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Spatial Databases:Representative Projects

Details: Spatial Databases: Accomplishments and Research Needs, IEEE Transactions on
Knowledge and Data Engineering, 11(1), 1999. (and recent update via a technical report)
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Spatial Data Mining:Example Projects

Details: Identifying patterns in spatial information: a survey of methods, Wiley Interdisc.
Reviews: Data Mining and Know. Discovery , 1(3):193-214, May/June 2011
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Outline

Motivation
« Use cases
« Pattern families

Spatial Data Types

Spatial Statistical Foundations
Spatial Data Mining
Conclusions
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Why Data Mining?

Holy Grail - Informed Decision Making
Sensors & Databases increased rate of Data Collection
» Transactions, Web logs, GPS-track, Remote sensing, ..
Challenges:
* Volume (data) >> number of human analysts
« Some automation needed
Approaches
« Database Querying, e.g., SQL3/0OGIS
« Data Mining for Patterns
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Data Mining vs. Database Querying

« Database Querying (e.g., SQL3/0OGIS)

» Does not answer questions about items not in the database!
« EXx. Predict tomorrow’s weather or credit-worthiness of a new customer

* Does not efficiently answer complex questions beyond joins
« Ex. What are natural groups of customers?
« Ex. Which subsets of items are bought together?

- Data Mining may help with above questions!

* Prediction Models
* Clustering, Associations, ...

i
......

i T .
I:i‘li;}patial Computing

UNIVERSITY OF MINNESOTA il Researeh Gio

up »
Driven to Discover . /



Spatial Data Mining (SDM)

* The process of discovering

* interesting, useful, non-trivial patterns
« patterns: non-specialist
» exception to patterns: specialist

» from large spatial datasets

« Spatial pattern families

- Hotspots, Spatial clusters
Spatial outlier, discontinuities
Co-locations, co-occurrences
Location prediction models

it
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Pattern Family 1: Hotspots, Spatial Cluster

« The 1854 Asiatic Cholera in London

Near Broad St. water pump except a brewery

m Pump sites
:ir Deaths from cholera

TURNING POINTS IN SCIENCE

GERM THEORY
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Complicated Hotspots

« Complication Dimensions
 Time
» Spatial Networks

« Challenges: Trade-off b/w
« Semantic richness and

* Scalable alaorithms
[ 4 . r"; N
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Pattern Family 2: Spatial Outliers

« Spatial Outliers, Anomalies, Discontinuities
e Traffic Data in Twin Cities Average Traffic Volume(Time v.s. Station)
- Abnormal Sensor Detections IR .. .1 L
' [ : 1 |
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Source: A Unified Approaéh/td Detecting Spatial Outliers, Geolnformatica, 7(2), Springer, June 2003.
(A Summary in Proc. ACM SIGKDD 2001) with C.-T. Lu, P. Zhang.
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Pattern Family 3: Predictive Models

Nest sites for 1995 Darr location
T T

* Location Prediction: ;

« Predict Bird Habitat Prediction W —

Thg . Nest sites

« Using environmental variables e~y
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Family 4: Co-location, Co-occurrence

m Pump sites
:i: Deaths from cholera

» Co-location ( Cholera Deaths, Water Pump)
* Hypothesis: Cholera is water-borne (1854)
* Miasama theory => Germ Theory

» Co-location (Liver Cancer, HBV infection) Y,
* Which exposures and cancers are co-located?
 Challenge: Large number of candidate pairs!

Geographic Distribution of Chronic
HEBVY Infection
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Family 4. Co-locations/Co-occurrence

 Given: A collection of @ & e ﬁﬂf B L Y

different types of i £ o 2 oY

! 2 ® &

spatial events L F Py ﬁ%

» Find: Co-located & - A
subsets of event

types

Answers: s% B and N %\,
e~

e

&
£,
o

Source: Discovering Spatial Co-location Patterns: A General Approach, IEEE Transactions
on Knowledge and Data Eng., 16(12), December 2004 (w/ H.Yan, H.Xiong).
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What's NOT Spatial Data Mining (SDM)

« Simple Querying of Spatial Data

* Find neighbors of Canada, or shortest path from Boston to Houston

« Testing a hypothesis via a primary data analysis
« Ex. Is cancer rate inside Hinkley, CA higher than outside ?
« SDM: Which places have significantly higher cancer rates?

