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Explosive growth in geospatial data and the emergence of new spatial technolo-
gies emphasize the need for automated discovery of spatial knowledge. Spatial
data mining is the process of discovering interesting and previously unknown,
but potentially useful patterns from large spatial databases. The complexity of
spatial data and implicit spatial relationships limits the usefulness of conven-
tional data mining techniques for extracting spatial patterns. In this paper, we
explore the emerging field of spatial data mining, focusing on different methods
to extract patterns from spatial information. We conclude with a look at future
research needs. C© 2011 John Wiley & Sons, Inc. WIREs Data Mining Knowl Discov 2011 1 193–214
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INTRODUCTION

T he significant growth of spatial data collection
and widespread use of spatial databases1–4 have

heightened the need for the automated discovery of
spatial knowledge. Spatial data mining2,5 is the pro-
cess of discovering interesting and previously un-
known, but potentially useful patterns from spatial
databases. The complexity of spatial data and implicit
spatial relationships limits the usefulness of conven-
tional data mining techniques for extracting spatial
patterns.

Specific features of geographical data that pre-
clude the use of general purpose data mining algo-
rithms are: (1) the spatial relationships among the
variables; (2) the spatial structure of errors; (3) the
presence of mixed distributions as opposed to com-
monly assumed normal distributions; (4) observations
that are not independent and identically distributed
(i.i.d.); (5) spatial autocorrelation among the features;
and (6) nonlinear interactions in feature space. Al-
though conventional data mining algorithms can be
applied under assumptions such as i.i.d., these algo-
rithms often perform poorly on spatial data due to
their self-correlated nature. To illustrate, we use an
example from ecology where domain scientists are
interested in studying the habitats of birds based on
the attributes of locations in the study area, such as
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water depth. Figure 1 shows two different attributes,
one with an assumption of i.i.d. (Figure 1(a)) and one
that has spatial autocorrelation (Figure 1(b)), that is,
water depth in this case. Making use of water depth
as an explanatory variable by accounting for spatial
autocorrelation was found to model the ground truth
better (i.e., predicting the habitat of birds).6

Efficient tools for extracting information from
geospatial data are crucial to organizations that
make decisions based on large spatial data sets.
These application domains include public health,7–9

mapping and analysis for public safety,10 transpor-
tation,11–14 environmental science and manage-
ment,15–19 economics,20 climatology,5,21,22 public
policy,23,24 earth science,25 market research and
analytics,26–28 public utilities and distribution,
etc.29–31 Many government and private agencies that
are likely beneficiaries of spatial data mining include
the National Institute of Health (NIH), National In-
stitute of Justice (NIJ), US Department of Trans-
portation, (USDOT), US Department of Agriculture
(USDA), National Aeronautics and Space Adminis-
tration (NASA), National Oceanic and Atmospheric
Administration (NOAA), IBM, and SIEMENS.

The challenges inherent in the management
and analysis of spatial data sets have made spa-
tial databases a particularly active area of research
for several decades. The impacts of this research
extend far and wide. To cite a few examples, the
filter-and-refine technique used in spatial query pro-
cessing has been applied to subsequence mining;
multidimensional-index structures are used in com-
puter graphics and image processing; and space-filling
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FIGURE 1 | Attribute values in space with independent identical distribution and spatial autocorrelation.

curves used in spatial query processing and data
storage are applied in dimension reduction prob-
lems. The value of its contributions no longer in
doubt, current research in spatial databases aims
to improve its functionality, extensibility, and per-
formance. The impetus for improving functional-
ity comes from the needs of numerous existing ap-
plications such as geographic information systems,
location-based services,32 and sensor networks.33

These research advances coupled with the grow-
ing need for spatial information awareness have given
rise to many commercial spatial database manage-
ment systems (SDBMS). Some examples of SDBMS in-
clude ESRI’s ArcGIS Geodatabase,34 Oracle Spatial,35

IBM’s DB2 Spatial Extender and Spatial Datablade,
and systems such as Microsoft’s SQL Server 2008.36

Spatial databases have played a major role in popular
applications such as Google Earth37 and Microsoft’s
Virtual Earth.38 Research prototype examples of
SDBMS include spatial datablades with PostGIS,39

MySQL’s Spatial Extensions,40 Sky Server,41 and spa-
tial extensions. The functionalities provided by these
systems include use of spatial data types such as
points, line segments and polygons, and spatial oper-
ations such as inside, intersection, and distance. Spa-
tial types and operations may be integrated into query
languages such as SQL, which allows spatial query-
ing to be combined with object-relational database
management systems.42,43 The performance enhance-
ment provided by these systems includes a multi-
dimensional spatial index and algorithms for spatial
database modeling such as OGIS44 and 3D topo-
logical modeling; spatial query processing including
point, regional, range, and nearest neighbor queries;

and spatial data methods using a variety of indexes
such as quad trees and grid cells.

In addition, there has been a growth in gen-
eral purpose data mining tools such as Clementine
from Statistical Package for the Social Sciences (SPSS),
Enterprise Miner from SAS, Data Mining extensions
from relational database vendors such as Oracle and
IBM, public domain data mining packages such as
Weka,45 See5/C5.0, etc., which are designed for the
purpose of analyzing data archived as transactions
or other forms such as semi-structured data. Al-
though these tools were primarily designed to identify
customer-buying patterns in market basket data, they
have also been used in analyzing scientific and en-
gineering data, astronomical data, multi-media data,
genomic data, and web data.46,47 However, extracting
interesting and useful patterns from spatial data sets is
more difficult than extracting corresponding patterns
from traditional numeric and categorical data due to
the complexity of spatial data types, spatial relation-
ships, spatial autocorrelation, and nonlinearity.

The remainder of this paper is organized as
follows: Spatial Data Inputs begins with a de-
scription of the data input characteristics of sev-
eral tasks in spatial data mining. Statistical Foun-
dations provides an overview of the statistical foun-
dation of spatial data mining (SDM). Spatial data
mining tasks, explains in detail four main output
patterns and methods of SDM related to anoma-
lies, clustering, co-location, and prediction. Compu-
tational issues regarding these patterns are discussed
in Computational Issues. We survey some available
spatial analysis tools for different SDM techniques
in Spatial Analysis Tools. Future Directions and
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Research Needs concludes this paper with an exami-
nation of research needs and future directions.

