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Why Data Mining?

Holy Grail - Informed Decision Making

Lots of Data are Being Collected
B Busness- Transactions, Web logs, GPStrack, ...

B Science - Remote sensing, Micro-array gene expression data, ...

Challenges:
B Volume (data) >> number of human analysts
E Some automation needed

Data Mining may help!
B Provide better and customized insights for business
B Help scientists for hypothesis generation



Spatial Data

B L ocation-based Services
E E.g.. MapPoint, MapQuest, Y ahoo/Google Maps, ...
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Spatial Data

B [n-car Navigation Device

Emerson In-Car Navigation System (Courtesy: Amazon.com)
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Spatial Data Mining (SDM)

B The process of discovering
B interesting, useful, non-trivial patterns
» patterns: non-specialist
» exception to patterns. specialist
B from large spatial datasets

W Spatia pattern families
B Spatial outlier, discontinuities
E Location prediction models
E Spatia clusters
E Co-location patterns

i



Spatial Data Mining and Science

B Understanding of aphysical phenomenon

B Though, final model may not involve location
» Cause-effect e.g. Cholera caused by germs

B Discovery of model may be aided by spatial patterns
» Many phenomenon are embedded in space and time
» Ex. 1854 London — Cholera deaths clustered around a water pump

» Spatio-temporal process of disease spread => narrow down potential causes
» EX. Recent analysis of SARS

B | ocation helps bring rich contexts
B Physicd: e.g., rainfall, temperature, and wind
B Demographical: e.g., age group, gender, and income type
B Problem-specific, e.g. distance to highway or water



Example Pattern: Spatial Cluster

B The 1854 Asatic Cholerain London

m Pump sites




Example Pattern: Spatial Outliers

B Spatial Outliers

B Traffic Datain Twin Cities
E Abnormal Sensor Detections

B Spatial and Temporal Outliers

Average Traffic Volume(Time v.s. Station)
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Example Pattern: Predictive Models

B | ocation Prediction:

B Predict Bird Habitat Prediction
B Using environmental variables

“egetation distribution acrass the marshland
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Example Patterns:. Co-locations

o & Co-location Patierns — ngplc Data
B Given: A collection of g . S .

different types of
gpatial events

® Find: Co-located
subsets of event types




What's NOT Spatial Data Mining

B Simple Querying of Spatial Data
B Find neighbors of Canada given names and boundaries of all countries
B Find shortest path from Boston to Houston in afreeway map
B Search space is not large (not exponential)

B Testing ahypothesis viaa primary data anaysis
B Ex. Female chimpanzee territories are smaller than male territories
B Search spaceisnot large!
B SDM: secondary data analysis to generate multiple plausible hypotheses

B Uninteresting or obvious patterns in spatial data

B Heavy rainfal in Minneapolisis correlated with heavy rainfall in St. Paul,
Given that the two cities are 10 miles apart.

B  Common knowledge: Nearby places have similar rainfall

B Mining of non-spatial data
B Diaper sales and beer sales are correlated in evening



Application Domains

B Spatial datamining isused in

NASA Earth Observing System (EOS): Earth science data
National Inst. of Justice: crime mapping

Census Bureau, Dept. of Commerce: census data

Dept. of Transportation (DOT): traffic data

National Inst. of Health (NIH): cancer clusters

Commerce, e.g. Retail Analysis

B Sample Global Questions from Earth Science

How isthe global Earth system changing

What are the primary forcing of the Earth system

How does the Earth system respond to natural and human included changes
Wheat are the consequences of changes in the Earth system for human
civilization

How well can we predict future changes in the Earth system



Example of Application Domains

B Sample Local Questions from Epidemiology [TerraSeer]
B What'soverall pattern of colorectal cancer

B [sthere clustering of high colorectal cancer incidence anywhere in the study
area

Where is colorectal cancer risk significantly elevated
Where are zones of rapid change in colorectal cancer incidence

Cutlier in male colorectal cancer (low SMH )

Significant male colorectal cancer Local Moran clusters
SMR values

B 50-100% abhove expecied

15-49% abowve expoct ed
within 15% of expected
15-50% hebow expected
[ more than 50% below expected

20 0 20 40 60 Miles ’/k
¥ "

Geographic distribution of male colorectal cancer in Long Island, New York (Courtesy: TerraSeerj’”’ w



