Transportation Data Mining Challenges

Shashi Shekhar
McKnight Distinguished University Professor
University of Minnesota
www.cs.umn.edu/~shekhar

Next Generation Data Mining
Session of Transportation

October 2nd, 2009
Spatial Databases: Representative Projects

Parallelize Range Queries

Evacuation Route Planning

- only in old plan
- Only in new plan
- In both plans

Shortest Paths

Storing graphs in disk blocks
Spatial Data Mining: Representative Projects

Location prediction: nesting sites
- Nest locations
- Distance to open water
- Vegetation durability
- Water depth

Spatial outliers: sensor (#9) on I-35

Co-location Patterns

Tele connections
Outline

• Transportation domain
 – Questions
 – Stakeholders
 – Datasets
• A transportation dataset
• Data Mining Challenges
• Summary
Transportation Questions

• Traveler, Commuter
 – What will be the travel time on a route?
 – Will I make to destination in time for a meeting?
 – Where are the incident and events?

• Transportation Manager
 – How the freeway system performed yesterday?
 – Which locations are worst performers?

• Traffic Engineering
 – Which loop detection are not working properly?
 – Where are the congestion (in time and space)?
 – How congestion start and spread?

• Planner and Researchers
 – What will be travel demand in future?
 – What will be the effect of hybrid cars?
 – What are future bottlenecks? Where should capacity be added?

• Policy
 – What is an appropriate congestion-pricing function?
 – Road user charges: How much more should trucks pay relative to cars?
Transportation Knowledge

- Classical data:
 - travel diaries, NHTS survey (e.g. OD matrix), Lab. (mpg rating)
- Physics
 - Fluid flow models for traffic
 - Reduce turbulence (i.e. lane weaving) to improve flow
- Chemistry, Biology
 - Environmental impact analysis (e.g. salt)
- Psychology: Individual Behavior
 - Lack of trust => aggressive driving,
 - Activity leads to travel, agent based model
- Socio-Economics: Group Dynamics
 - Social interaction: Household
 - Game thoery: Wardrop equilibrium in commuter traffic
 - All comparable paths have same travel time!
 - Incentive mechanism
- Why data mining?
 - New datasets – engine computers, traffic sensors, gps-tracks,
 - Finer resolution – non-equilibrium phenomena, ...
 - Extreme events – evacuation, conventions, ...
 - Causal insights?
New Datasets

- Transportation
 - Road networks
 - Nodes = road intersections
 - Edge = road segments
 - Edge-attribute: travel time
 - Navteq reports it a function of time!

- Operations:
 - Hot moments (i.e. rush hours)
 - Hotspots (i.e. congestion)
 - Fastest Path
 - Evacuation capacities of routes

Traffic sensors on Twin-Cities, MN Road Network monitor traffic levels/travel time on the road network.
(Courtesy: MN-DoT (www.dot.state.mn.us))
Transportation Domain

• Datasets
 – Travel diaries and surveys
 – Traffic simulator outputs
 – Accident reports, traffic law violation reports
 – Loop-detector measurement of traffic volume, density, occupancy, etc.
 – Traffic camera - videos
 – Automatic vehicle location and identification
 • from automatic tolling transponder, gps, etc.
 – Other sensors: bridge strain, visibility (in fog), ice, …
 – Yellow Pages, street addresses

• Characteristics
 – Spatio-temporal networks
Outline

• Transportation domain
• A transportation dataset
 – Map of sensor network
 – Spatio-temporal dimensions
 – Summary visualizations
• Data Mining Challenges
• Summary
Loop-detector on Twincities Highways
Dimensions

- Available
 - T_{TD}: Time of Day
 - T_{DW}: Day of Week
 - T_{MY}: Month of Year
 - S: Station, Highway, All Stations

- Others
 - Scale, Weather, Seasons, Event types, ...
Mapcube: Which Subset of Dimensions?
Singleton Subset: T_{TD}

Configuration:
- X-axis: time of day; Y-axis: Volume
- For station sid 138, sid 139, sid 140, on 1/12/1997

Trends:
- Station sid 139: rush hour all day long
- Station sid 139 is an S-outlier
Singleton Subset: T_{DW}

- **Configuration:**
 - For stations 4, 8, 577
 - Avg. volume for Jan 1997

Trends:
- Friday is the busiest day of week
- Tuesday is the second busiest day of week
Singleton Subset: S

Configuration:
- X-axis: I-35W South; Y-axis: Avg. traffic volume
- Avg. traffic volume for January 1997

Trends?:
- High avg. traffic volume from Franklin Ave to Nicollet Ave
- Two outliers: 35W/26S(sid 576) and 35W/TH55S(sid 585)
Trends:

