatially referenced object is a subset of
the spatial data based on a spatial dimension, e.g., location. Spatial neighbor-
hoods may be defined based on spatial attributes, e.g., location, using spatial
relationships such as distance or adjacency. Comparisons between spatially
referenced objects are based on non-spatial attributes.
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FIGURE 1.5: A Dataset for Outlier Detection.

A spatial outlier [41] is a spatially referenced object whose non-spatial at-
tribute values differ significantly from those of other spatially referenced ob-
jects in its spatial neighborhood. Informally, a spatial outlier is a local in-
stability (in values of non-spatial attributes) or a spatially referenced object
whose non-spatial attributes are extreme relative to its neighbors, even though
the attributes may not be significantly different from the entire population.
For example, a new house in an old neighborhood of a growing metropolitan
area is a spatial outlier based on the non-spatial attribute house age.

1.4.1 Illustrative Examples and Application Domains

We use an example to illustrate the differences among global and spatial
outlier detection methods. In Figure 1.5(a), the X-axis is the location of
data points in one-dimensional space; the Y-axis is the attribute value for
each data point. Global outlier detection methods ignore the spatial location
of each data point and fit the distribution model to the values of the non-
spatial attribute. The outlier detected using this approach is the data point
G, which has an extremely high attribute value 7.9, exceeding the threshold of
µ + 2σ = 4.49 + 2 ∗ 1.61 = 7.71, as shown in Figure 1.5(b). This test assumes
a normal distribution for attribute values. On the other hand, S is a spatial
outlier whose observed value is significantly different than its neighbors P and
Q.

As another example, we use a spatial database consisting of measurements
from the Minneapolis-St. Paul freeway traffic sensor network. The sensor
network includes about nine hundred stations, each of which contains one to
four loop detectors, depending on the number of lanes. Sensors embedded in
the freeways and interstate monitor the occupancy and volume of traffic on
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the road. At regular intervals, this information is sent to the Traffic Man-
agement Center for operational purposes, e.g., ramp meter control, as well
as for experiments and research on traffic modeling. In this application, we
are interested in discovering the location of stations whose measurements are
inconsistent with those of their spatial neighbors and the time periods when
those abnormalities arise.

1.4.2 Tests for Detecting Spatial Outliers

Tests to detect spatial outliers separate spatial attributes from non-spatial
attributes. Spatial attributes are used to characterize location, neighborhood,
and distance. Non-spatial attribute dimensions are used to compare a spa-
tially referenced object to its neighbors. Spatial statistics literature provides
two kinds of bi-partite multidimensional tests, namely graphical tests and
quantitative tests. Graphical tests, which are based on the visualization of
spatial data, highlight spatial outliers. Example methods include variogram
clouds and Moran scatterplots. Quantitative methods provide a precise test
to distinguish spatial outliers from the remainder of data. Scatterplots [29]
are a representative technique from the quantitative family.

A variogram cloud displays data points related by neighborhood relation-
ships. For each pair of locations, the square-root of the absolute difference be-
tween attribute values at the locations versus the Euclidean distance between
the locations are plotted. In datasets exhibiting strong spatial dependence,
the variance in the attribute differences will increase with increasing distance
between locations. Locations that are near to one another, but with large
attribute differences, might indicate a spatial outlier, even though the values
at both locations may appear to be reasonable when examining the dataset
non-spatially. Figure 1.6(a) shows a variogram cloud for the example dataset
shown in Figure 1.5(a). This plot shows that two pairs (P, S) and (Q,S) on
the left hand side lie above the main group of pairs and are possibly related
to spatial outliers. The point S may be identified as a spatial outlier since it
occurs in both pairs (Q,S) and (P, S). However, graphical tests of spatial out-
lier detection are limited by the lack of precise criteria to distinguish spatial
outliers. In addition, a variogram cloud requires non-trivial post-processing of
highlighted pairs to separate spatial outliers from their neighbors, particularly
when multiple outliers are present, or density varies greatly.