Business Applications

B Sample Questions:
B What happensif anew store is added
B How much business a new store will divert from existing stores
E Other “what if” questions:
» changesin population, ethic-mix, and transportation network
» changesin retail space of astore
» changes in choices and communication with customers

B Retal analysis: Huff model [Huff, 1963]

B A gspatia interaction model
» Given apersonpandaset Sof choices
> Pr[person p selectschoicec]a perceived_utility(" cl S, p)
» perceived  utility (store c, person p) = f (square - footage (c),
distance (c, p), parameters )
E Connection to SDM
» Parameter estimation, e.g., viaregression
E For example:
» Predicting consumer spatial behaviors
Delineating trade areas
Locating retail and service facilities
Analyzing market performance

Y VYV V



Map Construction

B Sample Questions

Which features are anomal ous?

B Which layers are related?

How can the gaps be filled?

B KoreaData

L atitude 37deg15min to 37deg30min
L ongitude 128deg23min51sec to 128deg23min52sec

B |ayers

Obstacles (Cut, embankment, depression)

Surface drainage (Canal, river/stream, island, common open water, ford, dam)
Slope

Soils (Poorly graded gravel, clayey sand, organic silt, disturbed soil)

V egetation (Land subject to inundation, cropland, rice field, evergreen trees,
mixed trees)

Transport (Roads, cart tracks, railways)

LAy



Colocation in Example Data

B Road: river/stream

B Crop land/rice fields: ends of roads/cart roads

B Obstacles, dams and islands: river/streams

B Embankment obstacles and river/stream: clayey soils

B Rice, cropland, evergreen trees and deciduous trees:
river/stream

B Rice: clayey soil, wet soil and terraced fields
B Crooked roads. steep slope



Colocation Example

B |nterestingness

B Patternsto Non-Specialist vs. Exceptions to Specialist
B Road-River/Stream Colocation
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Road-River Colocation Example
(Korea database, Courtesy: Architecture Technology Corporation)




A Complex Colocation Example

B Cropland colocated with river, stream or road

Mo
ol cated

crapland

Complex Colocation Example
(Korea dataset, Courtesy: Architecture Technology Corporation) £
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‘ Quitliers in Example Data

B Outlier detection

E Extra/erroneous features
‘.- Road
B Positional accuracy of features — it
’f -"' [t NngE 1} -".:n
B Predict mislabeled/misclassified features = T N 1.:.‘;?1:‘1;”1‘,. Positional
Y o of bridge
[ Examples Road bndge
. arbitranly %
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Overview

B Spatial Data Mining

B Find interesting, potentially useful, non-trivial patterns from spatial data
B Components of Data Mining

E Input: table with many columns, domain (column)

B Statistical Foundation

B OQutput: patterns and interest measures
> eg., predictive models, clusters, outliers, associations

B Computational process: algorithms



Overview

> Input

B Statistical Foundation
B Output

B Computational Process
B Trends



Overview of Input

Data
B Table with many columns (attributes)
tid f, f, f,
0001 | 35 | 120 Yes
0002 | 40 | 121 No

Example of Input Data

> eg.,tid:tupleid; f: attributes
B Spatia attribute: geographically referenced
B Non-spatial attribute: traditional
Relationships among Data
B Non-spatid
E Spatiad



Datain Spatial Data Mining

B Non-spatia Information
B Sameasdatain traditional data mining
E Numerical, categorical, ordinal, boolean, etc
E eg, city name, city population

B Spatia Information

B Spatia attribute: geographically referenced
» Neighborhood and extent

_ _ ) | Raster Datafor UMN Campus
> Location, e.g., longitude, |atitude, Courtesy: UMN

elevation
B Spatial datarepresentations
» Raster: gridded space
» Vector: point, line, polygon
» Graph: node, edge, path

Vector Data for UMN Campys
Courtesy: MapQuest




Relationships on Data in Spatial Data Mining

B Relationships on non-spatial data
B Explicit
B Arithmetic, ranking (ordering), etc.