SPATIAL DATA INPUTS

The data inputs of SDM are more complex than the
inputs of classical data mining because they include
extended objects such as points, lines, and polygons in
vector representation and field data in regular or irreg-
ular tessellation such as raster data. The data inputs of
SDM have two distinct types of attributes: nonspatial
attributes and spatial attributes. Nonspatial attributes
are used to characterize nonspatial features of objects
such as name, population, and unemployment rate for
a city. They are the same as the attributes used in the
data inputs of classical data mining. Spatial attributes
are used to define the spatial location and extent of
spatial objects.48,49 The spatial attributes of a spatial
object most often include information related to spa-
tial locations, for example, longitude, latitude, and
elevation, defined in a spatial reference frame, as well
as shape.

In some applications, spatial data sets include
discrete representations of continuous phenomena
(e.g., ecology). Discretization of continuous space is
necessitated by the nature of the digital represen-
tation or semantics associated with the underlying
phenomenon under study by an application domain.
There are two basic models to represent spatial data,
namely, raster (grid) and vector. Satellite images are
good examples of raster data, while vector consists of
points, lines, polygons, and their aggregate (or multi-
) counterparts. This distinction is important because
many of the techniques that we describe later favor
one or more of these data types. Vector data over a
space is a framework to formalize specific relation-
ships among a set of objects. Depending on the re-
lationships of interest, the space can be modeled in
many different ways, that is, as set-based space, topo-
logical space, Euclidean space, metric space, and net-
work space.4 These models of space are described
briefly in this paper.

Set-based space uses the basic notion of ele-
ments, element-equality, sets, and membership to for-
malize set relationships such as set-equality, subset,
union, cardinality, relation, function, and convexity.
Relational and object-relational databases use this
model of space.

Topological space uses the basic notion of a
neighborhood and points to formalize extended ob-
ject relations such as boundary, interior, open, closed,
within, connected, and overlaps, which are invariant
under elastic deformation. Combinatorial topological

space formalizes relationships such as Euler’s formula
(number of faces + number of vertices − number of
edges = 2 for planar configuration). Network space is
also a form of topological space in which the connec-
tivity property among nodes formalizes graph proper-
ties such as connectivity, isomorphism, shortest path,
and planarity.

Euclidean coordinatized space uses the notion
of a coordinate system to transform spatial proper-
ties and relationships into properties of tuples of real
numbers. Metric space formalizes distance relation-
ships using positive symmetric functions that obey the
triangle inequality. Many multidimensional applica-
tions use Euclidean coordinatized space with metrics
such as distance.

Apart from different concepts of space, many
gazetteers employ spatial referencing with identifiers
of a location that can be transformed into coordi-
nates, such as a postal code (street addresses) or geo-
name that is more natural to human understanding.
Time is usually included in the spatial data as a time
stamp.

During data input, relationships among non-
spatial objects are made explicit through arith-
metic relation, ordering, instance-of, subclass-of, and
membership-of. In contrast, relationships among spa-
tial objects are often implicit, such as overlap, inter-
sect, and behind. Table 1 gives examples of spatial and
nonspatial relationships. One possible way to deal
with implicit spatial relationships is to materialize the
relationships into traditional data input columns and
then apply classical data mining techniques such as
those described in Refs 50–54. However, the mate-
rialization can result in loss of information. Usually,
spatial and temporal vagueness, which naturally ex-
ists in data and relationships, creates further model-
ing and processing difficulty in SDM. Another way

TABLE 1 Common Relationships among Nonspatial and Spatial

Data

Nonspatial Relationship Spatial Relationship

Arithmetic Set-oriented: union, intersection,
membership, . . .

Ordering Topological: meet, within,
overlap, . . .

Is instance-of Directional: North, NE, left,
above, behind, . . .

Subclass-of Metric: e.g., distance, area,
perimeter, . . .

Part-of Dynamic: update, create,
destroy, . . .

Membership-of Shape-based and visibility
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FIGURE 2 | A spatial framework and its four-neighborhood contiguity matrix.

to capture implicit spatial relationships is to develop
models or techniques to incorporate spatial informa-
tion into the SDM process.

STATISTICAL FOUNDATIONS

Spatial statistics is a branch of statistics concerned
with the analysis and modeling of spatial data.55

The field classifies spatial data into three basic types
for ease of interpretation: (1) point referenced data,
which is modeled as a fixed collection of spatial lo-
cations, S, in a two-dimensional framework D (e.g.,
set of police stations in a metropolitan city); (2) areal
data, modeled as a finite set of irregular shaped poly-
gons in a two-dimensional framework D (e.g., set of
police districts in a metropolitan city); and (3) point
process data, which is modeled as a random collection
of spatial events, collectively referred to as the spatial
point pattern over a two-dimensional framework D
(e.g., home locations of patients infected by a disease).
In this section, three important statistical foundations
are reviewed. They are: (1) spatial statistical interpre-
tation models, (2) spatial neighborhood models, and
(3) special properties of spatial data analysis.

Statistical interpretation models56 are often used
to represent observations in terms of random vari-
ables. These models can then be used for estimation,
description, and prediction based on probability the-
ory. Spatial data can be thought of as resulting from
observations on the stochastic process Z(s) : s ∈ D,
where s is a spatial location and D is possibly a ran-
dom set of points in a spatial framework. Three types
of spatial statistical interpretation models that one
might encounter are a point process, lattice, and geo-
statistics.

Point process: A point process is a model for the
spatial distribution of the points in a point pattern.
Several natural processes can be modeled as spatial
point patterns, for example, positions of trees in a for-

est and locations of bird habitats in a wetland. Spatial
point patterns can be broadly grouped into random
or nonrandom processes. Real point patterns are of-
ten compared with random patterns (generated by a
Poisson process) using the average distance between
a point and its nearest neighbor.

Lattice: A lattice is a model for a gridded space
in a spatial framework. Here, lattice refers to a count-
able collection of regular or irregular spatial sites
related to each other via a neighborhood relation-
ship. Several spatial statistical analysis, for example,
the spatial autoregressive model and Markov random
fields, can be applied on lattice data.

Geostatistics: Geostatistics deals with the anal-
ysis of spatial continuity and weak stationarity,56

which are inherent characteristics of spatial data sets.
Geostatistics provides a set of statistics tools, such as
kriging, to the interpolation of attributes at unsam-
pled locations.

The spatial relationship among locations in a
spatial framework is often modeled via a contigu-
ity matrix. A simple contiguity matrix may repre-
sent a neighborhood relationship defined using ad-
jacency or Euclidean distances. Example definitions
of a neighborhood using adjacency include a four-
neighborhood and an eight-neighborhood contiguity
matrix.