* Uninteresting, obvious or well-known patterns
« Ex. (Warmer winter in St. Paul, MN) => (warmer winter in Minneapolis, MN)
« SDM: (Pacific warming, e.g. El Nino) => (warmer winter in Minneapolis, MN)

* Non-spatial data or pattern
« Ex. Diaper and beer sales are correlated
« SDM: Diaper and beer sales are correlated in blue-collar areas (weekday evening)

i
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Review Quiz: Spatial Data Mining

» Categorize following into queries, hotspots, spatial outlier, colocation,
location prediction:

(a) Which countries are very different from their neighbors?

(b) Which highway-stretches have abnormally high accident rates ?
(c) Forecast landfall location for a Hurricane brewing over an ocean?
(d) Which retail-store-types often co-locate in shopping malls?

(e) What is the distance between Beijing and Chicago?

i
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Outline

 Motivation

« Spatial Data
» Spatial Data Types & Relationships
* OGIS Simple Feature Types

« Spatial Statistical Foundations
« Spatial Data Mining
* Conclusions
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Data-Types: Non-Spatial vs. Spatial

* Non-spatial
* Numbers, text-string, ...
* e.g., city name, population

» Spatial (Geographically referenced)
- Location, e.g., longitude, latitude, elevation
- Neighborhood and extent

» Spatial Data-types
- Raster: gridded space
- Vector: point, line, polygon, ...
- Graph: node, edge, path

UNIVERSITY OF MINNESOTA EEJ}Research i 1 ‘
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Relationships: Non-spatial vs. Spatial

* Non-spatial Relationships
« Explicitly stored in a database
« Ex. New Delhi India

» Spatial Relationships
« Implicit, computed on demand
« Topological: meet, within, overlap, ...
* Directional: North, NE, left, above, behind, ...
Metric: distance, area, perimeter
Focal: slope
Zonal: highest point in a country

it
......
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OGC Simple Features

* Open GIS Consortium: Simple Feature Types
* Vector data types: e.g. point, line, polygons
« Spatial operations :

Operator Type Operator Name

Basic Function SpatialReference, Envelope,
Boundary, Export,

IsEmpty, IsSimple

Topological/Set Operations | Equal, Disjoint, Intersect, Touch,

Cross, Within, Contains, Overlap

Spatial Analysis Distance, Buffer, ConvexHull,

Intersection, Union, Difference,
SymmDiff

Examples of Operations in OGC Model

it
......

tial Con:putin .

UNIVERSITY OF MINNESOTA

/i Research Group y
Driven to Discover* '- /



OGIS - Topological Operations

- Topology: 9-intersections Interior(B)  Boundary(B) Exterior(B)
* interior (4°NB°)(A°NEB)(A° N B") |interior(A)
* boundary (6AN B°)(6ANEB) (64N B~) |Boundary(A)
* exterior (4"NB°) (4 N3B) (4~ N B") JExterior(A)
Topological .
Relationship % % % @
disjoint meet overlap equal
9-intersection 001 061 111 100
model
001 011 111 010
111 111 111 001

(IR - L N
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Research Needs for Data

* Limitations of OGC Model

« Direction predicates - e.g. absolute, ego-centric
« 3D and visibility, Network analysis, Raster operations
» Spatio-temporal

* Needs for New Standards & Research
* Modeling richer spatial properties listed above
« Spatio-temporal data, e.g., moving objects

i
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Outline

* Motivation
« Spatial Data Types

« Spatial Statistical Foundations
« Spatial Auto-correlation

* Heterogeneity
« Edge Effect

« Spatial Data Mining
e Conclusions
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Limitations of Traditional Statistics

Classical Statistics
« Data samples: independent and identically distributed (i.i.d)

« Simplifies mathematics underlying statistical methods, e.g., Linear Regression

Spatial data samples are not independent
« Spatial Autocorrelation metrics

 distance-based (e.g., K-function), neighbor-based (e.g., Moran’s |)
« Spatial Cross-Correlation metrics

Spatial Heterogeneity
« Spatial data samples may not be identically distributed!
* No two places on Earth are exactly alike!

i
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Spatial Statistics: An Overview