B Object isinstance of aclass, classis a subclass of another class, object is part of
another object, object is amembership of a set

B Relationships on Spatial Data
E Many areimplicit
B Relationship Categories

» Set-oriented: union, intersection, and membership, etc

» Topological: meet, within, overlap, etc

» Directional: North, NE, |eft, above, behind, etc

» Maetric: e.g., Euclidean: distance, area, perimeter

» Dynamic: update, create, destroy, etc

» Shape-based and visibility

B Granularity
Granularity Elevation Example Road Example

Local Elevation On_road? oA,
Focal Slope Adjacent_to road? g ;
Zonal Highest elevation in a zone Distance to nearest road g o




OGC Model

B Open GIS Consortium Model
B Support spatial datatypes: e.g. point, line, polygons
B Support spatial operations as follows:

Operator Type

Operator Name

Basic Function

Spatial Reference, Envel ope,
Boundary, Export,

| SEmpty, 1sSimple

Topological/Set Operations

Equal, Digoint, Intersect, Touch,
Cross, Within, Contains, Overlap

Spatial Analysis

Distance, Buffer, ConvexHull,

Intersection, Union, Difference,
SymmbDiff

Examples of Operations in OGC Model




OGIS— Topological Operations
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Mining Implicit Spatial Relationships

B Choices
B Materialize spatia info + classical data mining
B Customized spatial data mining techniques
B Example-
E Distance:
» Point: Euclidean, Extended objects: buffer-based, Graph: shortest path
B Transactions. i.e., space partitions
» Circles centered at reference features, Gridded cells, Voronoi diagram

Relationships Materialization | Customized SDM Tech.
Topological Neighbor, Inside, Outside | Classical Data NEM, co-location
Euclidean Distance, density Mini n;(;an be K-means
Directional North, Left, Above : DBSCAN

Others Shape, Visibility Clustering on sphere




Research Needs for Data

B Limitations of OGC Mode
B Aggregate functions - e.g. Mapcube
B Direction predicates - e.g. absolute, ego-centric
B 3D and vighility, Network analysis, Raster operations
B Spatio-tempord
B Needsfor New Research
B Modeing semantically rich spatial properties
B Moving objects
B Spatio-temporal data models




Spatio-Temporal |ssues

» Spatio-Temporal Data
B Examples

= Spatio-Temporal Data Models
B Emerging ideas



Spatio-Tempora Data

Average Monthly Temperature
Jan

B Spatial Time Series Data
B Spaceisfixed
B Measurement value changes
over aseries of time
B E.g. Global Climate Patterns,
Army vehicle movement

" Mahpack stinger M2_IFV " Field_Marker
(1 Objects) (6 Objects)
‘p‘" T Ay
.
¥ T80 _tank “ BRDM_ATS5 (enemy) =

(2 Objects) (1 Object)

Army vehicle movement ‘o,



Spatio-Tempora Data

B Moving objects Data
B Areaof interest changes
with the moving object
B E.g. GPStrack of avehicle,
Personal Gazetteers
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Spatio-Temporal Data: Modeling

Spatial Spatio-Temporal
Differentiation Aggregation
Topology O-Intersection d/dt(9-Intersection Open
I\/Ia’[riX, OGIS MaI”X) Time saries of
O-Intersection Matrix
Vector L ocation Speed, Vel ocity, Time series of points,
Space OGIS — direction, d/dt(area) lines, polygons (tracks)
distance, area, Visualized as helixes
perimeter (linear/angular motion)
Spatial Motion — Trandation, Open
properties Rotation, Deformation e.g. Helix
of objects _d/dt(position, Track = (t, X, y;) —
orientation, shape) moving object databases
Aspatia d/dt(mass) Time-series of velocities,
properties = :

of objects

=

it




‘ Spatio-Temporal Datac Modeling

B Topology
E Differentiation

Eej'( 'nee) Sacnge) Sarne)?
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‘ Spatio-Temporal Data: Modeling

B Open Problems
B Aggregation Modeling — Helix

B Helix
B Representation of trgectory and boundary changes in an object over
time

Spine — represents

tn trajectory of the object
Prongs — represents
deformation of the object

Lo

Helix representation of an object’s trajectory % &
and change in shape over time Courtesy: University of Maine



Overview

v" Input

» Statistical Foundation
B Output

B Computational Process
B Trends



Statistics in Spatial Data Mining

B Classica DataMining
B Learning samples are independently distributed
B Cross-correlation measures, e.g., Chi-square, Pearson
B Spatial Data Mining
B | earning sample are not independent
B Spatial Autocorrelation
» Measures:
» distance-based (e.g., K-function)
» neighbor-based (e.g., Moran’'s|)
B Spatial Cross-Correlation