Figure 2(a) shows a gridded spatial framework
with four locations, A, B, C, and D. A binary ma-
trix representation of a four-neighborhood relation-
ship is shown in Figure 2(b). The row-normalized
representation of this matrix is called a contiguity
matrix, as shown in Figure 2(c). Other contiguity ma-
trices can be designed to model neighborhood rela-
tionship based on distance, different forms of con-
nectivity (e.g., rook, queen), etc. The uniqueness of
SDM originates from two central concepts in spatial
statistics: spatial autocorrelation and spatial hetero-
geneity(or nonstationarity).56–58
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Spatial autocorrelation: One of the fundamental
assumptions of traditional statistical analysis is that
the data samples are independently generated: like
successive tosses of coin or the rolling of a die. How-
ever, in the analysis of spatial data, the assumption
about the independence of samples is generally false.
In fact, spatial data tend to be highly self-correlated.
For example, people with similar characteristics, oc-
cupation, and background tend to cluster together
in the same neighborhoods. The economies of a re-
gion tend to be similar. Changes in natural resources,
wildlife, and temperature vary gradually over space.
The property of like things clustering in space is so
fundamental that geographers have elevated it to the
status of the first law of geography: ‘Everything is re-
lated to everything else, but nearby things are more
related than distant things’.59 For example, Figure 1
shows the value distributions of an attribute in a spa-
tial framework for an independent identical distribu-
tion and a distribution with spatial autocorrelation.

Spatial statistics has explored measures such as
Ripley’s K Function, Spatial Scan Statistic, Moran’s
I, Local Moran Index, Getis Ord, Geary’s C, etc.
to quantify spatial correlation. These statistics have
found many applications in common SDM tasks, in-
cluding spatial co-location, spatial outlier detection,
and hotspot discovery.

There is a strong relationship between measures
of spatial autocorrelation and the contiguity matrix.
This is because the contiguity matrix represents the
relationship between a spatial unit and its neighbors.
This neighborhood interaction is quantified by com-
mon measures of spatial autocorrelation. However,
the contiguity matrix for a particular spatial relation-
ship may vary depending upon the definition of the
spatial neighborhood. Such sensitivity in turn affects
the robustness common measures of spatial autocor-
relation (e.g., Moran’s I) and many spatial statistical
models. This is a challenging problem due to the many
possible methods of defining a spatial neighborhood,
namely, graph based, grid based, etc. A detailed study
of these challenges is beyond the scope of this paper.

Spatial heterogeneity: Apart from spatial auto-
correlation, an important feature of spatial data sets
is the variability of observed process over space. Spa-
tial heterogeneity refers to the inherent variation in
measurements of relationships over space. The influ-
ence of spatial context on spatial relationships can be
seen in the variation of human behavior over space
(e.g., differing cultures). Different jurisdictions tend
to produce different laws (e.g., speed limit differences
between Minnesota and Wisconsin). The term spatial
heterogeneity is most often used interchangeably with
spatial nonstationarity, which is defined as the change

in the parameters of a statistical model or change in
the ranking of candidate models over space.57

SPATIAL DATA MINING TASKS

Important tasks in SDM are spatial outlier detec-
tion, co-location pattern discovery, spatial classifica-
tion and regression modeling, spatial clustering, and
spatial hotspot analysis. This section elaborates these
techniques by briefly describing their computational
structure, applications, and related methods.

Spatial Outlier Detection
Outliers have been informally defined as observations
in a data set that appear to be inconsistent with
the remainder of that set of data,60 or which devi-
ate so much from other observations as to arouse
suspicions that they were generated by a different
mechanism.61 The identification of global outliers can
lead to the discovery of unexpected knowledge and
has a number of practical applications in areas such
as detection of credit card fraud and voting irregu-
larities. This section focuses on spatial outliers, that
is, observations that appear to be inconsistent with
their neighborhoods.62–64 Detecting spatial outliers is
useful in many geographic information systems and
spatial databases applications such as transportation,
ecology, homeland security, public health, climatol-
ogy, and location-based services.

A spatial outlier65 is a spatially referenced object
whose nonspatial attribute values differ significantly
from those of other spatially referenced objects in its
spatial neighborhood. Informally, a spatial outlier is
a local instability (in values of non-spatial attributes)
or a spatially referenced object whose nonspatial at-
tributes are extreme relative to its neighbors, even
though the attributes may not be significantly differ-
ent from the entire population. For example, a new
house in an old neighborhood of a growing metropoli-
tan area is a spatial outlier based on the nonspatial
attribute house age.

Illustrative examples and application domains:
We use an example to illustrate the differences among
global and spatial outlier detection methods. In Fig-
ure 3(a), the X-axis is the location of data points
in one-dimensional space; the Y-axis is the attribute
value for each data point. Global outlier detection
methods ignore the spatial location of each data point
and fit the distribution model to the values of the
nonspatial attribute. As shown in Figure 3(b), the
outlier detected using this approach is the data point
G, which has an extremely high attribute value
7.9, exceeding the threshold of μ + 2σ = 4.49 + 2 ∗
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FIGURE 3 | A data set for outlier detection.

1.61 = 7.71. This test assumes a normal distribution
for attribute values. On the other hand, S is a spatial
outlier whose observed value is significantly different
than its neighbors P and Q.

Common methods: Tests to detect spatial out-
liers separate spatial attributes from nonspatial at-
tributes. Spatial attributes are used to characterize
location, neighborhood, and distance. Nonspatial at-
tribute dimensions are used to compare a spatially
referenced object to its neighbors. Spatial statistics
literature provides two kinds of bi-partite multidi-
mensional tests, namely, graphical tests and quanti-
tative tests. Graphical tests, which are based on the
visualization of spatial data, highlight spatial out-
liers. Example methods include variogram clouds66

and Moran scatterplots.56,67 A variogram cloud dis-
plays data points related by neighborhood relation-
ships. Figure 4(a) shows a variogram cloud for the
example data set shown in Figure 3(a). This plot
shows that two pairs (P, S) and (Q, S) on the left
hand side lie above the main group of pairs and are
possibly related to spatial outliers. A Moran scatter-
plot shows the spatial association or disassociation of
spatially close objects. The upper left and lower right
quadrants of Figure 4(b) indicate a spatial association
of dissimilar values: low values surrounded by high
value neighbors (e.g., points P and Q) and high values
surrounded by low values (e.g., point S). Figure 4(b)
indicates a spatial association of dissimilar values:
low values surrounded by high value neighbors (e.g.,
points P and Q) and high values surrounded by low
values (e.g., point S).

