From GPS and Google Maps to Spatial Computing

Biennial Intl. Conf. on Geo-computation Dallas, TX, USA. :: May, 2015

Shashi Shekhar

McKnight Distinguished University Professor Department of Computer Science and Eng. University of Minnesota www.cs.umn.edu/~shekhar

Research Theme 1: Spatial Databases

Theme 2 : Spatial Data Mining

Sources

- From GPS and Virtual Globes to Spatial Computing 2020, CCC Report, 2013. www.cra.org/ccc/visioning/visioning-activities/spatial-computing
- With few slides on work from presenter's group Identifying patterns in spatial information: a survey of methods, Wiley Interdisc. Reviews: Data Mining and Know. Discovery, 1(3):193-214, May/June 2011. (DOI: 10.1002/widm.25).

SPATIAL COMPUTING 2020 VISIONING WORKSHOP

The population is a detect automote at the OCD searching contraries, Foront Marking and The Markovs Advances for Markov Demostry 2020, Natri at the Markovs Advances Them Others and Searching Her. 2020 and searching and in motional of the stand to assume proceedance of markovs and the stand to assume the population and the standard and the standard to assume and standard to assume the standard to assume and the standard standard to any standard to assume and the standard standard to any standard to assume and the standard standard to any standard to assume and the standard standard to any standard to assume and the standard standard to any standard to assume and standard to assume and to consult the standard to assume any consult and standard to assume and assume part ones using the to assume the standard to assume any consult and to assume the standard to assume any constant and the standard to assume the standard to assume any standard to assume the standard to assume any constant and the standard to assume the sta

The subject is consistent of spacing researce tool to the COCand Produce allowers in the maximum of string researce and a strate-bit as an address, and particular strategies and strategies of the categories of several strategies and a strate of the categories and strategies and and a strate on strategies of the categories and strategies and and and strate on strategies that and the categories and strategies and strategies and the categories and the strategies and the strategies and the categories and the strategies and strategies and the strategies and strategies and strategies operating a strategies and which as a strategies and stra

Poggy Agenate. Gaunge Means Linumity
 A model Avel. Parelial University.

 Electrani F. Opercente, (prometty of California, Savits Barrara

ORSANZINS COMMITTEE

- Lon Inul, Connectories Systems Humanni Perform (1993)
 Joni January, M Salary Cartana
- Chig J. Andelson, University of Anatysis Definests
- Folders Langes, University of Sev. Bromsess
 Eld Million Contract University
- Erape Debing, University of Microsoft
 The Weithers University of Erapis 41 Christen
 - · May Yuan, University of Depterson

This work was supported by the Computing Community Consorthum, which is manigad by this Computing Research Association (CRA) and by the National Science Frandation (NSP) through securit 40537190.

Any opinions, findings, and conclusions or recommendations expressed in the material are finate of the authors and do not necessarily reflect the views of the National Science Foundation or CRA. Practication date: uses 2013.

Devocating Tessarech Association (DRNA, the OCD serves as a collected to an earlier for OCD arress as a collected to an earlier for OCD arress as a collected to an earlier the OCD serves with the contensuity in samplactable to attaining the instant their, provide indexising for the community ansancing excursion that all prevant of interpreting measurements and particular earliers interpreting measurements and particular earliers and the contensity is communitating to a longer attained to earlier the serve when it the contensity, instant of attaining to a longer attained to earlier the serve attained to the attained to be an earlier to be an earlier of the attained to be an earlier of the serve attained to be attained to be an earlier of the compacting makanets for the compacting of the original times and prove wave leaders for the compacting measurements.

Disriputing Research Automation 1928 L Swiet, NW, Suite 500, Waarington, DC 2008-4832 Tak 202-234-2111 Fac: 202-407-1006

www.ora.org/coci/

Outline

- Introduction
 - Spatial Computing Audience: Niche => Everyone
 - Spatial Computing 2020 Workshop
- GPS
- Location Based Services
- Spatial Statistics
- Spatial Database Management Systems
- Virtual Globes
- Geographic Information Systems
- Conclusions

What is Spatial Computing?

- Transformed our lives though understanding spaces and places
 - Examples: localization, navigation, site selection, mapping,
 - Examples: spatial context, situation assessment (distribution, patterns), ...