B Measures. distance-based, e.g., cross K-function
B Spatial Heterogeneity




Overview of Statistical Foundation

B Spatial Statistics [Cressie, 1991][Hanning, 2003]
B Geogtatistics

» Continuous
» Variogram: measure how similarity decreases with distance
» Spatial prediction: spatial autocorrelation
L attice-based statistics
» Discrete location, neighbor relationship graph
» Spatial Gaussian models
» Conditionally specified, Simultaneously specified spatial Gaussian

model
» Markov Random Fields, Spatial Autoregressive Model
Point process
» Discrete

» Complete spatial randomness (CSR): Poisson process in space
» K-function: test of CSR



Spatial Autocorrelation (SA)

B First Law of Geography

E “All things arerelated, but nearby things are more related than distant things.
[Tobler, 1970]”

While Noise -No =patial autecorrdalion

vegetaton deirioglion aonaes the mashied
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Pixel property with independent identical Vegetation Durability with SA
distribution

W Spatia autocorrelation
E Nearby things are more similar than distant things .
B Traditional i.i.d. assumption isnot valid .,
B Measures: K-function, Moran’s |, Variogram, ... .



Spatial Autocorrelation: Distance-based measure

B K-function Definition
B Test against randomness for point pattern
e K(h) = | * E[number of eventswithin distance h of an arbitrary event]
» ?isintensity of event
B For Poisson complete spatial randomness (CSR): K(h) = ph?
» > cluster

. 1 1400 - .
» <:decluster/regularity — o
O Cluster Process o
Decluster Process ;
12001~ | -—- Envelope B,
1000 |
800t
=
L
O
g 600
K-Function based ;T
Spatial Autocorrelation a0}
200t
CI -
_200 | 1 1 | | 1 1 | 1 1 ::
] 2 4 5 ! 10 12 14 18 18 20 =

Distance h



Spatial Autocorrelation: Topological Measure

B Moran' s| Measure Definition
E \W: the contiguity matrix

B Ranges between -1 and +1
B higher positive value
» =>high SA, Cluster, Attract
B |ower negative value
» =>interspersed, de-clustered, repel
B Example
» spatial randomness=> M| =0
» checker board => M| =-1

t
M| 2Nz

X . : data values
X :mean of X
n :number of data

» distribution of vegetation durability => M| =0.7




Cross-Correlation

B Cross K-Function Definition

Ki(h =1 'jl E [number of type | event within distance h
of arandomly chosen typei event]

Cross K-function of some pair of spatial feature types
Example

» Which pairs are frequently co-located
» Statistical significance



Cross-Correlation
Find Patterns in the following data:

70

10~




‘ |llustration of Cross-Correlation

B |l|ustration of Cross K-function for Example Data

10007

800r

Cross—K function

200r

600

400r

Cross—K function of pairs of spatial features

v—pl e

2 4 6 8 10
Distance h

Cross-K Function for Example Data



‘ |llustration of Cross-Correlation

B |l|ustration of Cross K-function for Example Data

1000

800

600r

400

Cross—K function

200

o7

Cross—K function of pairs of spatial features

—a— y=pi*h2
—— oand”
'''''' X and +
*and x

2 4 5 8 10
Distance h 3 )

Cross-K Function for Example Data



Spatial Slicing

B Spatial heterogeneity
B “Second law of geography” [M. Goodchild, UCGIS 2003]
B Globa model might be inconsistent with regional models
» gpatial Simpson’ s Paradox
B Spatial Slicing
B May improve the effectiveness of SDM, show support regions of a pattern




Edge Effect

B Cropland on edges may not be classified as outliers
B No concept of spatial edges in classical data mining

River/'stream

Cropland T ——
Road —

™ sm
collocated

croplamnd

Korea Dataset, Courtesy: Architecture Technology Corporation



Research Challenges of Spatial Statistics

B State-of-the-art of Spatial Statistics

Point Lattice | Geostatistics
Process
raster Y Y
Vector Point % Y Y
Line Y
Polygon Y% Y
graph

Data Types and Statistical Models

B Research Needs
E Correlating extended features, road, rivers, cropland
B Edge effect
B Relationship to classical statistics
» Ex. SVM with spatial basis function vs. SAR

E Spatio-temporal statistics



Spatio-Temporal Statistics

B Emerging topic

Statistical Methods Hierarchical —
for Spatio-Temporal Modeling and =

Systems Analysis for

Spatial Data ___=i
UNIVERSITY
o ARKANSAS
= 1571 =1
321 Spring Lecture Series,
kg Sio 2007
Vadprie lsham Alan E. Gelfand
"First’ statistics book on Chapter on Bayesian-based Principal Lecturer: Noel Cressie
Spatio-temporal models, Spatio-Temporal modeling,
1st edition, 2007 2004