A scatterplot68 shows attribute values on the X-
axis and the average of the attribute values in the
neighborhood on the Y-axis. A least square regres-
sion line is used to identify spatial outliers. A scatter
sloping upward to the right indicates a positive spatial
autocorrelation (adjacent values tend to be similar);
a scatter sloping upward to the left indicates a nega-
tive spatial autocorrelation. The residual is defined as
the vertical distance (Y-axis) between a point P with
location (Xp, Yp) to the regression line Y = mX + b,
that is, residual ε = Yp − (mXp + b). Cases with stan-
dardized residuals εstandard = ε−με

σε
greater than 3.0 or

less than −3.0 are flagged as possible spatial outliers,
where με and σε are the mean and standard deviation
of the distribution of the error term ε, respectively. In
Figure 5(a), a scatterplot shows the attribute values
plotted against the average of the attribute values in
neighboring areas for the data set in Figure 3(a). Point
S turns out to be the farthest from the regression line
and may be identified as a spatial outlier.

Spatial statistic S(x) is normally distributed if
the attribute value f (x) is normally distributed. A
popular test for detecting spatial outliers for nor-
mally distributed f (x) can be described as follows:
spatial statistic Zs(x) = | S(x)−μs

σs
| > θ . For each loca-

tion, x with an attribute value f (x), the S(x) is the
difference between the attribute value at location x
and the average attribute value of x′s neighbors, μs is
the mean value of S(x), and σs is the value of the stan-
dard deviation of S(x) over all stations. The choice of
θ depends on a specified confidence level. For exam-
ple, a confidence level of 95% will lead to θ ≈ 2.
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Figure 5(b) shows the visualization of the spa-
tial statistic method described above. The X-axis is
the location of data points in one-dimensional space;
the Y-axis is the value of spatial statistic Zs(x) for
each data point. We can easily observe that point S

has a Zs(x) value exceeding 3 and will be detected
as a spatial outlier. Note that the two neighbor-
ing points P and Q of S have Zs(x) values close to
−2 due to the presence of spatial outliers in their
neighborhoods.
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The techniques presented above are based on
single attributes. However, multi-attribute based spa-
tial outlier detection is also possible, such as with the
average and median attribute value-based algorithms
presented in Ref 69. Finally, we note that statistical
tests used in outlier detection are normally prone to
biases resulting from multiple hypothesis testing as
spatial data sets are self-correlated. In order to deal
with this, spatial statistics has explored several cor-
rections to characterize the statistical significance of
spatial outliers.67

Co-location Patterns
Co-location patterns represent subsets of boolean spa-
tial features whose instances are often located in
close geographic proximity. Examples include sym-
biotic species and crime attractors (e.g., bars, mis-
demeanors, etc.). Boolean spatial features describe
the presence or absence of geographic object types
at different locations in a two-dimensional or three-
dimensional metric space, for example, the surface of
the Earth. Examples of boolean spatial features in-
clude plant species and crime.

Spatial co-location: Co-location rules are mod-
els to infer the presence of boolean spatial features in

the neighborhood of instances of other boolean spa-
tial features. For example, ‘Nile Crocodiles → Egyp-
tian Plover’ predicts the presence of Egyptian Plover
birds in areas with Nile Crocodiles. Figure 6 shows
a data set consisting of instances of several boolean
spatial features, each represented by a distinct shape.
The shapes in Figure 6 represent different spatial fea-
ture types. Spatial features in sets {‘+’, ‘×’} and {‘o’,
‘∗’} tend to be located together. A careful review re-
veals two co-location patterns, that is, (‘+’, ‘×’) and
(‘o’, ‘∗’).

Co-location rule discovery is the process of iden-
tifying co-location patterns from large spatial data
sets with a large number of boolean features. The
spatial co-location rule discovery problem looks sim-
ilar to, but, in fact, is very different from the asso-
ciation rule mining problem51 because of the lack of
transactions. In market basket data sets, transactions
represent sets of item types bought together by cus-
tomers. The support of an association is defined to
be the fraction of transactions containing the associ-
ation. Association rules are derived from all the asso-
ciations with support values larger than a user-given
threshold.

Common methods: Spatial co-location rule min-
ing approaches can be grouped into two broad
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categories: approaches that use spatial statistics and
algorithms that use association rule mining kind of
primitives. Spatial statistics based approaches utilize
statistical measures such as cross-K function, mean
nearest-neighbor distance, and spatial autocorrela-
tion. However, these approaches are computationally
expensive. Association rule-based approaches focus
on the creation of transactions over space so that an
a priori like algorithm51 can be used. Transactions in
space can use a reference-feature centric70 approach
or a data-partition71 approach. The reference-feature
centric model is based on the choice of a reference
spatial feature70 and is relevant to application do-
mains focusing on a specific boolean spatial feature,
for example, cancer. In the data partitioning ap-
proach, transactions are created by making use of
a prevalence measure that is order sensitive. In the
spatial co-location rule mining problem, however,
transactions are often not explicit. Force fitting the
notion of transaction in a continuous spatial frame-
work will lead to loss of implicit spatial relationships
across the boundary of these transactions, as illus-
trated in Figure 7. In the data set, in Figure 7(a),
there are three feature types, A, B, and C, each of
which has two instances. The neighbor relationships
between instances are shown as edges. Co-locations
(A, B) and (B, C) may be considered as frequent in
this example. Figure 7(b) shows transactions created
by choosing C as the reference feature. As Co-location
(A, B) does not involve the reference feature, it will
not be found. Figure 7(c) shows two possible parti-
tions for the data set of Figure 7(a), along with the
supports for co-location (A, B); in this case, the sup-
port measure is order sensitive and may also miss
the Co-location (A, B). However, the event-centric
model addresses these limitations72 and finds sub-
sets of spatial features likely to occur in a neighbor-
hood around instances of given subsets of event types
(see Figure 7(d)).

Spatial Classification and
Regression Models
Spatial classification and regression models in data
mining have been used to represent relationships be-
tween variables in different data sets (e.g., climate). In
most of these data sets, there are two sets of variables,
namely, independent or explanatory variables and
dependent variables. Although classification models
deal with discrete values of dependent variables (e.g.,
class labels), regression models are concerned with
continuous valued ones. In most SDM applications,
classification and regression models can be learned
from data in different ways such as supervised learn-
ing, unsupervised learning, and semi-supervised learn-
ing. In this paper, we review only supervised learning.
Given a sample set of input–output pairs, the objec-
tive of supervised learning is to learn a function that
matches reasonably well with the input data and pre-
dicts an output for any unseen input (but assumed to
be generated from the same distribution), such that
the predicted output is as close as possible to the
desired output. For example, in remote sensing im-
age classification, the input attribute space consists of
various spectral bands or channels (e.g., blue, green,
red, infra-red, thermal, etc.) The input vectors (xi ’s)
are reflectance values at the i th location in the image,
and the outputs (yi ’s) are thematic classes such as for-
est, urban, water, and agriculture. The type of output
attribute determines the supervised learning task; two
such tasks are:

• Classification: Here, the input vectors xi are
assigned to a few discrete numbers of classes,
for example, image classification73 yi .

