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Spatial Databases: Representative Projects
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Spatial Data Mining : Representative Projects

Location prediction: nesting sites

Spatial outliers: sensor (#9) on 1-35

Nest Iocations
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Outline

« Motivation
— Transportation Questions
— Transportation Theories
— Limitations of theories

« Data mining

« Conclusions



Questions In Transportation Domain

Traveler, Commuter
— What will be the travel time on a route?
— Will I make to destination in time for a meeting?
— Where are the incident and events?
Transportation Manager
— How the freeway system performed yesterday?
— Which locations are worst performers?
Traffic Engineering
— Which loop detection are not working properly?
— Where are the congestion (in time and space)?
— How congestion start and spread?
Planner and Researchers
— What will be travel demand in future?
— What will be the effect of hybrid cars?
— What are future bottlenecks? Where should capacity be added?
Policy
— What is an appropriate congestion-pricing function ?
— Road user charges: How much more should trucks pay relative to cars?



Theories In Transportation Domain

Physics
e  Traffic: Fluid flow models (e.g. reduce turbulence), control theory
«  How to reduce icing on pavements?
Chemistry
«  Environmental impact (e.g. salt, incomplete combustion)
Biology
«  How to reduce crash-injury severity?
« Effect of age, sleep deprivation, toxins, ...
Psychology
Human factors: design of highway signage, vehicle dashboard
 Activity and agent based models
Sociology
Household decisions, Homophily and social networks
Lack of trust => aggressive driving
Economics, Game Theory
 Incentive mechanisms
*  Wardrop equilibrium among commuters
« Ex. All comparable paths have same travel time!



Limitations of Theories

Multi-disciplinary questions:

. Will hybrid cars reduce environmental impact of transportation?

. Extreme events — evacuation, conventions, ...

. Impact of context — weather, climate, economy, politics, crime, police cars,
Mono-disciplinary questions

. Non-equilibrium phenomena, e.g. location, time and path

. Critical places & moments: Accident hotspots (hot-moments)? Why?

. Normality & anomalies: e.g. traffic flow discontinuities — location, cause

. Regional difference: effectiveness of Ramp meters across places & time-periods
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Data-Intensive Scientific Discovery

 (lassical Approach
«  Travel diaries, NHTS survey (OD matrix), Lab. (mpg rating)
Hypothesis driven data collection, Statistical hypothesis testing

 Emerging Data-Intensive Approach
*  Secondary Data: Engine computer, gps, cell-phones, face-book,VGI,
Exploratory data analysis for hypothesis generation
« Ex. Data Mining and Knowledge Discovery
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Adoption of Data Mining

* Example: IBM Smarter Planet Initiative, SAS, ...
* Large Organizations: Walmart, USDOD, ...

» 1990s: Data Mining
» Scale up to traditional models to large relational databases
* Linear regression, Decision Trees, ...
* New pattern families: Association rules
« Which items are bought together? E.g. (Diaper, beer)

e Spatial customers

* Walmart
*Which items are bought just before/after events, e.g. hurricanes?
*How to send these items to appropriate stores?
« Where is (diaper-beer) pattern prevalent?

« Center for Disease Control: cancer clusters

* Police: crime hotspots

« USDOQOD, intelligence: anomaly detection, link analysis



Serious Scientists are also using Data Mining!

Example: NASA IVMS Data Mining Laboratory

The Ilab enables the dissemination of Integrated Vehicle Health
Management data, algorithms, and results to the public. It will serve as a
national asset for research and development of discovery algorithms for
detection, diagnosis, prognosis, and prediction for NASA missions.
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m Pump sites
3¢ Deaths from cholera

Data Mining

What is it?
— ldentifying interesting, useful, non-trivial patterns
« Hot-spots, anomalies, associations, precursors

— in large datasets

* Infrastructure:
— Aerial surveillance (e.g. ARGUS-IS)
— Geo-sensor network (loop detector, cameras), ...

« Volunteered: cell-phone, gps, social network

Importance

— Potential of discoveries and insights to improve lives
« Traffic Management: Where and when are traffic flow anomalies? Why?
« Safety: Where are accident hotspots? Why?
« (Tele)-connection: traffic-congestion & events (e.g. weather, conventions)
« Transportation Planning: How is demand changing? Consequences?

Challenge:

e (d/dt) (Data Volume) >> (d/dt) (Number of Human Analysts)
* Need automated methods to mine patterns from data
* Need tools to amplify human capabilities to analyze data
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Example 1: Anomalies

« Example — Sensor 9
— Wil sensor 9 be detected by traditional outlier detection ?
— Is it a global outlier ?

Average Traffic Volume(Time v.s. Station)
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Example 2: HotSpots

B Whatis it?
B Unusally high spatial concentration of a phenomena A
E Accident hotspots - A
B Used in epidemiology, crime analysis
B Solved
M Spatial statistics based ellipsoids
B Almost solved
B Transportation network based hotspots NCA L A A LA
B Emerging hot-spots | ’
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Example 3: Associations, Co-locations, Co-occurrences

 Road user-charges:
— Is technology available for road-type based policy?
— Which road segments are vulnerable for mis-classification?

* |Issue: accuracy or GPS & digital roadmaps
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Example 3b: Associations

Which following transportation networks co-occur? Where? Why?
— e.g. roads, river, railroads, air, etc..in North Korea

River'Streammm

Collocated

Road-River/Stream Roads
Colocation ~on

collocared
Roads



Example 4: Prediction

e Impact

— Deforestation — Brazil lost 150,000 sq.
km. of forest between 2000 and 2006

— Urban Sprawl

« Environmental Aspects
— Deforestation
— Habitat loss, endangered species
— Water and air quality
— Climate change (?)