Overview

v" Input

v’ Statistical Foundation
» Output

B Computational Process
B Trends



Three General Approachesin SDM

B A. Materializing spatial features, use classical DM
B Ex. Huff's model — distance (customer, store)
B Ex. spatial association rule mining [Koperski, Han, 1995]
B Ex: wavelet and Fourier transformations
E commercia tools: e.g., SASESRI bridge

B B. Spatial dicing, use classical DM L N i O T W l
Hp . o e T ‘H"b!_/.b" dW "
E Ex. association rule with support map ‘*gf%’: TR eET (i_?f«f .
[P. Tan et al] TS S SR e | B
B commercid tools: e.g., Matlab, SAS, R, Splus | ~ %% WEE?:‘Q/‘?A . |
B C. Customized spatial techniques ol £ s -;1_' ~, hl?' -' ﬁg%%\
E Ex. geographically weighted regression: A ;lfj | Hijj“f Ej’# '
parameter = f(loc) a1 W, —_— 4 ]
B eg., MRF-based Bayesian Classifier (MRF-BC) - : l
E commercia tools o e e e e -~
> eg., Splusspatial/R spatial/terraseer + Association rule with support map
customized codes (FPAR-high -> NPP—hlgh)ﬂ e




Overview of Data Mining Output

B Supervised Learning: Prediction
B Classification
E Trend
B Unsupervised Learning:
B Clustering
E Outlier Detection
B Association

B Output Patterns vs. Statistical Models

Patterns Point Lattice | Geostatistics
Process
Prediction Y Y
Trend v
Clustering Y Y
Outliers % Y Voo
Associations % %

Output Patterns vs. Statistical Models
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Prediction and Trend

B Prediction

B Continuous. trend, e.g., regression

» Location aware: spatial autoregressive model (SAR)
B Discrete: classification, e.q., Bayesian classifier

» Location aware: Markov random fields (MRF)

Classicd Spatial

y=)b+e y=r\W+Xb+e

_PrK|Q) Pre)




Truth Positive Rate

B |inear Regression y=Xb +e

Prediction and Trend

B Spatial Regression y=rW +Xb +e
B Spatial moddl is better

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

ROC Curve for testing data{Stubble marshland ‘|_995}|

—

Classical Hegression
Spatial Regression

=

| | | | | | | |
0.2 0.3 04 0.5 0.6 0.7 0.8 0.9
False Positive Rate

ROC Curve for learning

1

(Darr marshland 1995)

1 T T

0.9F

0BF

0.7f

Truth Positive Rate
—
-

=
.

0.3F ;
0.2

0.1

[ ] [ ]
(5] [=:]
.

o

ROC Curve for learning datal
T

/ﬂ

T T T

Classical Regressio
Spatial Hegression

W

0 0.1 0.2 0.3

ROC Curve for testing v, , "

L
0.4 05
False Positive Rate

Il
0.6 0.7 0.8 0.9

£

e

Ly 4y



Spatial Contextual Model: SAR

B Spatial Autoregressive Model (SAR)

y=r Wy+Xb +e

Assume that dependent values'y, are related to each other

> Yy =1H(y)17?]
Directly model spatial autocorrelation using W

B Geographicaly Weighted Regression (GWR)

A method of analyzing spatially varying relationships

» parameter estimates vary locally

Models with Gaussian, logistic or Poisson forms can be fitted
Example: y=Xb +e

where b ande arelocation dependent



Spatial Contextual Model: MRF

B Markov Random Fields Gaussian Mixture Model (MRF-
GMM)

Undirected graph to represent the interdependency relationship of
random variables

A variable depends only on neighbors
Independent of al other variables

f(S) independent of f(S), If W (s,s) =0
Predict f(S) , given feature value X and neighborhood classlabel C,

Pr(c) * Pr(X,Cy |©)
Pr(X,C,)

Pr(c, | X,Cy) =

» Assume: Pr(c); Pr(X, Cylc); and Pr(X, C) are mixture of Gaussian
distributions. |



| Research Needs for Spatial Classification

B Open Problems

B Estimate W for SAR and MRF-BC
B Scdingissuein SAR
» Scdedifference: r Wy vs. Xb
B Spatia interest measure: e.g., avg, dist(actual, predicted)