A Moran scatterplot [30] is a plot of normalized attribute value (Z[f(i)]

=
f(i)−µf

σf
) against the neighborhood average of normalized attribute values

(W ·Z), where W is the row-normalized (i.e.,
∑

j Wij = 1) neighborhood ma-
trix, (i.e., Wij > 0 iff neighbor(i, j)). The upper left and lower right quadrants
of Figure 1.6(b) indicate a spatial association of dissimilar values: low values
surrounded by high value neighbors(e.g., points P and Q), and high values
surrounded by low values (e.g,. point S). Thus we can identify points(nodes)
that are surrounded by unusually high or low value neighbors. These points
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FIGURE 1.6: Variogram Cloud and Moran Scatterplot to Detect Spatial
Outliers.

can be treated as spatial outliers.

A scatterplot [29] shows attribute values on the X-axis and the average
of the attribute values in the neighborhood on the Y -axis. A least square
regression line is used to identify spatial outliers. A scatter sloping upward
to the right indicates a positive spatial autocorrelation (adjacent values tend
to be similar); a scatter sloping upward to the left indicates a negative spa-
tial autocorrelation. The residual is defined as the vertical distance (Y -axis)
between a point P with location (Xp, Yp) to the regression line Y = mX + b,
that is, residual ǫ = Yp − (mXp + b). Cases with standardized residuals,
ǫstandard = ǫ−µǫ

σǫ
, greater than 3.0 or less than -3.0 are flagged as possible

spatial outliers, where µǫ and σǫ are the mean and standard deviation of the
distribution of the error term ǫ. In Figure 1.7(a), a scatterplot shows the
attribute values plotted against the average of the attribute values in neigh-
boring areas for the dataset in Figure 1.5(a). The point S turns out to be the
farthest from the regression line and may be identified as a spatial outlier.

A location (sensor) is compared to its neighborhood using the function
S(x) = [f(x)−Ey∈N(x)(f(y))], where f(x) is the attribute value for a location
x, N(x) is the set of neighbors of x, and Ey∈N(x)(f(y)) is the average attribute
value for the neighbors of x. The statistic function S(x) denotes the difference
of the attribute value of a sensor located at x and the average attribute value
of x′s neighbors.

Spatial statistic S(x) is normally distributed if the attribute value f(x) is
normally distributed. A popular test for detecting spatial outliers for nor-
mally distributed f(x) can be described as follows: Spatial statistic Zs(x) =
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FIGURE 1.7: Scatterplot and Spatial Statistic Zs(x) to Detect Spatial Out-
liers.

|S(x)−µs

σs
| > θ. For each location x with an attribute value f(x), the S(x)

is the difference between the attribute value at location x and the average
attribute value of x′s neighbors, µs is the mean value of S(x), and σs is the
value of the standard deviation of S(x) over all stations. The choice of θ
depends on a specified confidence level. For example, a confidence level of 95
percent will lead to θ ≈ 2.

Figure 1.7(b) shows the visualization of the spatial statistic method de-
scribed above. The X-axis is the location of data points in one-dimensional
space; the Y -axis is the value of spatial statistic Zs(x) for each data point.
We can easily observe that point S has a Zs(x) value exceeding 3, and will
be detected as a spatial outlier. Note that the two neighboring points P and
Q of S have Zs(x) values close to -2 due to the presence of spatial outliers in
their neighborhoods.

1.4.3 Outliers in Spatial Networks

The outlier detection techniques presented so far are most suitable for gen-
eral spatial databases and time series databases. However, these approaches
do not consider the spatial network structure of the dataset, and may not
model graph properties such as one-ways, connectivities etc. Recently meth-
ods are proposed to discover graph-based hotspots, e.g. mean streets, which
represent those connected subsets of a spatial network whose attribute val-
ues are significantly higher than expected. Finding mean streets is very im-
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portant for many application domains, including crime analysis (high-crime-
density street discovery) and police work (planning effective and efficient pa-
trolling strategies). In urban areas, many human activities are centered about
spatiotemporal (ST) infrastructure networks, such as transportation, oil/gas
pipelines, and utilities (e.g., water, electricity, telephone). Thus, activity re-
ports such as crime reports may often use network based location references
(e.g., street addresses). In addition, spatial interaction among activities at
nearby locations may be constrained by network connectivity and network
distances (e.g., shortest paths along roads or train networks) rather than the
geometric distances used in traditional spatial analysis. Crime prevention may
focus on identifying subsets of ST networks with high activity levels, under-
standing underlying causes in terms of ST network properties, and designing
ST network control policies.