• Regression: In regression, also known as func-
tion approximation or prediction, the input–
output pairs are generated from an unknown
function of the form y = f (x), where y is
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FIGURE 8 | (a) The actual locations of nests. (b) Pixels with actual nests. (c) Location predicted by a model. (d) Location predicted by another
model. Prediction (d) is spatially more accurate than (c).

continuous. Typically, regression is used in
regression and estimation, for example, crop
yield prediction,74 daily temperature predic-
tion, and market share estimation for a par-
ticular product. Regression can also be used in
inverse estimation, that is, given that we have
an observed value of y, we want to determine
the corresponding x value.

However, while performing supervised learning,
conventional data mining techniques perform poorly
in identifying values of dependent variables due to
two reasons. The first reason is because they ignore
spatial autocorrelation and heterogeneity in the model
building process. A second, more subtle but equally
important reason is related to the choice of the objec-
tive function to measure classification accuracy. For
a two-class problem, the standard way to measure
classification accuracy is to calculate the percentage
of correctly classified objects. However, this measure
may not be the most suitable in a spatial context. This
is because the measure of Spatial accuracy—how far
the predictions are from the actuals—is important in
some applications such as ecology due to the effects
of the discretization of a continuous wetland into dis-
crete pixels, as shown in Figure 8. Figure 8(a) shows
the actual locations of nests and (b) shows the pixels
with actual nests. Note the loss of information dur-
ing the discretization of continuous space into pixels.
Many nest locations barely fall within the pixels la-
beled ‘A’ and are quite close to other blank pixels,
which represent ‘no-nest’. Now consider two predic-
tions shown in Figure 8(c) and (d). Domain scientists
prefer prediction 8(d) over (c), as the predicted nest
locations are closer on average to some actual nest
locations. The classification accuracy measure cannot
distinguish between 8(c) and (d), and a measure of
spatial accuracy is needed to capture this preference.

Common methods: Several previous studies75,76

have shown that the modeling of spatial dependency
(often called context) during the classification or re-
gression process improves overall accuracy. Spatial
context can be defined by the relationships between
spatially adjacent spatial units in a small neighbor-

hood. An example spatial framework and its four-
neighborhood contiguity matrix is shown in Figure 2.
Three supervised learning techniques for classification
and regression that model spatial dependency are: (1)
Markov random field (MRF) based classifiers; (2) lo-
gistic spatial autoregression (SAR) model; and (3) ge-
ographically weighted regression (GWR).

Markov random field-based Bayesian classifiers:
Maximum likelihood classification (MLC) is one of
the most widely used parametric and supervised clas-
sification technique in the field of remote sensing.77,78

However, MLC is a per-pixel based classifier and as-
sumes that samples are i.i.d. Ignoring spatial autocor-
relation results in salt and pepper kind of noise in the
classified images. One solution is to use MRF-based
Bayesian classifiers79 to model spatial context via the
a priori term in Bayes’ rule. This uses a set of ran-
dom variables whose interdependency relationship is
represented by an undirected graph (i.e., a symmet-
ric neighborhood matrix). A more detailed theoretical
and experimental comparison of these two methods
can be found in Ref 80.

Logistic spatial autoregressive model (SAR): Lo-
gistic SAR decomposes a classifier f̂C into two steps,
namely, spatial autoregression and logistic transfor-
mation. Spatial dependencies are modeled using the
framework of logistic regression analysis. In the spa-
tial autoregression model, the spatial dependencies of
the error term, or the dependent variable, are directly
modeled in the regression equation.81 If the dependent
values yi are related to each other, then the regression
equation can be modified as:

y = ρWy + Xβ + ε. (1)

Here, W is the neighborhood relationship con-
tiguity matrix and ρ is a parameter that reflects the
strength of the spatial dependencies between the ele-
ments of the dependent variable via the logistic func-
tion for binary dependent variables.

One limitation of the SAR model is that, it does
not account for the underlying spatial heteorgeneity
that is natural in geographic spaces. Thus, in Eq. (1),
the model parameter estimates β and the model errors
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(a) CSR pattern (b) Clustered pattern

FIGURE 9 | Complete spatial random (CSR) and spatially clustered
patterns.

ε are assumed to be uniform throughout the entire
geographic space. One proposed method to account
for spatial variation in model parameters and errors
is Geographically Weighted Regression (GWR).82,83

The regression equation shown for GWR, shown by
Eq. (2), has the same structure as standard linear re-
gression, with the exception that the parameters are
spatially varying.

y = Xβ(s) + ε(s), (2)

where β(s) and ε(s) represent the spatially varying
parameters and the errors, respectively.

Spatial Clustering
Spatial clustering is a process of grouping a set of
spatial objects into clusters so that objects within a
cluster have high similarity in comparison to one an-
other, but are dissimilar to objects in other clusters.

Spatial statistics, the standard against which
spatial point patterns are often compared, is a com-
pletely spatially point process, and departures indicate
that the pattern is not completely spatially random.
Complete spatial randomness (CSR)56 is synonymous
with a homogeneous Poisson process, the patterns of
which are independently and uniformly distributed
over space, that is, the patterns are equally likely to
occur anywhere and do not interact with each other.
In contrast, a clustered pattern is distributed depen-
dently and attractively in space.

An illustration of complete spatial random pat-
terns and clustered patterns is given in Figure 9, which
shows realizations from a completely spatially ran-
dom process and from a spatial cluster process, re-
spectively (each conditioned to have 85 points in a
unit square).

Illustrative examples and application domains:
Cluster analysis is used in many spatial and spatiotem-
poral application domains such as remote sensing
data analysis as a first step to determine the number
and distribution of spectral classes, in epidemiology

for finding unusual groups of health-related events,
and in detection of crime hot spots by police officers.

Notice in Figure 9 (a) that the CSR pattern
seems to exhibit some clustering. This is not an un-
representative realization but illustrates a well-known
property of homogeneous Poisson processes: event-
to-nearest-event distances are proportional to χ2

2 ran-
dom variables, whose densities have a substantial
amount of probability near zero.56 True clustering,
by contrast, is shown in Figure 9(b).