The Changing World of Spatial Computing

	Last Century	Last Decade
Map User	Well-trained few	Billions
Mappers	Well-trained few	Billions
Software, Hardware	Few layers, e.g., Applications: Arc/GIS, Databases: SQL3/OGIS	Almost all layers
User Expectations & Risks	Modest	Many use-case & Geo-privacy concerns

It is widely used by Government!

Geospatial Information and Geographic Information Systems (GIS): An Overview for Congress

Table 1. Members of the Federal Geographic Data Committee (FGDC)

Folger, Peter. Geospatial Information and Geographic Information Systems (GIS): Current Issues and Future Challenges. Congressional Research Service. June 8th, 2009.

It is only a start! Bigger Opportunities Ahead!

McKinsey Global Institute

Big data: The next frontier for innovation, competition, and productivity

The study estimates that the use of personal location data could save consumers worldwide more than \$600 billion annually by 2020. Computers determine users' whereabouts by tracking their mobile devices, like cellphones. The study cites smartphone location services including Foursquare and Loopt, for locating friends, and ones for finding nearby stores and restaurants.

But the biggest single consumer benefit, the study says, is going to come from time and fuel savings from location-based services — tapping into real-time traffic and weather data — that help drivers avoid congestion and suggest alternative routes. The location tracking, McKinsey says, will work either from drivers' mobile phones or GPS systems in cars.

The New York Times

Published: May 13, 2011

New Ways to Exploit Raw Data May Bring Surge of Innovation, a Study Says

CCC Visioning Workshop: Making a Case for Spatial Computing 2020 http://cra.org/ccc/spatial_computing.php

From GPS and Virtual Globes to Spatial Computing-2020

About the workshop

This workshop outlines an effort to develop and promote a unified agenda for Spatial Computing research and development across US agencies, industries, and universities. See the original workshop proposal here.

Spatial Computing

Spatial Computing is a set of ideas and technologies that will transform our lives by understanding the physical world, knowing and communicating our relation to places in that world, and navigating through those places.

The transformational potential of Spatial Computing is already evident. From Virtual Globes such as Google Maps and Microsoft Bing Maps to consumer GPS devices, our society has benefitted immensely from spatial technology. We've reached the point where a hiker in Yellowstone, a schoolgirl in DC, a biker in Minneapolis, and a taxi driver in Manhattan know precisely where they are, nearby points of interest, and how to reach their destinations. Large

Logistics

Date: Sept. 10th-11th, 2012 Location: Keck Center Hotel: Liaison Hotel

Steering Committee

Erwin Gianchandani

Hank Korth

Organizing Committee

Peggy Agouris, George Mason University

Walid Aref, Purdue University

Michael F. Goodchild, University of California -Santa Barbara

Workshop Participants

Le At

Jo Tel Ta En En Xu Sh Ja NE Le Ke

Academia

Peggy Agouris, George Mason University	Hank Korth, Lehigh I
Divyakant Agrawal, University of California Santa	Benjamin Kuipers, L
Barbara	Vipin Kumar, Univers
Ceclila Aragon, University of Washington	Richard Langley, Un
Walid G. Aref, Purdue University	New Brunswick
Elisa Bertino, Purdue University	Chang-Tien Lu, Virg
Henrik Christensen, Georgia Institute of Technology	Dinesh Manocha, U North Carolina
Isabel Cruz, University of Illinois at Chicago	Edward M. Mikhail,
Michael R. Evans, University	Harvey Miller, Univer
of Minnesota	Joe Mundy, Brown U
Steven Feiner, Columbia University	Dev Oliver, University
Jie Gao, Stony Brook University	Rahul Ramachandr
Michael Goodchild, University of California Santa Barbara	Norman Sadeh, CM
Sara Graves, University of	Shashi Shekhar, Uni
Alabama Huntsville	Daniel Z. Sui, Ohio S
Rajesh Gupta, University of California San Diego	Roberto Tamassia, I
Chuck Hansen, University of Utah	Paul Iomens, Onver
Stephen Hirtle, University of Pittsburgh	at Urbana-Champaign
Krzysztof Janowicz, University of California Santa Barbara	Greg Welch, Universi
John Jensen, University of South Carolina	at Chicago
Daniel Keefe, University of Minnesota	Mike Worboys, Unive
John Keyser, Texas A&M University	May Yuan, University
Craig A. Knoblock, Information Sciences Institute	Avideh Zakhor, Univ Galifornia Berkeley
>30 U	niversities