However, identifying and quantifying mean streets is a challenging task
for several reasons. One large challenge is choosing the correct statistical
model. Many existing ST models assume data normality and either spatial
and temporal homogeneity or a well-defined autocorrelation in these domains.
A major limitation is the inadequacy of descriptive and explanatory models
for activity around ST networks such as train and road networks. Another
challenge is that the discovery process of mean streets in large spatial networks
is computationally very expensive due to the difficulty of characterizing and
enumerating the population of streets to define a normal or expected activity
level.

Public safety professionals may be interested in analyzing the ST network
factors to explain high activity levels or changes in activity levels at certain
highway segments, or to compare prevention options such as check points.
Such analysis is not only difficult using existing methods, but it may not
be statistically meaningful, since common methods such as spatial regression
do not adequately model ST network constraints such as connectivity and
directions.

Previous studies on discovering high-density regions (i.e. hotspots) can be
classified into two main categories based on their statistical interpretability.
For example, [28] defined the hot routes discovery problem in road networks
using moving object trajectories. However, discovered patterns in this ap-
proach do not have a statistical interpretation such as statistical significance.
In addition, this algorithm is designed to process tracks (e.g., GPS tracks)
rather than point or aggregate datasets referencing street networks. A dis-
tance based technique to detect outliers in spatial networks is presented in
[23].

Statistics-based methods to identify hotspots can be classified into two cat-
egories based on the nature of the dataset: point-based methods [5, 13, 14,
26, 34, 36, 44, 32] and aggregate-based methods. Mean streets problem be-
longs to the latter one. The aim of the point-based approaches is to discover
high-density regions from point datasets which show the actual locations of
the crimes (Figure 1.9). The point-based approaches focus on the discovery
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FIGURE 1.8: Mean streets of a metropolitan city of the United States

of the geometry (e.g. circle, ellipse, etc.) of the high-density regions [13].
The Spatial and Temporal Analysis of Crime (STAC) tool in the CrimeStat
software, nearest neighbor hierarchical clustering techniques, and K-means
clustering techniques are among the methods that use the ellipse method to
identify hotspots [26]. Figure 1.9 shows the result of CrimeStat using the K-
means clustering method for 15 clusters [26]. Kernel estimation methods have
been developed to identify isodensity hotspot surfaces because hotspots may
not have crisp ellipsoid boundaries. Local indicators of spatial association
(LISA) statistics were proposed to eliminate the limitations of ellipsoid-based
and kernel-based estimation techniques [5, 14]. The clumping method was
proposed by Roach to discover clumped points (e.g. hotspots) from a point
dataset [36]. However, these approaches will not be able to discover and quan-
tify high-crime-density regions (e.g. streets) for given aggregate crime data.
They also do not consider the spatial network structure of the urban dataset,
and may not model graph properties such as one-way streets or connectivity.
For example, if all crime events occur along a street of a city, these approaches
may tend to divide the street into several ellipsoid clusters or may tend to
discover a big ellipse where most of the inside of the area has no activity. The
clumping method for analyzing point patterns on a spatial network [36, 44, 32]
was extended in [44]. In this extended approach, if crime point locations on
an edge are close enough, they form a clump. A user-defined distance thresh-
old (or clump radius) is used to check if the points are close enough or not.
However, their approach will not be able to discover and quantify patterns for
aggregate crime data.
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Overall, point-based approaches mainly focus on discovering and quantify-
ing hotspots using point crime data. However, due to the type of crime or
concerns for victim security, crime location information may not be released
by the authorities and only aggregated crime values may be released for spa-
tial regions, e.g. streets. In that case, point-based approaches, whether they
consider the spatial network structure or not, will fail to discover and quan-
tify hotspots since these approaches are dependent on knowing the locations
of the crimes. In contrast, statistics-based methods are proposed to discover
hotspots (e.g. mean streets) from aggregated datasets referencing urban street
networks and taking graph semantics into account.