Common methods: Data mining and Machine
learning literature have explored a large number of
clustering algorithms which compute the statistical
significance of spatial clusters to ensure that they are
not random. The multitude of clustering algorithms
can be classified into several groups as follows:

(1) Hierarchical clustering methods start with
all patterns as a single cluster and succes-
sively perform splitting or merging until a
stopping criterion is met. This results in a
tree of clusters, called dendograms. The den-
dogram can be cut at different levels to
yield desired clusters. Well-known hierarchi-
cal clustering algorithms include balanced
iterative reducing and clustering using hi-
erarchies (BIRCH), clustering using inter-
connectivity (Chameleon), clustering using
representatives (CURE), and robust cluster-
ing using links (ROCK). More discussion of
these methods can be found in Refs 84–86.

(2) Partitional clustering algorithms start with
each pattern as a single cluster and itera-
tively reallocate data points to each clus-
ter until a stopping criterion is met. These
methods tend to find clusters of spherical
shape. K-Means and K-Medoids are com-
monly used partitional algorithms. Squared
error is the most frequently used criterion
function in partitional clustering. The re-
cent algorithms in this category include par-
titioning around medoids (PAM), clustering
large applications (CLARA), clustering large
applications based on randomized search
(CLARANS), and expectation-maximization
(EM). Related papers include Refs 87
and 88.

(3) Density-based clustering algorithms try to
find clusters based on the density of data
points in a region. These algorithms treat
clusters as dense regions of objects in the
data space. The density-based clustering
algorithms include density-based spatial

Volume 1, May/ June 2011 203c© 2011 John Wi ley & Sons , Inc .



Overview wires.wiley.com/widm

clustering of applications with noise (DB-
SCAN), ordering points to identify clustering
structure (OPTICS), and density-based clus-
tering (DECODE). Related research is dis-
cussed in Refs 90–94.

Spatial Hotspot Analysis
Hotspots are a special kind of clustered pattern. As
in clustered patterns, objects in hotspot regions have
high similarity in comparison to one another and are
quite dissimilar to all the objects outside the hotspot.
One important feature that distinguishes a hotspot
from a general cluster is that the objects in the hotspot
area are more active compared with all others (den-
sity, appearance, etc.). Spatial correlation of the at-
tribute values within a hotspot could be high and
possibly drops dramatically at the boundary, whereas
in traditional clustering, the attribute values within a
cluster could be i.i.d. Hotspot discovery/detection in
SDM is a process of identifying spatial regions where
more events are likely to happen, or more objects are
likely to appear, in comparison to other areas.

Hotspot detection is mainly used in the analy-
sis of crime and disease data. Crime data analysis95

aims at finding areas that have greater than average
numbers of criminal or disorderly events, or areas
where people have a higher than average risk of vic-
timization. Figure 10 shows two types of hotspots,
namely, point hotspots and area hotspots. The design
of hotspot maps is primarily oriented toward aiding
law enforcement to make appropriate placement of
their resources for crime investigation. For example,
Figure 10(b) shows locations of bars with seven differ-
ent colors obtained by using LISA,67 the red squares
in the center, and peripheries of the map show the
high crime activity bars. Maps such as the ones shown
in Figure 10(a) show specific bars or hotspots where
an increased attention for crime mitigation is neces-
sary. On the other hand, if an analyst was interested
in the geographic distribution of a particular crime
type (e.g., Vandalism) based on an underlying base-
line variable, one can make use of techniques such as
kernel density estimation that is a part of tools such
as CrimeStat.96 For example, Figure 10(b) shows the
hotspots of vandalism incidents from the same city;
the red cells indicate areas where there is a signifi-
cantly high clustering of vandalism reports and the
blue cells indicate cells where there is a significantly
low concentration of vandalism, and grey indicates
the area where there is no significant concentration.
This map leads one to understand that, there is a sig-
nificant clustering of vandalism incidents in the center
of the city around the downtown areas.

FIGURE 10 | Spatial crime hotspots from the city of Lincoln,
NE89(Best viewed in color).

Hotspot analysis finds applications in cancer/
disease data analysis, hotspots of locations where
disease are reported intensively are detected, which
may indicate a potential breakout of this disease, or
suggest an underlying cause of the disease. Other
domains of application include transportation (to
identify unusual rates of accidents along highways)
and ecology(to conduct geoinformatic surveillance for
geospatial hot-spot detection97).

Common methods: Many of the standard clus-
tering algorithms have been adapted for spatial
hotspot analysis. These include K-Means, hierarchi-
cal clustering, etc. Many other methods such as STAC
(spatio-temporal analysis of crime)96 and LISA (lo-
cal indicators of spatial association)67 have been de-
veloped to aid law enforcement agencies for crime
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TABLE 2 Algorithmic Strategies for Classical versus Spatial Data

Mining

Algorithmic strategies for
Classical data mining spatial data mining

Divide-and-conquer Space partitioning
Filter-and-refine Minimum-bounding rectangle (MBR)

Predicate approximation
Ordering Plane sweeping, space filling curve
Hierarchical structures Spatial index, tree matching
Parameter estimation Parameter estimation with spatial

autocorrelation

mitigation. Spatial hotspot analysis methods of par-
ticular utility in public health applications such as syn-
dromic surveillance and outbreak detection have been
proposed. These methods include various frequentist
and Bayesian statistical measures such as the spatial
scan statistic98,99 and space-time scan statistic.100,101

COMPUTATIONAL ISSUES

The volume of data, the complexity of spatial data
types and relationships, and the need to identify spa-
tial autocorrelation pose numerous computational
challenges to the SDM field. When designing SDM al-
gorithms, one has to take into account considerations
such as space partitioning, predicate approximation,
multidimensional data structures, etc. Table 2 sum-
marizes how these requirements are in contrast with
with classical data mining. Computational issues may
arise due to high dimensionality of the spatial data
set, spatial join process required in co-location min-
ing and spatial outlier detection, estimation of SAR
model parameters in the presence of large neighbor-
hood matrix W, etc.

To illustrate these computational challenges, we
use the case study of parameter estimation for the
SAR model. The massive sizes of geospatial data sets
in many application domains make it important to de-
velop scalable parameter estimation algorithms of the
SAR model solutions for location prediction and clas-
sification. As noted previously, many classical data
mining algorithms, such as linear regression, assume
that the learning samples are i.i.d. This assumption
is violated in the case of spatial data due to spa-
tial autocorrelation;81 in such cases, classical linear
regression yields a weak model with not only low
prediction accuracy102,103 but also residual error ex-
hibiting spatial dependence. Modeling spatial depen-
dencies improves overall classification and regression
accuracies significantly.