Hank Korth, Lehigh University
Benjamin Kuipers, University of Michigan
Vipin Kumar, University of Minnesota
Richard Langley, University of New Brunswick
Chang-Tien Lu, Virginia Tech
Dinesh Manocha, University of North Carolina
Edward M. Mikhail, Purdue
Harvey Millier, University of Utah
Joe Mundy, Brown University
Dev Oliver, University of Minnesota
Rahul Ramachandran, UA Huntsville
Norman Sadeh, CMU
Shashi Shekhar, University of Minnesota
Daniel Z. Sui, Ohio State
Roberto Tamassia, Brown University
Paul Torrens, University of Maryland
Shaowen Wang, University of Illinois at Urbana-Champaign
Greg Welch, University of North Carolina
Ourl E. Wolfson, University of Illinois at Chicago
Mike Worboys, University of Maine
May Yuan, University of Oklahorma
Avideh Zakhor, University of

Industry

ark Abrams, ESG
hamed All, Microsoft
e Allison, zona Geological Survey
ginia Bacon Talati, Computer Science and ecommunications Board (CSTB)
mon Cacenta, AT&T Research
t Cerf, Google
de DePalacios, val Postgraduate School
n Eisenberg, Computer Science and ecommunications Board (CSTB)
m Erickson, IBM
win Glanchandani, CCC
c Hoel, ESRI
an Liu, IBM
ra Ravada, Oracie
<mark>gan Sankaranarayanan,</mark> C Labs
a Shanley, Wilson Center
vin Pomiret, Centre for Spatial Law and Policy

Government

Nabil Adam, DHS
Vijay Atluri, NSF
David Balshaw, NIH/NIEHS
Budhendra Bhaduri, ORNL
Kelly Crews, NSF
Beth Driver, NGA
Walton Fehr, USDOT
Myron Gutmann, NSF
Susanne Hambrusch, NSF
Michelie Heacock, NIH/NIEHS
Clifford Jacobs, NSF
Fernam Jahenian, NSF
Todd Johanesen, NGA
Thomas Johnson, NGA
Henry Kelly, OSTP
Alicia Lindauer, USDOE
Keith Marzulio, NSF
John L. Schnase, NASA
Jim Shine, Army Research
Raju Vatsaval, ORNL
Eric Vessey, NSA
Howard D. Wactlar, NSF
Tandy Warnow, NSF
Nicole Wayant, Anny Research
Mark Weiss, NSF
Maria Zemankova, NSF
Li Zhu, NIH/NCI

14 Organizations

12 Agencies

Workshop Highlights

Agenda

- Identify fundamental research questions for individual computing disciplines
- Identify cross-cutting research questions requiring novel, multi-disciplinary solutions

Organizing Committee

- Peggy Agouris, George Mason University
- Walld Aref, Purdue University ę
- Michael F. Goodchild, University of California Santa Barbara .
- Erik Hoel, Environmental Systems Research Institute (ESRI) ę
- John Jensen, University of South Carolina ø
- Craig A. Knoblock, University of Southern California ø
- Richard Langley, University of New Brunswick .
- Ed Mikhail, Purdue University .
- Shashi Shekhar, University of Minnesotaning Comm Ouri Wolfson, University of Illinois 8
- ø
- May Yuan, University of Oklahoma

Workshop Highlights

Pull Panel: National Priorities, Societal Applications of Spatial Computing Chair: Henry Kelly, OSTP

Members

US-DoD: Eric Vessey

US-DoD: Todd Johanesen

NIH/NIEHS: Michelle Heacock

NASA: John L Schnase

DHS: Nabil Adam

NSF EarthCube: Clifford Jacobs

DOT: Walton Fehr

DOE: Alicia Lindauer

Push Panel: Spatial Computing (SC) Platform Trends, Disruptive Technologies

Chair: Dinesh Manocha, UNC

Members:

Graphics & Vision: John Keyser, TAMU

Interaction Devices: Steven Feiner, Columbia University

LiDAR : Avideh Zakhor, UCB

GPS Modernization: Mark Abrams, Advisor to USG

Cell Phones: Ramon Caceres, AT&T

Indoor Localization: Greg Welch, UNC

Internet Localization: Rajesh Gupta, UCSD

Cloud Computing: Divyakant Agarwal, UCSB

Outline

- Introduction
- GPS
 - Outdoors => Indoors
- Location Based Services
- Spatial Statistics
- Spatial Database Management Systems
- Virtual Globes
- Geographic Information Systems
- Conclusions

Global Positioning Systems (GPS)

- Positioning ships
 - Latitude f(compass, star positions)
 - Longitude: dead-reckoning => marine chronometer
 - Longitude prize (1714), accuracy in nautical miles
- Global Navigation Satellite Systems
 - Infrastructure: satellites, ground stations, receivers, ...
 - Use: Positioning (sub-centimeter), Clock synchronization

http://en.wikipedia.org/wiki/ Global_Positioning_System

http://answers.oreilly.com/topic/2815 -how-devices-gather-locationinformation/

PRECISE GEODETIC INFRASTRUCTURE National Requirements for a Shared Resource

Positioning Precision

		12 Soft
XX	10 m	Ocean Navigation Emergency Location Applied Geodesy
	1 m	Aircraft Navigation Aircraft landing
	10 cm	Car navigation Spacecraft Navigation Precision Agriculture Autonomous Nav Space Weather (conception)
Positioni	1 cm	Tawneni Wenning Glacial Flow Precision Geodesy Surveying Weinher Forecasting *** Precision Timing Earthquake Airbonne Leveling Satellite Orbit Determination Displaorments Airbonne Leveling Satellite Orbit Determination Volcore Hezerds Volcore Hezerds
	1 mm	Decadal Survey Missions
	0.1 mm	Seconds Minutes Hours Days Months Years Decade
i		Time Scale

Trends: Localization Indoors and Underground

- GPS works outdoors, but,
 - We are indoors 90% of time!
 - Ex. malls, hospitals, airports, etc.
 - Indoor asset tracking, exposure hotposts, …
- Leveraging existing indoor infrastructure
 - Blue Tooth, WiFi, Cell-towers, cameras, Other people?
- How to model indoors for navigation, tracking, hotspots, ...?

Get In-Store Notifications

Outline

- Introduction
- GPS
- Location Based Services
 - Queries => Persistent Monitoring
- Spatial Statistics
- Spatial Database Management Systems
- Virtual Globes
- Geographic Information Systems
- Conclusions

Location Based Services

- Open Location Services: Queries
 - Location: Where am I? (street address, <latitude, longitude>
 - Directory: Where is the nearest clinic (or doctor)?
 - <u>Routes:</u> What is the shortest path to reach there?

Next Generation Navigation Services

 Eco-Routing Best start time Road-capacity aware 	ROUTE PREFERENCE Minimize: TRAVEL TIME DISTANCE FUEL GREENHOUSE GASES
Static Which is the shortest travel time path from downtown Minneapolis to airport?	Time-Variant

Trends: Persistent Geo-Hazard Monitoring

- Environmental influences on our health & safety
 - air we breathe, water we drink, food we eat
- Surveillance
 - Passive > Active > Persistent
 - How to economically cover all locations all the time ?
 - Crowd-sourcing, e.g., smartphones, tweets,
 - Wide Area Motion Imagery

Outline

- Introduction
- GPS
- Location Based Services
- Spatial Statistics
 - Concepts: Mathematical => Spatial
- Spatial Database Management Systems
- Virtual Globes
- Geographic Information Systems
- Conclusions

Spatial Statistics: Mathematical Concepts

- Spatial Statistics
 - Quantify uncertainty, confidence, ...
 - Is it significant?
 - Is it different from a chance event or rest of dataset?
 - e.g., SaTScan finds circular hot-spots
- Models of Auto-correlation, Heterogeneity, Edge-effect, ...
 - Point Process, e.g., Ripley's K-functions, SatScan
 - Geo-statistics, e.g., Kriging, GWR
 - Lattice-based models

Ned Cresie - Christopher K. Wilde

Satscan" Software for the spatial, temporal, and space-time scan statistics

<u>Ring-Shaped Hotspot Detection: A Summary of Results</u>, IEEE ICDM 2014 (w/ E. Eftelioglu et al.) **Comparison with Machine Learning**

- Representation beyond Linear Algebra, Machine Learning
- Environmental Criminology
 - Routine Activities Theory, Crime Pattern Theory, Doughnut Hole pattern
- Formulation: rings, where inside density is significantly higher than outside ...