FIGURE 1.9: Point data and output of K-means clustering using Crime Stat

A novel ST network analysis method is explored to study descriptive and
explanatory models for ST network patterns in [9]. Formally, given a road
network G = (V,E) and a set of aggregated crime values on edges E, mean
street mining algorithm aims to discover and quantify correct and complete
sets of connected subsets of the road network. For example, Figure 1.8 shows
” mean streets” of a part of a metropolitan city in the United States. Each
line represents a street and the thickness of it represents the aggregated crime
value of the street. In this figure, the thicker the street is, the higher the crime
density is. Two algorithms are developed: An apriori-based mean street miner
and a graph-based mean street miner. The key idea behind the apriori-based
method is to discover size k + 1 mean streets using size k mean streets.
This approach has two pruning strategies: i) to eliminate unconnected edge
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combinations, and ii) to eliminate edge combinations that do not satisfy the
crime thresholds. This approach will generate size k + 1 streets using size k
”mean streets” until there are no more candidate streets. The inputs of the
algorithm are a road network G = (V,E), a set of aggregated crime values
Creal, and a user-defined confidence threshold α. The output is connected
sets of streets whose aggregated crime values are no less than their crime
thresholds Ctreshold.

On the other hand, in the graph-based approach, the key idea is to generate
all possible street sets in a spatial network using path generation algorithms
and prune the streets that do not satisfy the criteria. Road networks are often
represented as graphs and one method to generate mean streets is to find all
possible paths in the graph and then use an appropriate filtering technique to
eliminate the connected street sets that are irrelevant. The constraints that
need to be satisfied while computing street sets would depend on the users’
preferences. For example, in some scenarios, it might be required to generate
connected street sets that traverse every edge in the graph at least once. It
is also possible that some locations in the road network are designated as
start points and end points and the connected street set generation needs to
incorporate this requirement.

For the Apriori-based approach, a significant part of the computation time
would be spent in generating candidate mean streets without looking at the
connectivity of the edges. Experimental results showed that the execution
time variation in the graph-based approach is less pronounced. This is more
computationally efficient than the apriori-based approach since only the con-
nected paths are generated. The apriori-based algorithm generates candidates
without checking the graph connectivity, thus increasing the size of the search
space. The execution time of the graph-based approach decreases as the con-
fidence threshold increases. The apriori-based approach is computationally
more expensive as the confidence threshold decreases because of the increase
in the number of mean streets to be discovered. These two methods were
evaluated and results were summarized in [9].

1.5 Co-location Rules

Co-location patterns represent subsets of boolean spatial features whose
instances are often located in close geographic proximity. Examples include
symbiotic species, e.g. the Nile Crocodile and Egyptian Plover in ecology
and frontage-roads and highways in metropolitan road maps. Boolean spatial
features describe the presence or absence of geographic object types at dif-
ferent locations in a two-dimensional or three-dimensional metric space, e.g.,
the surface of the Earth. Examples of boolean spatial features include plant
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species, animal species, road types, cancers, crime, and business types.

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80
Co−location Patterns − Sample Data

X

Y

(a) (b)

FIGURE 1.10: a) Illustration of Point Spatial Co-location Patterns. Shapes
represent different spatial feature types. Spatial features in sets {‘+’, ‘×’} and
{‘o’, ‘*’} tend to be located together. b) Illustration of Line String Co-location
Patterns. Highways, e.g. Hwy100, and frontage roads, e.g. Normandale Road,
are co-located.

Co-location rules are models to infer the presence of boolean spatial features
in the neighborhood of instances of other boolean spatial features. For exam-
ple, “Nile Crocodiles → Egyptian Plover” predicts the presence of Egyptian
Plover birds in areas with Nile Crocodiles. Figure 1.10(a) shows a dataset
consisting of instances of several boolean spatial features, each represented
by a distinct shape. A careful review reveals two co-location patterns, i.e.
(‘+’,’×’) and (‘o’,‘*’).