However, estimation of SAR model parameters
is computationally very expensive because of the need
to compute the determinant of a large matrix in the
likelihood function.104–108 The maximum likelihood
(ML) function for SAR parameter estimation contains
two terms: a determinant term and an SSE term (Eq.
3). The former involves computation of the determi-
nant of a very large matrix, which is a well-known
hard problem in numerical analysis. Estimating the
parameters of a ML-based SAR model solution, the
log-likelihood function can be constructed, as shown
in Eq. (3). The estimation procedure involves compu-
tation of the logarithm of the determinant (log-det) of
a large matrix, that is, (I − ρW).

�(ρ|y) = −2
n

ln |I − ρW|
︸ ︷︷ ︸

log−det

+ ln((I − ρW)y)T(I − x(xTx)−1 xT)T

× (I − x(xTx)−1 xT)((I − ρW)y)
︸ ︷︷ ︸

SSE

(3)

As a result, the exact SAR model parameter estima-
tion for a very small 10,000-point spatial problem can
take tens of thousands of minutes on common desk-
top computers. Computation costs make it difficult to
use SAR for important spatial problems that involve
millions of points, despite its promise to improve pre-
diction and classification accuracy. In the equation,
y is the n-by-1 vector of observations on the depen-
dent variable, where n is the number of observation
points; ρ is the spatial autoregression parameter; W is
the n-by-n neighborhood matrix that accounts for the
spatial relationships (dependencies) among the spatial
data; x is the n-by-k matrix of observations on the ex-
planatory variable, where k is the number of features;
and β is a k-by-1 vector of regression coefficients.
Spatial autocorrelation term ρWy is added to the lin-
ear regression model in order to model the strength
of the spatial dependencies among the elements of the
dependent variable, y. The computational bottleneck
in accounting for spatial autocorrelation is to evaluate
the log-det for large problem sizes. Research in SDM
has explored both approximate and exact solutions
to the SAR model.109

SPATIAL ANALYSIS TOOLS

This section surveys currently existing spatial anal-
ysis tools and presents a brief critique of the
SDM functionalities they support. Spatial analysis
methods including many of the SDM techniques, such
as co-location mining, spatial hotspot analysis, and
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TABLE 3 Spatial Analysis Techniques in Popular Software

Technique Software Tool

Co-location mining Oracle 10g110

Spatial clustering ArcGIS 9.3 Spatial Statistics tool,111 Oracle 10g,110 CrimeStat,96 Terra Seer
Spatial hotspots ArcGIS 9.3 Spatial Statistics tool,111 CrimeStat,96 GeoDa,112

Spatial outliers ArcGIS 9.3 Spatial Statistics tool,111 GeoDA112

Spatial network hotspots CrimeStat,96 SANET113

Kriging ArGIS 9.3 Geostatistical Analyst,111 S+ Spatial Stats,114 fields package and geoR in R115

Spatial autoregression S+ Spatial stats,114 GeoDa112

Conditional autoregression CrimeStat96

Geographically weighted regression ArcGIS 9.3111

geographically weighted regression, have found their
way into commercial products such as Oracle,110

ArcGIS,111 TerraSeer, etc. Beyond these commercial
products, there are many public domain and open
source tools such as GeoDA,112 CrimeStat,96 and
many libraries in R115 that provide useful function-
alities for performing spatial autoregression, kriging,
and techniques for measuring spatial autocorrelation.
Table 3 lists different spatial analysis methods and
various tools supporting them.

Many of the above listed tools offer functional-
ities to perform rigorous significance testing of SDM
tools except commercial databases such as Oracle
10g. Added to this, many of the above tools sup-
port exploratory analysis with visualization using an
interactive display. Despite their usefulness in many
applications, tools such as CrimeStat and Oracle 10g
are limited in their capabilities to provide interactive
map based visualization of results.

FUTURE DIRECTIONS AND
RESEARCH NEEDS

This section presents future directions and research
needs in SDM. There are several new areas of re-
search, but the two we will focus on are network-
based SDM and spatio-temporal data mining.

Network Patterns
Many spatial phenomena such as distribution of
crimes and distribution of accidents in large cities may
be constrained by the transportation network struc-
ture. One of the main challenges in SDM is to account
for the network structure in the data set. For exam-
ple, in hotspot detection, spatial techniques do not
consider the spatial network structure of the data set,
that is, they may not be able to model graph prop-
erties such as one-ways, connectivities, left-turns, etc.

In this section, we present Spatial network activity
hotspots, an interesting SDM problem that has a spa-
tial network as a part of its input.

Spatial network activity hotspots: The prob-
lem of identifying Spatial network hotspots(SNAH)
is to discover those connected subsets of a spatial net-
work whose attribute values are significantly higher
than expected (Figure 11(b)). Finding SNAH is par-
ticularly important for crime analysis (high-crime-
density street discovery) and law enforcement (plan-
ning effective and efficient patrolling strategies). In ur-
ban areas, many human activities are centered about
spatial infrastructure networks, such as roads and
highways, oil/gas pipelines, and utilities (e.g., wa-
ter, electricity, telephone). Thus, activity reports such
as crime logs may often use network-based location
references (e.g., street addresses). In addition, spa-
tial interaction among activities at nearby locations
may be constrained by network connectivity and net-
work distances (e.g., shortest paths along roads or
train networks) rather than the geometric distances
used in traditional spatial analysis. Traditional meth-
ods that employ a geometric summarization scheme
to identify concentrations of crime may not account
for large crime concentrations that are normally ac-
counted for by the network-based methods. For ex-
ample, Figure 11(a) and (b) show a comparison be-
tween an ellipse-based geometric hotspot method and
a network-based hotspot method for a data set from
the recent Haiti earthquake. Crime prevention may
focus on identifying subsets of ST networks with high
activity levels, understanding underlying causes in
terms of network properties, and designing network
control policies. Identifying and quantifying SNAH
is a challenging task due to the need to choose the
correct statistical model. In addition, the discovery
process in large spatial networks is computationally
very expensive due to the difficulty of characterizing
and enumerating the population of streets to define
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FIGURE 11 | Comparison between geometric and network based hotspot for requests during the Haiti earthquake (Best viewed in color).
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(a) Example input
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TT  = 1 1 1 1

(b) Example output

FIGURE 12 | Flow anomaly example.

a normal or expected activity level. Preliminary ex-
ploration of descriptive and explanatory models for
network patterns is available in Ref 116. However,
further challenges and research is needed to identify
other interesting patterns within network data sets,
such as partial segments of roads that are more inter-
esting than other parts.

