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Ring-Shaped Hotspot Detection: A Summary of Results, IEEE ICDM 2014 (w/ E. Eftelioglu et al.)

Where IS a crime source?

* Representation choices beyond Linear Algebra
* Environmental Criminology
* Routine Activities Theory, Crime Pattern Theory, Doughnut Hole pattern
» Formulation: rings, where inside density is significantly higher than outside ...
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Sets Set Theory Member, set-union, set-difference, ...

Vector Space Linear Algebra Matrix & vector operations

Euclidean Spaces Geometry Circle, Ring, Polygon, Line_String, Convex hull, ...
Boundaries, Topology, Interior, boundary, Neighbor, inside, surrounds, ...,
Graphs, Graph Theory, Nodes, edges, paths, trees, ...

Spatial Graphs Spatial graphs, ... Path with turns, dynamic segmentation, ...



Taxonomy of Models for Inference

WHY?
WHAT?

WHEN?
WHERE?

WHO?

Models
Process

based

Information

Empirical

Manual

(Paper, Pencil, Slide-
rules, log-tables, ...)

Differential Equations
(D.E.), Algebraic
equations, ...

Conceptual Data Model:
Entity Relationship, UML,
Semantic Web, ...

Statistical: Regression,
Correlations, Bayesian, ...

Computer-assisted
(HPCC, cyber-infrastructure,
data-intensive, big-data)

Computational Simulations using
D.E.s, Agent-based models, etc.

Abstract Data Types (Algebras): Sets, Vectors,
Graphs, Points/Lines/Polygons, Relational
Algebra, XML, ...

Data Mining: frequent patterns, clustering,
decision tree learning, ...

Machine Learning, Computational Statistics:
Lasso, MCMC, kernel density estimation, ...

Exploratory Data Analysis: data visualization,
visual analytics, ...

Spatio-temporal: Spatial statistics, Remote
Sensing, GIS, satScan, change-point detection, ...

Social Networks: ...


Presenter
Presentation Notes
More applications:
Social networks: social behavior of chimpanzees
Sensor networks?



Empirical Models: Traditional Work-flow (CRISP-DM)
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Empirical Models: ]
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Figure 3: Generic tasks (bold) and outputs (italic) of the CRISP-DM reference model
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Process-Empirical Models to mimic Systems: Workflow
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Empirical Models to mimic Systems

» Facilitate interpretation by system modelers
* Reduce violations of system properties,
* 1i.d. assumption in data science

e vs. continuity of physical systems

* Explicit modeling of domain properties
e continuity inside regularizer
e as spatial auto-regression term

* Relate to the goals of model building
* Future system behavior — reduce prediction variance
e Understand a system — reduce bias in parameters



Exogenous Patterns

Interacting external systems,

* e.g., food, energy, water ...
Geographic,

 e.qQ,, location, time, ...
Social,

* e.g., social networks, organization
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Context: Spatiotemporal (ST) Models

e  “Where” and “when” a phenomena occurs?

L]

e A taxonomy of ST footprint: W ml ?
Temporal Spatial W H E N ?
footprint footprint <
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Spatiotemporal change footprint (raster)
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43.7

Where are eco-tones?

9975
Data: NDVI by GIMMS [4], Africa, 1981 August.

— Resolution: 8km. Smoothed within 1x1 degree.
Path: along each longitude (south = north)
Interest measure: (Slope) Sameness degree AVG{A}
— A :unitslope AVG.,{A} 007

Thresholds: a=20% percentile, SD 20.5
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Case Study: Global Data and Ecotones

NDVI of the entire world
e Aug 1-15 1981, 0.07 degree (8km) resolution
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