Co-location rule discovery is a process to identify co-location patterns from
large spatial datasets with a large number of boolean features. The spatial
co-location rule discovery problem looks similar to, but, in fact, is very dif-
ferent from the association rule mining problem [2] because of the lack of
transactions. In market basket datasets, transactions represent sets of item
types bought together by customers. The support of an association is defined
to be the fraction of transactions containing the association. Association rules
are derived from all the associations with support values larger than a user
given threshold. The purpose of mining association rules is to identify fre-
quent item sets for planning store layouts or marketing campaigns. In the
spatial co-location rule mining problem, transactions are often not explicit.
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The transactions in market basket analysis are independent of each other.
Transactions are disjoint in the sense of not sharing instances of item types.
In contrast, the instances of Boolean spatial features are embedded in a con-
tinuous space and share a variety of spatial relationships (e.g. neighbor) with
each other.

1.5.1 Co-location Rule Approaches

Approaches to discovering co-location rules can be divided into three cate-
gories: those based on spatial statistics, those based on association rules, and
those based on the event centric model. Spatial statistics-based approaches
use measures of spatial correlation to characterize the relationship between
different types of spatial features using the cross K function with Monte
Carlo simulation and quadrat count analysis [11]. Computing spatial cor-
relation measures for all possible co-location patterns can be computationally
expensive due to the exponential number of candidate subsets given a large
collection of spatial boolean features.
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FIGURE 1.11: Example to Illustrate Different Approaches to Discovering Co-
location Patterns a) Example dataset. b) Data partition approach. Support
measure is ill-defined and order sensitive c) Reference feature centric model
d) Event centric model

Association rule-based approaches focus on the creation of transactions over
space so that an apriori like algorithm [2] can be used. Transactions in space
can use a reference-feature centric [24] approach or a data-partition [31] ap-
proach. The reference feature centric model is based on the choice of a
reference spatial feature [24] and is relevant to application domains focusing
on a specific boolean spatial feature, e.g. cancer. Domain scientists are inter-
ested in finding the co-locations of other task relevant features (e.g. asbestos)
to the reference feature. A specific example is provided by the spatial associa-
tion rule [24]. Transactions are created around instances of one user-specified
reference spatial feature. The association rules are derived using the apriori
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algorithm. The rules found are all related to the reference feature. For ex-
ample, consider the spatial dataset in Figure 1.11(a) with three feature types,
A,B and C. Each feature type has two instances. The neighbor relationships
between instances are shown as edges. Co-locations (A,B) and (B,C) may be
considered to be frequent in this example. Figure 1.11(b) shows transactions
created by choosing C as the reference feature. Co-location (A,B) will not
be found since it does not involve the reference feature.

Defining transactions by a data-partition approach [31] defines transactions
by dividing spatial datasets into disjoint partitions. There may be many dis-
tinct ways of partitioning the data, each yielding a distinct set of transactions,
which in turn yields different values of support of a given co-location. Figure
1.11 c) shows two possible partitions for the dataset of Figure 1.11 a), along
with the supports for co-location (A,B).

Model Items Transactions
defined by

Interest measures for C1 → C2

Prevalence Conditional proba-
bility

reference
feature
centric

predicates
on refer-
ence and
relevant
features

instances of
reference fea-
ture C1 and
C2 involved
with

fraction of
instance of
reference
feature with
C1 ∪ C2

Pr(C2 is true for
an instance of refer-
ence features given
C1 is true for that
instance of refer-
ence feature)

data par-
titioning

boolean
feature
types

a partition-
ing of spatial
dataset

fraction of
partitions
with C1∪C2

Pr(C2 in a parti-
tion given C1 in
that partition)

event
centric

boolean
feature
types

neighborhoods
of instances
of feature
types

participation
index of
C1 ∪ C2

Pr(C2 in a neigh-
borhood of C1)

TABLE 1.3: Interest Measures for Different Models

The event centric model finds subsets of spatial features likely to occur in a
neighborhood around instances of given subsets of event types. For example,
let us determine the probability of finding at least one instance of feature
type B in the neighborhood of an instance of feature type A in Figure 1.11
a). There are two instances of type A and both have some instance(s) of type
B in their neighborhoods. The conditional probability for the co-location rule
is: spatial feature A at location l → spatial feature type B in neighborhood is
100%. This yields a well-defined prevalence measure(i.e. support) without
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the need for transactions. Figure 1.11 d) illustrates that our approach will
identify both (A,B) and (B,C) as frequent patterns.