Input		output: Ring Shaped lotspot Detection (RHD)
		$ \begin{array}{c} \hline Count (c) = 4 \\ LR_R = 23.02 \\ p-value = 0.04 \end{array} $ $ \begin{array}{c} Count (c) = 4 \\ Count (c) = 4 \\ LR_R = 10.61 \\ p-value = 0.18 \end{array} $ $ \begin{array}{c} Count (c) = 4 \\ Crime Analysis \end{array} $
Mathematics	Concepts	Relationships
Sets	Set Theory	Member, set-union, set-difference,
Vector Space	Linear Algebra	Matrix & vector operations
Euclidean Spaces	Geometry	Circle, Ring, Polygon, Line_String, Convex hull,
Boundaries, Graphs, Spatial Graphs	Topology, Graph Theory, Spatial graphs,	Interior, boundary, Neighbor, inside, surrounds,, Nodes, edges, paths, trees, Path with turns, dynamic segmentation,

Trends: Spatial-Concept Aware Patterns

- Spatial Concepts
 - Natural geographic features, e.g., rivers, streams, ...
 - Man-made geographic features, e.g., transportation network
 - Spatial theories, e.g., environmental criminology doughnut hole-
- Spatial-concept-aware patterns
 - Hotspots: Circle => Doughnut holes
 - Hot-spots => Hot Geographic-features

Details: A K-Main Routes Approach to Spatial Network Activity Summarization, IEEE Transactions on Knowledge and Data Engineering, pre-print, (doi.ieeecomputersociety.org/10.1109/TKDE.2013.135)

Co-locations/Co-occurrence

Details: Discovering colocation patterns from spatial data sets: a general approach,, IEEE Transactions on Knowledge and Data Engineering, 16(12), Dec. 2004.

Cascading spatio-temporal pattern (CSTP)

Details: Cascading Spatio-Temporal Pattern Discovery, IEEE Transactions on Knowledge and Data Engineering, 24(11), Nov. 2012.

MDCOP Motivating Example : Input

• Manpack stinger

(2 Objects)

• M1A1_tank

(3 Objects)

- Field_Marker
 (6 Objects)
- T80_tank(2 Objects)

BRDM_AT5
(enemy) (1 Object)
BMP1

(1 Object)

MDCOP Motivating Example : Output

Outline

- Introduction
- GPS
- Location Based Services
- Spatial Statistics
- Spatial Database Management Systems
 - Geometry => Spatial Network Databases
- Virtual Globes
- Geographic Information Systems
- Conclusions

Spatial Databases for Geometry

Challenge: Privacy vs. Utility Trade-off

- Check-in Risks: Stalking, GeoSlavery, ...
- Ex: Girls Around me App (3/2012), Lacy Peterson [2008]
- Others know that you are not home!

The Girls of Girls Around Me. It's doubtful any of these girls even know they are being tracked. Their names and locations have been obscured for privacy reasons. (Source: <u>Cult of Mac, March 30, 2012</u>)

Challenge: Geo-privacy, geo-confidentiality, ...

- Emerging personal geo-data
 - Trajectories of smart phones, gps-devices, life-trajectories and migrations, ...
- **Privacy:** Who gets my data? Who do they give it to? What promises do I get?
- Socio-technical problem
 - Need policy support
 - Challenges in fitting location privacy into existing privacy constructs (i.e HIPPA, Gramm-Leach-Bliley, Children's Online Privacy Protection Act)
- Groups interested in Geo-Privacy
 - Civil Society, Economic Entities, Public Safety, Policy Makers

Outline

- Introduction
- GPS
- Location Based Services
- Spatial Statistics
- Spatial Database Management Systems
- Virtual Globes & VGI
 - Quilt => Time-travel & Depth
- Geographic Information Systems
- Conclusions