P Legend
A P P A P A ® = pest location
plp A = actual nest in pixel
= X F = predicted nest in pinel
A A A A A A
(a) (b) (c) (d)
Actual Sites Pixels with Prediction 1 Prediction 2.
actual sites Spatially more accurate

than Prediction 1 LTy



Clustering

B Clustering: Find groups of tuples
B Statistical Significance
B Complete spatial randomness, cluster, and decluster
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Clustering

B Similarity Measures
E Non-spatia: e.g., soundex
B Classical clustering: Euclidean, metric, graph-based
B Topologica: neighborhood EM (NEM)

» Seeks apartition that is both well clustered in feature space and spatially
regular

» Implicitly based on locations

B [nterest measure:

B gpatia continuity

B cartographic generalization

B unusua density

B Kkeep nearest neighbors in common cluster
B Challenges

B Spatial constraintsin algorithmic design

B EX. Rivers, mountain ranges, etc



Semi-Supervised Bayesian Classification

B Motivation: high cost of collecting labeled samples
B Semi-supervised MRF
B |dea use unlabeled samplesto improve classification
» EX. reduce salt-N-pepper noise
B Effects on land-use data - smoothing

Supervised e Semi-Supervised

L]

MREF-BC

Contexl—Rased§

Bayesian Classifiers
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Quitlier Detection

B Spatial Outlier Detection
B  Finding anomalous tuples
B Global and spatial outlier
B Detection Approaches
» Graph-based outlier detection: variogram, Moran scatter plot
» Quantitative outlier detection: scatter plot, and z-score

Average Traffic Volume(Tlme v.s. Station)
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Qutlier Detection
B Graphical Tests ;

Maran Scatter Plot
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‘ Outlier Detection — QuantltatlveTests

Scatter Plot

B Quantitative Tests: e

.
B Scatter Plot
B Spatial Z-test
B Algorithmic Structure

» Spatia Join on neighbor
relation
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Research Needs in Spatial Outlier

Detection

B Multiple spatial outlier detection
B Eliminating the influence of neighboring outliers
B Incrementd

B Multi-attribute spatial outlier detection
B Use multiple attributes as features

B Design of gpatial statistical tests
B Scaleup for large data




Assocliation Rules— An Analogy

B Associationrulee.g. (Diaper in T => Beer in T)

Transaction |tems Bought

1 {s0cks, e, Milk, E‘l beef, eqq, ...}

2 {pillow, E‘I toothbrush, ice-cream, muftfin, ...}
3 { =, E"‘l pacifier, formula, blanket, ...}

n { battery, juice, beef, egg, chicken, ...}

B Support: probability (Diaper and Beer inT) = 2/5
B Confidence: probability (Beer in T | Diaper inT) = 2/2
B Algorithm Apriori [Agarwal, Srikant, VLDB94]
B Support based pruning using monotonicity
B Note Transaction isa core concept!



Spatial Colocation

B Comparison with Association rules

Association rules

Colocation rules

underlying space discrete sets continuous space

item-types item-types events /Boolean spatial features
collections transactions neighborhoods

prevalence measure support participation index

conditional probability
measure

PrJAINT|BinT]

PrUAINN(L)|BatL]

Participation index

Participation ratio pr(f, c) of featuref.in colocation c = {f, f,, ..., f,}: fraction of instances

of f, with feature {f,, ..., f., f

Algorithm
Hybrid Colocation Miner

+1

., .} nearby. Participation index = min{ pr(f, )}



Spatial Colocation: Approaches

Input Dataset = Partition approach = Colocation
a1 c1 Al Cl
ey b
Al Cl Bl
Bl S . S o
H A2 \
e \ ” B2 \
2 Support(A,B)=min(2/2,3/3)=1
Spatial feature A,B, C, Support A.B =2 B.C=2 . _
and their ingtances PP Support(B,C)=min(2/2,2/2)=1
= Reference feature = &
Al S / 1 - /
Bl approach s
i e
B2 C as reference feature = %,
\ Transactions. (B1) (B2) c2 1o,
= Support (A,B) = ? SN,
Neighbor relationship Support A,B=1B,C=2 ~




Spatial Colocation Approaches

B Approaches
B Spatial Join-based approaches

» Join based on map overlay e.g. [Estivill-Castro and Lee, 1001]
» Join using K-function e.g. [ Shekhar and Huang, 2001]