Prevalence measures and conditional probability measures, called interest
measures, are defined differently in different models, as summarized in Table
1.3. The reference feature centric and data partitioning models “materialize”
transactions and thus can use traditional support and confidence measures.
The event centric model-based approach defined new transaction free mea-
sures, such as the participation index (please refer to [40] for details).

1.6 Spatial Clustering

Spatial clustering is a process of grouping a set of spatial objects into clus-
ters so that objects within a cluster have high similarity in comparison to one
another, but are dissimilar to objects in other clusters. Cluster analysis is
used in many spatial and spatiotemporal application domains. For example,
clustering is used in remote sensing data analysis as a first step to deter-
mine the number and distribution of spectral classes. Cluster analysis is used
in epidemiology for finding unusual groups of health-related events. Cluster
analysis is also used in detection of crime hot spots.

1.6.1 Complete Spatial Randomness and Clustering

Spatial clustering can be applied to group similar spatial objects together,
and its implicit assumption is that patterns tend to be grouped in space rather
than in a random pattern. The statistical significance of spatial clustering can
be measured by testing the assumption in the data. The test is critical for
proceeding to any serious clustering analysis.

In spatial statistics, the standard against which spatial point patterns are
often compared is a completely spatially point process, and departures indi-
cate that the pattern is not completely spatially random. Complete spatial
randomness (CSR) [11] is synonymous with a homogeneous Poisson process.
The patterns of the process are independently and uniformly distributed over
space, i.e., the patterns are equally likely to occur anywhere and do not inter-
act with each other. In contrast, a clustered pattern is distributed dependently
and attractively in space.

An illustration of complete spatial random patterns and clustered patterns
is given in Figure 1.12, which shows realizations from a completely spatially
random process and from a spatial cluster process respectively (each condi-
tioned to have 85 points in a unit square).

Notice from Figure 1.12 (a) that the complete spatial randomness pattern
seems to exhibit some clustering. This is not an unrepresentive realization, but
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(a) CSR Pattern (b) Clustered Pattern

FIGURE 1.12: Complete Spatial Random (CSR) and Spatially Clustered
Patterns

illustrates a well known property of homogeneous Poisson processes: event-
to-nearest-event distances are proportional to χ2

2 random variables, whose
densities have a substantial amount of probability near zero [11]. In contrast
to Figure 1.12 (a), true clustering is shown in Figure 1.12 (b).

Several statistical methods [11] can be applied to quantify deviations of
patterns from complete spatial randomness point pattern. One type of de-
scriptive statistics is based on quadrats (i.e., well defined area, often rectan-
gle in shape). Usually quadrats of random locations and orientations in the
quadrats are counted, and statistics derived from the counters are computed.
Another type of statistics is based on distances between patterns. One such
type is Ripley’s K function.

1.6.2 Categories of Clustering Algorithms

After verification of the statistical significance of spatial clustering, clus-
tering algorithms are used to discover interesting clusters. Because of the
multitude of clustering algorithms that have been developed, it is useful to
categorize them into groups. Based on the technique adopted to define clus-
ters, the clustering algorithms can be divided into four broad categories:

1. Hierarchical clustering methods, which start with all patterns as a sin-
gle cluster and successively perform splitting or merging until a stopping
criterion is met. This results in a tree of clusters, called dendograms.
The dendogram can be cut at different levels to yield desired clusters.
Hierarchical algorithms can further be divided into agglomerative and di-
visive methods. The hierarchical clustering algorithms include balanced
iterative reducing and clustering using hierarchies (BIRCH), clustering
using inter-connectivity (CHAMELEON), clustering using representa-
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tives (CURE), and robust clustering using links (ROCK).