Virtual Globes & Volunteered Geo-Information

- Virtual Globes
 - Visualize Spatial Distributions, Patterns
 - Visual drill-down, e.g., fly-through
 - Change viewing angle and position
 - Even with detailed Streetview!
- Volunteered Geo-Information
 - Allow citizens to make maps & report
 - Coming to public health!
 - People's reporting registry (E. Brokovich)
 - www.brockovich.com/the-peoples-reporting-registry-map/

penStreetMa

Virtual Globes in GIS Education

- Coursera MOOC: From GPS and Google Earth to Spatial Computing
 - 21,844 students from 182 countries (Fall 2014)
 - 8 modules, 60 short videos, in-video quizzes, interactive examinations, ...
 - 3 Tracks: curious, concepts, technical
 - Flipped classroom in UMN on-campus course

Opportunities: Time-Travel and Depth in Virtual Globes

- Virtual globes are snapshots
- How to add time? depth?
 - Ex. Google Earth Engine
 - Ex. Google Timelapse: 260,000 CPU core-hours for global 29-frame video
- How may one convey provenance, accuracy, age, and data semantics?
- What techniques are needed to integrate and reason about diverse available

Outline

- Introduction
- GPS
- Location Based Services
- Spatial Statistics
- Spatial Database Management Systems
- Virtual Globes
- Geographic Information Systems
 - Geo => Beyond Geo
- Conclusions

Geographic Information Systems & Geodesy

- **GIS**: An umbrella system to
 - capture, store, manipulate, analyze, manage, and present diverse geo-data.
 - SDBMS, LBS, Spatial Statistics, ...
 - Cartography, Map Projections, Terrain, etc.
- **Reference Systems**

0.0 82 5 74

Original

BCEAL

40

A11-1784.178

- Which countries in North Korea missile range?
- 3D Earth surface displayed on 2D plane
- Spherical coordinates vs. its planar projections

Opportunities: Beyond Geographic Space

- Spaces other than Earth
 - Challenge: reference frame?
- Ex. Human body
 - What is Reference frame ?
 - Adjust to changes in body
 - For MRIs, X-rays, etc.
 - What map projections?
 - Define path costs and routes to reach a brain tumor?

Outer Space	Moon, Mars, Venus, Sun, Exoplanets, Stars, Galaxies	
Geographic	Terrain, Transportation, Ocean, Mining	
Indoors	Inside Buildings, Malls, Airports, Stadiums, Hospitals	
Human Body	Arteries/Veins, Brain, Neuromapping, Genome Mapping	
Micro / Nano	Silicon Wafers, Materials Science	

http://convergence.ucsb.edu/issue/14

Oliver, Dev, and Daniel J. Steinberger. "From geography to medicine: exploring innerspace via spatial and temporal databases." Advances in Spatial and Temporal Databases. Springer Berlin Heidelberg, 2011. 467-470.

Outline

- Introduction
- GPS
- Location Based Services
- Spatial Statistics
- Spatial Database Management Systems
- Virtual Globes
- Geographic Information Systems
- Conclusions

Interaction of food system with energy and water systems [Mohtar 2012].

Recommendations

- Spatial Computing has transformed our society
 - It is only a beginning!
 - It promises an astonishing array of opportunities in coming decade
- However, these will not materialize without support
- Universities
 - Institutionalize spatial computing
 - GIS Centers, a la Computing Centers of the 1960's
 - Incorporate spatial thinking in STEM curriculum
 - During K-12, For all college STEM students?
- Government
 - Increase support spatial computing research
 - Larger projects across multiple universities
 - Include spatial computing topics in RFPs
 - Include spatial computing researchers on review panels
 - Consider special review panels for spatial computing proposals

Courses

CSCI 5715 – From GPS and Google Maps to Spatial Computing (Fall 2015)

Note: Coursera MOOC (Fall 2014, ?Fall 2015)

- **Conceptual Data Models**
- Logical Data Models (e.g., SQL3/OGIS)
- **Physical Data Models**
- **Spatial Networks, Routing Algorithm**
- **Spatial Data Mining**

Shashi Shekhar · Sanjay Chawla

Encyclopedia of GIS

Number of Street or other

E tymas

ALAL DAY

T

CSCI 8715 – Spatial Database Research (Spring 2016)

- **Research Literature**
- **Trends: Spatial Big Data**, Spatio-temporal, IoT, VGI, ...
- **Research Projects**