* Point process
« Discrete points, e.g., locations of trees, accidents, crimes, ...
« Complete spatial randomness (CSR): Poisson process in space
« K-function: test of CSR

« Geostatistics
- Continuous phenomena, e.g., rainfall, snow depth, ...
- Methods: Variogram measure how similarity decreases with distance
- Spatial interpolation, e.g., Kriging

« Lattice-based statistics
- Polygonal aggregate data, e.g., census, disease rates, pixels in a raster
- Spatial Gaussian models, Markov Random Fields, Spatial Autoregressive Model

i
......
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Spatial Autocorrelation (SA)

» First Law of Geography

« All things are related, but nearby things are more related than distant things. [Tobler70]

» Spatial autocorrelation
« Traditional i.i.d. assumption is not valid
« Measures: K-function, Moran’s |, Variogram, ...

B @222 s

Independent, Identically Distributed pixel
property
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Spatial Autocorrelation: K-Function

* Purpose: Compare a point dataset with a complete spatial random (CSR) data

* |nput: A set of points
K(h,data) = A" E[number of events within distance / of an arbitrary event]

* where A is intensity of event

* Interpretation: Compare k(h, data) with K(h, CSR) = [ fmicz™
* K(h, data) = k(h, CSR): Points are CSR
> means Points are clustered e ° 3
< means Points are de-clustered 2o
e | [, P —
- * 5 i . . : : : ‘ : : 20 8 10 12
'i. -'; ;"..“ ________ Distance h
CSR Clustered De-clustered
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Cross-Correlation

* Cross K-Function Definition
K;i(h) = /1;1 E [number of type j event within distance 4
of a randomly chosen type i event]
* Cross K-function of some pair of spatial feature types
 Example
* Which pairs are frequently co-located
 Statistical significance

s
------
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Recall Pattern Family 4: Co-locations

+ Given: A collection of o P W,
different types of Rl i o
spatial events L g Py ﬁ%

» Find: Co-located & - A
subsets of event
types

Answers: s% B and N %\,
e~

e

i‘ & Co-location Patterns — Sample Data
i
=

&
£,
o

Source: Discovering Spatial Co-location Patterns: A General Approach, IEEE Transactions
on Knowledge and Data Eng., 16(12), December 2004 (w/ H.Yan, H.Xiong).
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lllustration of Cross-Correlation

 lllustration of Cross K-function for Example Data
Cross—K function of pairs of spatial features

1000
—o— y=pi*h?
goof | = ¥ —
c | | B S
2 i oD
Q Y U, % .«x .;' -
< 600 ¥ o |
xl l‘ l_f }
% 400t Vi
© —\ /
200+t “

Distance h
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Spatial Heterogeneity

« “Second law of geography” [M. Goodchild, UCGIS 2003]

» Global model might be inconsistent with regional models
» Spatial Simpson’s Paradox

« May improve the effectiveness of SDM, show support regions of a pattern

o) ~. © _
o 4 ~ V]
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Edge Effect

« Cropland on edges may not be classified as outliers
* No concept of spatial edges in classical data mining

X = ot ~a .
= £ = - /%ot e cumer

Korea Dataset, Courtesy:
Architecture Technology
Corporation
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Research Challenges of Spatial Statistics

« State-of-the-art of Spatial Statistics —_—_
SPATIO-TEMPORAL
Point Lattice | Geostatistics DA’ IJ A
Process L

raster \/ \/
Vector Point \ \ v
Line N

Polygon \ \ s |

Statistical Methods

graph for Spatio-Temporal

Data Types and Statistical Models
 Research Needs
« Correlating extended features, road, rivers, cropland
» Spatio-temporal statistics
« Spatial graphs, e.g., reports with street address

Barbel Finkenstadt
Leonhard Hedd
Vaderie Isham

* Paorma A Ml X hv
u.
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Outline

« Motivation

« Spatial Data Types

« Spatial Statistical Foundations
« Spatial Data Mining

» Location Prediction
* Hotspots

» Spatial Outliers

» Colocations

 Conclusions
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lllustration of Location Prediction Problem

Vegetation distribution across the marshland

Nest sites for 1995 Darr location

Nest Locations | ' '
x
. NeSt Locations ™ |
10 B ™ h
x * x
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o o 2
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x X x
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Decision Tree