2. Partitional clustering algorithms, which start with each pattern as a
single cluster and iteratively reallocate data points to each cluster un-
til a stopping criterion is met. These methods tend to find clusters of
spherical shape. K-Means and K-Medoids are commonly used parti-
tional algorithms. Squared error is the most frequently used criterion
function in partitional clustering. The recent algorithms in this cate-
gory include partitioning around medoids (PAM), clustering large ap-
plications (CLARA), clustering large applications based on randomized
search (CLARANS), and expectation-maximization (EM).

3. Density-based clustering algorithms, which try to find clusters based on
the density of data points in a region. These algorithms treat clusters
as dense regions of objects in the data space. The density-based cluster-
ing algorithms include density-based spatial clustering of applications
with noise (DBSCAN), ordering points to identify clustering structure
(OPTICS), and density based clustering (DENCLUE).

4. Grid-based clustering algorithms, which first quantize the clustering
space into a finite number of cells and then perform the required op-
erations on the quantized space. Cells that contain more than a certain
number of points are treated as dense. The dense cells are connected to
form the clusters. Grid-based clustering algorithms are primarily devel-
oped for analyzing large spatial datasets. The grid-based clustering algo-
rithms include the statistical information grid-based method (STING),
WaveCluster, BANG-clustering, and clustering-in-quest (CLIQUE).

Sometimes the distinction among these categories diminishes, and some
algorithms can even be classified into more than one group. For example,
clustering-in-quest (CLIQUE) can be considered as both a density-based and
grid-based clustering method. More details on various clustering methods can
be found in a recent survey paper [16]. Many of the clustering algorithms
discussed here do not take into account the spatial autocorrelation and spatial
constraints. Limited studies can be found in the literature to model spatial
neighborhood relationships in clustering process. For example, in [3, 19]
the conventional expectation maximization approach has been extended by
incorporating a spatial penalty term in estimating the likelihood function.
Likewise, algorithms for spatial clustering in the presence of obstacles have
been proposed in [50, 53]. These approaches shows improved clustering re-
sults and stress the importance of modeling neighborhood relationships in
clustering.
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1.7 Spatiotemporal data mining

So far we have discussed techniques that are applicable to spatial data. Like
spatial data, which requires consideration of spatial autocorrelation and spa-
tial relationships and constraints in the model building, spatiotemporal data
mining also requires explicit or implicit modeling of spatiotemporal autocor-
relation and constraints. Several spatiotemporal extensions of classification,
clustering, and outlier detection can be found in the literature [38]. In this sec-
tion we consider the problem of spatiotemporal co-occurrence pattern mining
and briefly discuss the algorithm recently presented in [10].

Mixed-drove spatiotemporal co-occurrence patterns (MDCOPs) represent
subsets of two or more different object-types whose instances are often lo-
cated in spatial and temporal proximity. Discovering MDCOPs is an impor-
tant problem with many applications such as identifying tactics in battlefields,
games, and predator-prey interactions. However, mining MDCOPs is compu-
tationally very expensive because the interest measures are computationally
complex, datasets are larger due to the archival history, and the set of can-
didate patterns is exponential in the number of object-types. A monotonic
composite interest measure for discovering MDCOPs and novel MDCOP min-
ing algorithms are presented in [10].

As the volume of spatiotemporal data continues to increase significantly
due to both the growth of database archives and the increasing number and
resolution of spatiotemporal sensors, automated and semi-automated pattern
analysis becomes more essential. As a result, spatiotemporal co-occurrence
pattern mining has been the subject of recent research. Given a moving ob-
ject database, the aim in [10] was to discover mixed-drove spatiotemporal
co-occurrence patterns (MDCOPs) representing subsets of different object-
types whose instances are located close together in geographic space for a
significant fraction of time. Unlike the objectives of some other spatiotempo-
ral co-occurrence pattern identification approaches where the pattern is the
primary interest, in MDCOPs both the pattern and the nature of the different
object-types are of interest.

A simple example of an MDCOP is in ecological predator-prey relationships.
Patterns of movements of rabbits and foxes, for example, will tend to be co-
located in many time-frames which may or may not be consecutive. Rabbits
may attempt to move away from foxes, and the foxes may attempt to stay
with the rabbits. Other factors such as available food and water may also
affect the patterns.