B Transaction-based approaches

» E.g. [Koperski and Han, 1995] and [Morimoto, 2001]

B Challenges

Neighborhood definition

“Right” trasactionazation
Statistical interpretation
Computational complexity

» Large number of joins

» Join predicate is a conjunction of

» Neighbor
» Distinct item types



Spatio-Temporal Patterns

B Outlier Detection
B Emerging Hot-spots
B ST Discontinuity
B Prediction
B Location Prediction for moving objects
B Temporal generalization
B Clusters
B Cluster of moving objects, e.g. Flock
B Grid-based: Moving Clusters
B Associations, Co-locations

B Grid-based: ST Association Rules
B Join-based: Mixed-Drove




Summary
What' s Special About Spatio-Temporal Data Mining ?

Spatial DM Spatio-Tempora DM
|nput Data Often implicit Another dimension — Time.
relationships, complex | |mplicit relationships
types changing over time

Statistical Foundation | Spatial autocorrelation | Spatial autocorrelation and
Temporal correlation

Output | Association | Colocation Spatio-Tempora association
Mixed-Drove pattern
Sustained Emerging pattern

Clusters Hot-spots Flock pattern
Moving Clusters
Outlier Spatial outlier Spatio-Temporal outlier -

Prediction | Location prediction Future Location predlctl on

a2

Ty
]
J.-'.-) .__ 3T



ST Patterns. Sustained Emerging Hotspots

Multidrug-resistant tuberculosis Drug-resistant Malaria
X

e
.

Hepatitis C _ 1™ sArs
B Sustained Emerging :

B Publichedth (Infectious | il | Pl
emerging diseases - dengue | /

|
fever) W ReE ] By
= . - : Colera HIV/ADS/

Dengue :
B homeland defense (looking S s
for growi ng “events’, bio- * Newly emerging dlseases 0 Re-emerging diseases
defense) Weekly dengue cases in 2005 (Singapore)
| nstances of sustained—=. — {/ 1 /%_'
. /) AU
emerging patterns 200 - ' 7
g g p 300 i =P /;‘ m'/
HHH e

Weel

Courtesy: Wikipedia




ST Patterns: Quitliers

B Spatio-Temporal Outliers
B Example Application: Sensor Networks - Traffic Datain Twin Cities
B Abnormal Sensor Detections
B Example: Sensor 9 (spatial) at time 0-60 (temporal)

Average Traffic Volume({Time v.s. Station)
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ST Patterns: Prediction

B Predict driver’ s destinations

B From driver’s gpstrack, destination history and behavior

Destination cells for a driver
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B FHock Pattern Mining

ST Patterns: Mixed Drove

B Flock Pattern [Gudmundsson05]

Each time step treated separately

e Significant Flock Pattern

Time Patterns Time Patterns
1-10 AB 7 AD
3-9 AC 7 BD
3-9 BC 7 CD
3-9 ABC 7 ABCB

Patterns | nterest Measure
(threshold 0.5)

(A B) 1

(A C) 0.7 |

(B C) 0.7 =1

(ABC) |07

others below threshold  ~




ST Patterns: Moving Clusters

B Moving Clusters
B N.%r]th Atlantic Oscillation
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Source: Portis et al, Seasonality of the NAO, AGU Chapmang”
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ST Patterns: Association

B Spatio-temporal Associationsin Climate Data
B ST Grid (latitude degree, longitude degree, month) defines transactions

FPAR-HI == NPF-H| [suppor 2= §)
T

=70

-

FPAR-Hi ==> NPP-Hi (sup=5.9%,
conf=55.7%)

-anf

=50 |-

=T}

-apk

ThE

B0 T

3

b

-180

ap e &0 —m 0 ]

Grasdand/ Shrubland areas

Association rule is interesting because it appears mainly in regions with

grassland/shrubland vegetation type
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ST Patterns: Mixed Drove

B Ecology

B Anima movements
(migration, predator-prey,
encounter)

B Speciesrelocation and
extinction (wolf — deer)

B Games

E Gametactics of opponent team
(soccer, American football, ...)