Spatio-temporal Data Mining
Spatio-temporal data are often modeled using events
and processes, both of which generally represent
change of some kind. Processes refer to ongoing phe-
nomena that represent activities of one or more types
without a specified endpoint.117–119 Events refer to
individual occurrences of a process with a specified
beginning and end. Event-types and event-instances
are distinguished. For example, a hurricane event-
type may occur at many different locations and times,
for example, Katrina (New Orleans, 2005) and Rita
(Houston, 2005). Each event-instance is associated
with a particular occurrence time and location. The
ordering may be total if event-instances have disjoint
occurrence times. Otherwise, ordering is based on
spatio-temporal semantics such as partial order, and
spatio-temporal patterns can be modeled as partially
ordered subsets. These unique characteristics create
new and interesting challenges for discovering spatio-
temporal patterns. For example, in contrast to spatial
outliers, a spatio-temporal outlier is a spatio-temporal
object whose thematic (nonspatial and nontempo-
ral) attributes are significantly different from those
of other objects in its spatial and temporal neighbor-
hoods. A spatio-temporal object is defined as a time-
evolving spatial object whose evolution or history is
represented by a set of instances (EQ), where the space
stamp is the location of the object o id at timestamp
t. In the remainder of this section, we present re-
search trends in various areas of spatio-temporal data
mining.

Flow anomalies: Given a percentage threshold
and a set of observations across multiple spatial loca-
tions, flow anomaly discovery aims to identify domi-
nant time intervals where the fraction of time instants

of significantly mismatched sensor readings exceeds a
given percentage threshold. Figure 12 gives a simple
example of flow anomalies (FAs). In Figure 12(a), the
input to the FA problem consists of two spatial loca-
tions [i.e., an upstream (up) and downstream (down)
sensor], 10 time instants, and the notion of travel
time (TT) or flow between the locations. For simplic-
ity, the TT is set to a constant of 1, but it can be
a variable. The output contains two FAs; using the
time instants at the upstream sensor, periods 1–3 and
6–9, where the majority of time points show signif-
icant differences in between (Figure 12(b)). Discov-
ering FAs is important for water treatment systems,
transportation networks, and video surveillance sys-
tems. However, mining FAs is computationally ex-
pensive due to the large (potentially infinite) num-
ber of time instants across a spatial network of lo-
cations. Traditional outlier detection methods (e.g.
t-test) are suited for detecting transient FAs (i.e., time
instants of significant mismatches across consecutive
sensors) but cannot detect persistent FAs (i.e., long
variable time windows with a high fraction of time
instant transient FAs) due to lack of a predetermined
window size. Spatial outlier detection techniques do
not consider the flow (i.e., TT) between spatial lo-
cations and cannot detect any type of FAs. Prelimi-
nary work introduced a time-scalable technique called
SWEET (Smart Window Enumeration and Evalua-
tion of persistent-Thresholds) that utilizes several al-
gebraic properties in the flow anomaly problem to
discover these patterns efficiently.120–122 However,
further research is needed to discover other types of
patterns within this environment. In the context of
transportation networks, researchers proposed simi-
lar ST outlier patterns for identifying traffic accidents
known as anomalous window discovery.123–125

Teleconnected flow anomalies: An additional
pattern that utilizes FAs is teleconnected patterns.126

A teleconnection represents a strong interaction be-
tween paired events that are spatially distant from
each other. Identifying teleconnected flow events is
computationally hard due to the large number of time
instants of measurement, sensors, and locations. For
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example, a well-known teleconnected event pair in-
volves the warming of the eastern pacific region (i.e.,
El Nino) and unusual weather patterns throughout
the world.127 Recently, a RAD (Relationship Anal-
ysis of Dynamic-neighborhoods) technique has been
proposed that models flow networks to identify tele-
connected events.126 Further research is needed to ex-
plore new and interesting patterns that may lie within
the RAD model.

Mixed-drove co-occurrence patterns: Another
type of dynamic behavior of spatial data sets that
might affect co-location patterns is changing the spec-
ification of zone of interest and measuring values
according to user preferences. Mixed-drove spatio-
temporal co-occurrence patterns (MDCOPs) repre-
sent subsets of two or more different object-types
whose instances are often located in spatial and tem-
poral proximity. Discovering MDCOPs is potentially
useful in identifying tactics in battlefields and games,
understanding predator–prey interactions, and in
transportation (road and network) planning.128,129

However, mining MDCOPs is computationally very
expensive because the interest measures are compu-
tationally complex, data sets are larger due to the
archival history, and the set of candidate patterns is
exponential in the number of object-types. Prelimi-
nary work has produced a monotonic composite in-
terest measure for discovering MDCOPs and novel
MDCOP mining algorithms.130

Cascading spatio-temporal patterns Partially
ordered subsets of event-types whose instances are lo-
cated together and occur in stages are called cascading
spatio-temporal patterns (CSTP).131 Figure 13 shows
some interesting partially ordered patterns that were
discovered from real spatio-temporal crime data sets
from the city of Lincoln, Nebraska.89 In the domain of
public safety, events such as bar closings and football
games are considered generators of crime. Preliminary
analysis revealed that football games and bar closing
events do indeed generate CSTPs. CSTP discovery can
play an important role in disaster planning, climate
change science132,133 (e.g., understanding the effects
of climate change and global warming), and public
health (e.g., tracking the emergence, spread, and re-
emergence of multiple infectious diseases134). Further

Increase (larceny, v andalism, assaults)

Increase (larceny, v andalism, assaults)

Bar closing (Saturday night)

Increase (larceny, v andalism,  assaults)

Football night

Football night

Saturday night

FIGURE 13 | Cascading spatio-temporal patterns from public
safety.

research is needed, however, to deal with challenges
such as the lack of computationally efficient, statisti-
cally meaningful metrics to quantify interestingness,
and the large cardinality of candidate pattern sets that
are exponential in the number of event types. Exist-
ing literature for spatio-temporal data mining focuses
on mining totally ordered sequences or unordered
subsets.135–137

Broader Future Directions
In this paper, we have presented the major research
achievements and techniques that have emerged from
SDM, especially for predicting locations and discov-
ering spatial outliers, co-location rules, and spatial
clusters. Current research is mostly concentrated on
developing algorithms that model spatial and spatio-
temporal autocorrelations and constraints. Spatio-
temporal data mining remains, however, still largely
an unexplored territory; thus, we conclude by noting
other areas of research that require further investiga-
tion, such as the mining of movement data involv-
ing groups of people, ideas, goods, and streaming
data. Any SDM method is influenced by the neigh-
borhood method selected. Hence, new computational
algorithms and interest measures that deal with the
sensitivity to spatial neighborhood size need to be de-
fined. Most urgently, methods are needed to validate
the hypotheses generated by SDM algorithms as well
as to ensure that the knowledge generated is action-
able in the real world.
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