« Urgent issues => Policy changes
— Brazil: real-time monitoring of forests
— USA: from VMT to access

Urban Sprawl in Atlanta
(Red indicates expansion between
1976 and 1992)



Example 4: Prediction

« Transportation Planning

What will be the impact of a new office building?
What will be travel demand? future bottlenecks?
What will be the effect of hybrid cars on traffic?
How will better bicycle facility impact vehicle traffic?

* Q7 Are classical techniques (e.g. Decision trees, SVM, ...) adequate?

* Challenges

Spatio-temporal auto-correlation — violates independence assumption
Network : routes, edge capacities, ...

Individual behavior: urban sprawl!?

Group dynamics: game theory, Wardrop equilibrium, ...
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Summary

It's time for transportation community to give serious
consideration to data mining and knowledge discovery!

Transportation is facing new challenges
— Climate change driven policy changes

Classical approaches are limited
— Multi-disciplinary problems, non-equilibrium scenarions,
— Extreme events

Data-Intensive Scientific Discovery

— Complements classical approaches: Hypothesis generation
— Secondary datasets are growing

— Data mining technology is maturing



Datasets in Transportation Domain

 Datasets
— Reports on accidents, traffic law violation

— Travel diaries and surveys
— Traffic simulator (e.g. DYNASMART) outputs

— Loop-detector: traffic volume, density, occupancy, ...

— Traffic camera - videos

— Automatic vehicle location and identification
« from GPS, cell-phone, automatic tolling transponder, etc.

— Other sensors: bridge strain, visibility (in fog), ice, ...

— Yellow Pages, street addresses

 Characteristics
— Spatio-temporal networks



New Datasets: Speed Profiles

* Transportation

*Road networks: Nodes = road intersections, Edge = road segments
- Edge-attribute: travel time; Navteq reports it a function of time!

* Operations:

» Hot moments (i.e. rush hours), Hotspots (i.e. congestion)
* Fastest Path, Evacuation capacities of routes
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Transportation Data Mining: Computational Challenges

* Violates assumptions of classical data mining
— Lack of independence among samples - ? Decision trees, ...
— No natural transactions -? Association rule, ...

« Two kinds of spaces
— Embedding space, e.g. Geography, Network, Time
— Feature space, e.g. Traffic volume, accidents, ...

« Lessons from Spatial thinking
— 1stLaw: Auto-correlation: Nearby things are related

— Heterogeneity
— Edge effect



Spatial/Spatio-temporal Outliers Challenges

. What |S Itf) Average Traffic Voluma(Time v.s. Station)
E Location different from their
neighbors s B
B Discontinuities, flow anomalies : N
B Solved I

B Transient spatial outliers

B Almost solved
B Anomalous trajectories

Event: 1 1 373 8-8 9-9

B Failed =] FRIEY N KA K3 K £
. . TT=‘1[!II|1I1|1[1‘1]1:1]
B M|SS|ng . up = 20 20 | 20- 2020 |
B Persistent anomalies ’
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HotSpots

B Whatis it?
B Unusally high spatial concentration of a phenomena

B Accident hotspots A :
E Used in epidemiology, crime analysis e i :
H Solved

M Spatial statistics based ellipsoids
B Almost solved
B Transportation network based hotspots NCA L A A LA
B Failed N
B Classical clustering methods, e.g. K-means it ¥ ’
B Missing
B Spatio-temporal
B Next
B Emerging hot-spots
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Colocation, Co-occurrence, Interaction

B Whatis it? g e, ‘;‘Y‘”ﬁ N
B Subset of event types, whose instances occur together % % * {f #

‘
B Ex. Symbiosis, (bar, misdemeanors), ... ®» A

m Solved y
B Colocation of point event-types ,
B Almost solved T o fat s
B Co-location of extended (e.g.linear) objects - e N
B Object-types that move together ~
B Failed S Lol s
B Neighbor-unaware Transaction based approaches
B Missing
B Consideration of flow, richer interactions N
B Next e —
B Spatio-temporal interactions, e.g. item-types thatsell =
well before or after a hurricane q S
B Tele-connections W,




Space/Time Prediction L |
B What is it? i

Vg

B Models to predict location, time, path, ...
B Nest sites, minerals, earthquakes, tornadoes, ... - - —— =

B Solved

M |Interpolation, e.g. Krigging

B Heterogeneity, e.g. geo. weighted regression
B Almost solved

B Auto-correlation, e.g. spatial auto-regression y =pWy +XB+&
B Failed: Independence assumption

B Models, e.g. Decision trees, linear regression, ...
B Measures, e.g. total square error, precision, recall

B Missing
B Spatio-temporal vector fields (e.g. flows, motion), physics
B Next n27) nin(e?)
. ; . nin(Zx nin(o
B Scalable algorithms for parameter estimation In(L) = In|1 - pW| - , —SSE
B Distance based errors
P L pres i
. A PP A P | A ® = pect location
- I P A = a.c.tulaJ. ncatm?mc.i
- A~ N N A A A P = predicted nest in pinel

(a) (b) (cH ()



Implication of Auto-correlation

Name

Model

Classification

Accuracy
Classical Linear Regression y:XB T E Low
Spatial Auto-Regression y= pWyé_I_ XB Té High

o the spatial auto - regression (auto - correlatio n) parameter
W :n - Dby -nneighborho od matrix over spatial framework

Computational Challenge:

Computing determinant of a very large matrix
In the Maximum Likelihood Function:

----------------------

nin(2z) nin(c*)

—SSE
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