B Co-occurring role patterns




ST Patterns. Sustained Emerging

B Sustained Emerging
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Overview

v" Input

v’ Statistical Foundation
v" Output

» Computational Process
B Trends



Computational Process

Most algorithmic strategies are applicable

Algorithmic Strategies in Spatial Data Mining:

Classical Algorithms Algorithmic Strategies in SDM Comments
Divide-and-Conquer Space partitioning Possible loss

Filter-and-Refine

Minimum-Bounding Rectangle
(MBR), Predicate Approximation

Ordering

Plane Sweeping, Space Filling Curve

Hierarchical Structures Spatial Index, Tree Matching

Parameter Estimation

Parameter estimation with spatial
autocorrelation

of information

Algorithmic Strategies in Spatial Data Mining




Computational Process

B Challenges
B Does spatial domain provide computational efficiency
» Low dimensiondlity: 2-3
» Spatial autocorrelation
» Spatia indexing methods

B Generdizeto solve spatial problems
» Linear regresson vs. SAR

» Continuity matrix W is assumed known for SAR, however,
estimation of anisotropic W isnon-trivia

» Spatial outlier detection: gpatial join
» Co-location: bunch of joins



Example of Computational Process

B Teleconnection

B Find (land location, ocean location) pairs with correlated climate changes
» EX. El Nino affects climate at many land locations

Global Influence of EINino during ~ _.»* "7,
the Northern Hemisphere Winter ~ -* .
(Courtsey: NASA, Prof. V. Kumar) (D: Dry, W: Warm, R: Rainfall) y =

Average Monthly Temperature



Example: Teleconnection (Cont’)

B Challenge
B high dimensional (e.g., 600) feature space
B 67k land locations and 100k ocean locations (degree by degree grid)
B 50-year monthly data

B Computational Efficiency
B Spatia autocorrelation
» Reduce Computational Complexity
B Spatial indexing to organize locations
» Top-down tree traversal isastrong filter
» Spatial join query: filter-and-refine
» save 40% to 98% computational cost at ?=0.3t0 0.9



Parameter estimation of SAR

B Spatial Auto-Regression Model
B Estimate ? and 3 for y=r Wy+Xb +e
B The estimation uses maximum-likelihood (ML) theory

B | og-likelihood function LLF = log-det + SSE + const
B |og-det = In|l- ?W|
B SSE=

o AY (- TW)TMT(1 - rW)y}




Parameter estimation of SAR

B Computational Insight:
B LLF isuni-model [Kazar et al., 2005]: breakthrough result

B Optimal ?found by Golden Section Search or Binary Search

iy
oo

= |

=7}

The log-likelihood fundion

1 &R

a Fos)

The log-det term

The S5E term




Reducing Computational Cost

B Exact Solution

B Bottleneck = evaluation of log-det
B Reduce cost by getting a seed for ? minimizing SSE term [Kazar et.d.,
2005]
B Approximate Solution
B Reduce cost by approximating log-determinant term
E E.g., Chebyshev Polynomials, Taylor Series[LeSage and Pace, 2001]

B Comparison of Accuracy, e.g., Chebyshev Polynomials >> Taylor
Series [Kazar et.al., 2004]




Reducing Computational Cost

B Pardlel Solution

nmx 1 1T X 11 nx1 o o o x 1 mx 1

B Computational Challenges
B Eigenvalue + Least square + ML
B Computing all eigenvaluesof alarge matrix
B Memory requirement



Life Cycle of Data Mining

B CRISP-DM (CRoss-Industry Standard Process for DM)
Application/Business Understanding

Data Understanding

Data Preparation

Modeling

Evaluation

Deployment

Is CRISP-DM adequate for
Spatial Data Mining?

[1] CRISP-DM URL:
http://www.crisp-dm.org

Phases of CRISP-DM

pb AT,

Yiy ows



Summary

B What's Special About Spatial Data Mining

Classical DM Spatial DM
Input Data All explicit, ssimpletypes | Often implicit relationships, complex types
Statistical Independence of samples | Spatial autocorrelation
Foundation
Output Interest Measures: set- L ocation-awareness

based

Computational Combinatorial Computational efficiency opportunity,

Process optimization, Spatial autocorrelation, plane-sweeping, New
Numerical Algorithms complexity: SAR, co-location mining,

Estimation of anisotropic W is nontrivial

Objective Max Likelihood, Minsum | Map_ Similarity (Actual, Predicted)

Function of squared errors

Constraints Discrete space, Support Keep NN together, Honor geo-boundaries
threshold, Confidence
threshold

Other Issues .

Edge effect, scale




Book

http://www.spatial .cs.umn.edu
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