- Evening rush hour broader than morning rush hour.
- Rush hour starts early on Friday.
- Wednesday - narrower evening rush hour.
Dimension Pair: S-T_{TD}

Configuration:
- X-axis: Time of Day
- Y-axis: Highway
- \(f(x,y) \): Avg. volume over all stations for 1/15, 1997

Trends:
- 3-Cluster
 - North section: Evening rush hour
 - Downtown area: All day rush hour
 - South section: Morning rush hour
- S-Outliers
 - station ranked 9th
 - Time: 2:35pm
- Missing Data
Dimension Pair: T_{DW-S}

Configuration:
- X-axis: stations; Y-axis: day of week
- $f(x,y)$: Avg. volume over all stations for Jan-Mar 1997

Trends:
- Busiest segment of I-35 SW is b/w Downtown MPLS & I-62
- Saturday has more traffic than Sunday
- Outliers – highway branch
Triplet: $T_{TD}T_{DW}S$: Compare Traffic Videos

Configuration: Traffic volume on Jan 9 (Th) and 10 (F), 1997

Trends:
- Evening rush hour starts earlier on Friday
- Congested segments: I-35W (downtown Mpls – I-62); I-94 (Mpls – St. Paul); I-494 (intersection I-35W)
Size 4 Subset: $T_{TD}T_{DW}T_{MY}S(Album)$

Configuration:

- Outer: X-axis (month of year); Y-axis (highway)
- Inner: X-axis (time of day); Y-axis (day of week)

Trends:

- Morning rush hour: I-94 East longer than I-35 W North
- Evening rush hour: I-35W North longer than I-94 East
- Evening rush hour on I-94 East: Jan longer than Feb
Outline

• Transportation domain
• A transportation dataset
• Data mining issues
 – Spatio-temporal networks
 – Spatial outliers
 – Hotspots
 – Co-occurrences
 – Location prediction
• Summary
Data Mining

• What is it?
 – Identifying interesting, useful, non-trivial patterns
 • Hot-spots,
 – in large spatial or spatio-temporal datasets
 • Satellite imagery, geo-referenced data, e.g. census
 • gps-tracks, geo-sensor network, …

• Why is it important?
 – Potential of discoveries and insights to improve human lives
 • Environment: How is Earth system changing? Consequences for humans?
 • Public safety: Where are hotspots of crime? Why?
 • Public health: Where are cancer clusters? Environmental reasons?
 • Transportation, National Security, …
 – However, \(\frac{d}{dt} (\text{Spatial Data Volume}) \gg \frac{d}{dt} (\text{Number of Human Analysts}) \)
 • Need automated methods to mine patterns from spatial data
 • Need tools to amplify human capabilities to analyze spatial data
Transportation Data Mining: Some Challenges

• Violates assumptions of classical data mining
 – Lack of independence among samples - ? Decision trees, …
 – No natural transactions -? Association rule, …

• Two kinds of spaces
 – Embedding space, e.g. Geography, Network, Time
 – Feature space, e.g. Traffic volume, accidents, …

• Lessons from Spatial thinking
 – 1st Law: Auto-correlation: Nearby things are related
 – Heterogeneity
 – Edge effect
 – …
(Geo) Informatics across Disciplines!
Example 1: Spatial Anomalies

- Example – Sensor 9
 - Will sensor 9 be detected by traditional outlier detection?
 - Is it a global outlier?
Global vs. Spatial outliers (SIGKDD 2001)

Spatial outlier
A data point that is extreme relative to its neighbors

Given
A spatial graph $G=\{V,E\}$
A neighbor relationship (K neighbors)
An attribute function $f: V \rightarrow \mathbb{R}$
Test T for spatial outliers

Find
$O = \{v_i \mid v_i \in V, v_i \text{ is a spatial outlier}\}$

Objective
Correctness, Computational efficiency

Constraints
Test T is an algebraic aggregate function
Spatial outlier detection

Spatial outlier and its neighbors

1. Choice of Spatial Statistic
 \[S(x) = [f(x) - \mathbb{E}_{y \in N(x)}(f(y))] \]
 Theorem: \(S(x) \) is normally distributed if \(f(x) \) is normally distributed

2. Test for Outlier Detection
 \[|(S(x) - \mu_s) / \sigma_s| > \theta \]
Spatial/Spatio-temporal Outliers Challenges

- **What is it?**
 - Location different from their neighbors
 - Discontinuities, flow anomalies

- **Solved**
 - Transient spatial outliers

- **Almost solved**
 - Anomalous trajectories

- **Failed**

- **Missing**
 - Persistent anomalies
 - Multiple object types, Scale

- **Next**
 - Dominant Persistent Anomalies
Example 2: Hotspots

• Is classical clustering (e.g. K-mean) effective?