A detailed example: More example MDCOPs may be illustrated in
American football where two teams try to outscore each other by moving
a football to the opponent’s end of the field. Various complex interactions oc-
cur within one team and across teams to achieve this goal. These interactions
involve intentional and accidental MDCOPs, the identification of which may
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help teams to study their opponent’s tactics. In American football, object-
types may be defined by the roles of the offensive and defensive players, such
as quarterback, running back, wide receiver, kicker, holder, linebacker, and
cornerback. An MDCOP is a subset of these different object-types (such as
{kicker, holder} or {wide receiver, cornerback}) that occur frequently. One
example MDCOP involves offensive wide receivers, defensive linebackers, and
defensive cornerbacks, and is called a Hail Mary play. In this play, the objec-
tive of the offensive wide receivers is to outrun any linebackers and defensive
backs and get behind them, catching an undefended pass while running un-
touched for a touchdown. This interaction creates an MDCOP between wide
receivers and cornerbacks. An example Hail Mary play is given in Figure 1.13.
It shows the positions of four offensive wide receivers (W.1, W.2, W.3, and
W.4), two defensive cornerbacks (C.1 and C.2), two defensive linebackers (L.1
and L.2), and a quarterback (Q.1) in four time slots. The solid lines between
the players show the neighboring players. The wide receivers W.1 and W.4
cross over each other and the wide receivers W.2 and W.3 run directly to the
end zone of the field. Initially, the wide receivers W.1 and W.4 are co-located
with cornerbacks C.1 and C.2 respectively and the wide receivers W2. and
W.3 are co-located with linebackers L.1 and L.2 at time slot t=0 (Figure
1.13 (a)). In time slot t=1, the four wide receivers begin to run, while the
linebackers run towards the quarterback and the cornerbacks remain in their
original position, possibly due to a fake handoff from the quarterback to the
running back (Figure 1.13 (b)). In time slot t=2, the wide receivers W.1 and
W.4 cross over each other and try to drift further away from their respective
cornerbacks (Figure 1.13 (c)). When the quarterback shows signs of throwing
the football, both cornerbacks and linebackers run to their respective wide
receivers (Figure 1.13(d)). The overall sketch of the game tactics can be seen
in Figure 1.13(e). In this example, wide receivers and cornerbacks form an
MDCOP since they are persistent over time and they occur 2 out of 4 time
slots. However, wide receivers and linebackers do not form an MDCOP due
to the lack of temporal persistence.

There are many applications for which discovering co-occurring patterns
of specific combinations of object-types is important. Some of these include
military (battlefield planning and strategy), ecology (tracking species and
pollutant movements), homeland defense (looking for significant ”events”),
and transportation (road and network planning) [15, 25].

However, discovering MDCOPs poses several non-trivial challenges. First,
current interest measures (i.e. the spatial prevalence measure) are not suffi-
cient to quantify such patterns, so new composite interest measures must be
created and formalized [20, 43]. Second, the set of candidate patterns grows
exponentially with the number of object-types. Finally, since spatiotempo-
ral datasets are huge, computationally efficient algorithms must be developed
[46].

In contrast to the approaches proposed in the literature, the proposed in-
terest measure and algorithms in [10] efficiently mine mixed groups of objects
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FIGURE 1.13: An example Hail Mary play in American football

(e.g MDCOPs) which are close in space and persistent (but not necessarily
close) in time.

1.8 Summary

In this chapter we have presented the major research achievements and tech-
niques which have emerged from spatial data mining, especially for predicting
locations and discovering spatial outliers, co-location rules, and spatial clus-
ters. We conclude by identifying areas of research in spatial and spatiotempo-
ral data mining that require further investigation. The current research focus
is mostly concentrated on developing algorithms that model spatial and spa-
tiotemporal autocorrelations and constraints. Spatiotemporal data mining is
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still largely an unexplored territory; further research is especially needed for
mining trajectory data and streaming data. Further research is also needed
to scale these algorithms for large spatiotemporal datasets. Other important
issues that need immediate attention include how to validate the hypotheses
generated by spatial data mining algorithms and how to generate actionable
knowledge.
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