Inputs: locations of potholes, accidents, sensors

Outputs of K-mean Clustering

Spatial Statistical view
HotSpots

What is it?
- Unusually high spatial concentration of a phenomena
 - Accident hotspots
 - Used in epidemiology, crime analysis

Solved
- Spatial statistics based ellipsoids

Almost solved
- Transportation network based hotspots

Failed
- Classical clustering methods, e.g. K-means

Missing
- Spatio-temporal

Next
- Emerging hot-spots
Network Semantics: Implicit Routes

- Complicated Feature
 - Urban environment
 - Transportation Networks
- Patterns
 - Journey to crime
 - Network based explanation

(a) Input: Pink lines connect crime location & criminal’s residence
(b) Output: Journey-to-Crime (thickness = route popularity)
Source: Crimestat
Example 3b: Associations

- Given a set of tracks of different types, can association mining find subset of types that often move together?

- **Manpack stinger**
 - (2 Objects)

- **M1A1_tank**
 - (3 Objects)

- **M2_IFV**
 - (3 Objects)

- **Field.Marker**
 - (6 Objects)

- **T80_tank**
 - (2 Objects)

- **BRDM_AT5 (enemy)**
 - (1 Object)
Co-occurring object-types

• Manpack stinger (2 Objects)
• M1A1_tank (3 Objects)
• M2_IFV (3 Objects)
• Field_Marker (6 Objects)
• T80_tank (2 Objects)
• BRDM_AT5 (enemy) (1 Object)
• BMP1 (1 Object)
Challenge: Continuity

• Association rule e.g. (Diaper in T => Beer in T)

<table>
<thead>
<tr>
<th>Transaction</th>
<th>Items Bought</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>{socks, milk, beef, egg, …}</td>
</tr>
<tr>
<td>2</td>
<td>{pillow, toothbrush, ice-cream, muffin, …}</td>
</tr>
<tr>
<td>3</td>
<td>{Pampers, pacifier, formula, blanket, …}</td>
</tr>
<tr>
<td>…</td>
<td>…</td>
</tr>
<tr>
<td>n</td>
<td>{battery, juice, beef, egg, chicken, …}</td>
</tr>
</tbody>
</table>

- Support: probability (Diaper and Beer in T) = 2/5
- Confidence: probability (Beer in T | Diaper in T) = 2/2

• Algorithm Apriori [Agarwal, Srikant, VLDB94]
 - Support based pruning using monotonicity

• Note: Transaction is a core concept!
Co-location Patterns (SSTD 2001, TKDE 2004)

<table>
<thead>
<tr>
<th></th>
<th>Association rules</th>
<th>Colocation rules</th>
</tr>
</thead>
<tbody>
<tr>
<td>underlying space</td>
<td>discrete sets</td>
<td>continuous space</td>
</tr>
<tr>
<td>item-types</td>
<td>item-types</td>
<td>events /Boolean spatial features</td>
</tr>
<tr>
<td>collections</td>
<td>Transactions</td>
<td>neighborhoods</td>
</tr>
<tr>
<td>prevalence measure</td>
<td>support</td>
<td>participation index</td>
</tr>
<tr>
<td>conditional probability</td>
<td>Pr.([A \text{ in } T \mid B \text{ in } T])</td>
<td>Pr.([A \text{ in } N(L) \mid B \text{ at } L])</td>
</tr>
<tr>
<td>measure</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Challenges:
1. **Computational Scalability**
 Needs a large number of spatial join, 1 per candidate colocation
2. **Spatial Statistical Interpretation**
 Related to Ripley’s K-function in Spatial Statistics
 ...

...
Spatio-temporal Association: Cascade Patterns

- **Time Geography theory**
 - Processes = a collection of events
 - Events
 - Have specific endpoint
 - (Partially) ordered by time-footprints

- **Instance level model**
 - Nodes = instances of events
 - Edges = spatio-temporal neighbors
 - Direction defined by time-footprints

- **Cascade Patterns = Schema-level summary**
 - Nodes = Event-types (ET)
 - Edge(ET1, ET2, N) => N compatible edges at instance level
 - **Cycles are possible**, e.g. ST overlapping processes

- **Similar to Graphical Models, Bayesian Networks, Graph mining...**
 - Simpler interest measure, e.g. Pr(Pattern P | an event instance)
 - Cheaper than joint probability distribution, max. independent set
 - Computationally more scalable
Colocation, Co-occurrence, Interaction

- **What is it?**
 - Subset of event types, whose instances occur together
 - Ex. Symbiosis, (bar, misdemeanors), …

- **Solved**
 - Colocation of point event-types

- **Almost solved**
 - Co-location of extended (e.g. linear) objects
 - Object-types that move together

- **Failed**
 - Neighbor-unaware Transaction based approaches

- **Missing**
 - Consideration of flow, richer interactions

- **Next**
 - Spatio-temporal interactions, e.g. item-types that sell well before or after a hurricane
 - Tele-connections
Example 4: Spatio-temporal Prediction

- **Transportation Planning**
 - What will be the impact of a new office building?
 - What will be travel demand? future bottlenecks?
 - What will be the effect of hybrid cars on traffic?
 - How will better bicycle facility impact vehicle traffic?

- **Q? Are classical techniques (e.g. Decision trees, SVM, …) adequate?**

- **Challenges**
 - Spatio-temporal auto-correlation – violates independence assumption
 - Network : routes, edge capacities, …
 - Individual behavior: urban sprawl?
 - Group dynamics: game theory, Wardrop equilibrium, …
Autocorrelation

• First Law of Geography
 - “All things are related, but nearby things are more related than distant things. [Tobler, 1970]”

• Autocorrelation
 - Traditional i.i.d. assumption is not valid
 - Measures: K-function, Moran’s I, Variogram, …
Challenge 1: Is I.I.D. assumption valid?

Nest locations

Vegetation durability

Distance to open water

Water depth
Implication of Auto-correlation

<table>
<thead>
<tr>
<th>Name</th>
<th>Model</th>
<th>Classification Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classical Linear Regression</td>
<td>$y = x\beta + \varepsilon$</td>
<td>Low</td>
</tr>
<tr>
<td>Spatial Auto-Regression</td>
<td>$y = \rho Wy + \beta + \varepsilon$</td>
<td>High</td>
</tr>
</tbody>
</table>

\(\rho \) the spatial auto-regression (auto-correlation) parameter
\(W : n \times n \) neighborhood matrix over spatial framework

Computational Challenge:

Computing determinant of a very large matrix in the Maximum Likelihood Function:

\[
\ln(L) = \ln|I - \rho W| - \frac{n \ln(2\pi)}{2} - \frac{n \ln(\sigma^2)}{2} - \frac{\text{SEE}}{2}
\]
Research Needs in Location Prediction

- Additional Problems
 - Estimate W for SAR and MRF-BC
 - Scaling issue in SAR
 - Scale difference: $\rho W y$ vs. $X \beta$
 - Spatial error measure: e.g., avg, dist(actual, predicted)

Legend
- \oplus = nest location
- A = actual nest in pixel
- P = predicted nest in pixel

(a) Actual Sites
(b) Pixels with actual sites
(c) Prediction 1
(d) Prediction 2. Spatially more accurate than Prediction 1
Space/Time Prediction

- What is it?
 - Models to predict location, time, path, …
 - Nest sites, minerals, earthquakes, tornadoes, …

- Solved
 - Interpolation, e.g. Krigging
 - Heterogeneity, e.g. geo. weighted regression

- Almost solved
 - Auto-correlation, e.g. spatial auto-regression

- Failed: Independence assumption
 - Models, e.g. Decision trees, linear regression, …
 - Measures, e.g. total square error, precision, recall

- Missing
 - Spatio-temporal vector fields (e.g. flows, motion), physics

- Next
 - Scalable algorithms for parameter estimation
 - Distance based errors
Outline

• Transportation domain
• A transportation dataset
• Data mining issues
 – Spatio-temporal networks
 – Spatial outliers
 – Hotspots
 – Co-occurrences
 – Location prediction
• Summary
Data Mining Challenges in Transportation

• Identify Limitations of Transportation Knowledge
 • Calibration of simulation parameters, e.g.
 • Day-time population distribution, traffic distribution
 • Non-equilibrium dynamics over space and time
 • Extreme events, e.g. evacuation, conventions, ...

• Articulate value of data mining (DM)
 • Value of novel data sets
 • Lab.-based vs. on-road emissions or mpg
 • Context – weather, ambient temperature, vehicle to vehicle
 • Simulator estimated routes vs. gps-tracks
 • Volunteer information – pot-holes, speed, ...
 • Value of novel data analysis or visualization techniques
 • anomalies

• Evaluate and evolve current DM
 • May current DM deliver value?
 • Are assumption of classical DM reasonable?
 • How can be improve current DM technique?
Data Mining and Transportation

- Potential value of data mining in transportation
 - Data driven discoveries to complement model driven ones
 - Hypothesis generation to complement hypothesis testing
 - Computational scalability
 - Conceptual scalability – models of gps-tracks
 - Which problems?
 - Extreme events, ...

- Potential value of transportation to data mining
 - Expose limitations, e.g. independence assumption
 - New challenges: e.g. spatio-temporal networks, ...
 - New pattern families