Inputs: table of records
Output: Decision Tree

—h
| <

vs. Spatial Decision Tree

Inputs: feature n class maps, (rook) neighborhood
Output: Spatial Decision Tree

OO |Ir | |TIMMOIO|IZIZ|IR]|—IO|0|m|>|O
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feature test
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— Focal function I,
11(.3(.3].3[.3[ 1
information gain ;3 ';’ % % '; ;3

f, <1
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Neighbor Relationship: W Matrix

A A B C D A B C D
ir y | [ ¢ i |

Al0O 1 0 O A|l0O 1 0 O

. B|1 0 1 1 B (0.3 0 0.3 0.3

c|{o 1 0 1 C({0 05 0 0.5

C D D|o 1 1 0 D|0 05050
(a) Map (b) Boolean W (c) Row-normalized W
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Location Prediction Models

* Traditional Models, e.g., Regression (with Logit or Probit),
Bayes Classifier, ..

« Spatial Models
« Spatial autoregressive model (SAR)
« Markov random field (MRF) based Bayesian Classifier

Classical Spatial
y=Xp+¢ y=pWy+Xp+e
. . Pr(C)Pr(X,C, |c.
P )= MELGIPUE) Ty - OIS CI6)
Pr(X) Pr(X,C,)

s
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Comparing Traditional and Spatial Models

« Dataset: Bird Nest prediction
* Linear Regression
Lower prediction accuracy, coefficient of determination,
Residual error with spatial auto-correlation
« Spatial Auto-regression outperformed linear regression

Truth Positive Rate

ROC Curve for testing data(Stubble marshland

1995)

1

ROC Curve for learning data(Darr marshland 1995)
T T -

0.9f

0.8f

=]
~
T

o
=)

ROC Curve
for learning

Truth Positive Rate
o o
IS o0

1 | 1 1

ROC Curve
for testing

Classical Regression |
Spatial Regression

03}
0.2
- = = Classical Regression
— Spatial Regression o1l
N J
\"
1 1 1 0 .
0.5 0.6 0.7 0.8 0.9 1 0 041

0.3 04
False Positive Rate

0.2 0.3 0.4

False Positive Rate
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Modeling Spatial Heterogeneity: GWR

» Geographically Weighted Regression (GWR)
 Goal: Model spatially varying relationships
- Example: y = X/)’ + &
Where /3 and £ are location dependent

Bo + B Population + B2 Income Crime

‘%patlal Computln 9
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Research Needs for Location Prediction

« Spatial Auto-Regression

« Estimate W

* Scalingissue  pWy vs. X[
» Spatial interest measure

* e.g., distance(actual, predicted)

P Legend
A PIP A PlA ® = pest location
P |p A = actual nest in pixel
o ¥ P = predicted nest in pixel
A A A A A A
(a) () (c) (d)
Actual Sites Pixels with Prediction 1 Prediction 2.
actual sites Spatially more interesting

than Prediction 1

nu”ig.}y |
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Outline

« Motivation

« Spatial Data Types

« Spatial Statistical Foundations
« Spatial Data Mining

* Location Prediction
* Hotspots

» Spatial Outliers

» Colocations

 Conclusions
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Limitations of K-Means

» K-Means does test Statistical Significance
* Finds chance clusters in complete spatial randomness (CSR)

e Ten. P yr e e s
- e .

-t . T v, PR N S R T T RS
o+ -

e %l s Y T Y e e e e s

oooooooo

........

........

Classical
Clustering

Spatial
Clustering

J HYTF'

(3
1“Ei‘:.llpatial Com‘putin g
UNIVERSITY OF MINNESOTA . | Research Gro

up -
Driven to Discover : /



Spatial Scan Statistics (SatScan)

» Goal: Omit chance clusters
» |deas: Likelihood Ratio, Statistical Significance

» Steps
« Enumerate candidate zones & choose zone X with highest likelihood ratio (LR)
LR(X) = p(H1|data) / p(HO|data)
« HO: points in zone X show complete spatial randomness (CSR)
 H1: points in zone X are clustered

« If LR(Z) >> 1 then test statistical significance
« Check how often is LR( ) > LR(2)
using 1000 Monte Carlo simulations

it
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SatScan Examples

Complete Spatial Randomness Data with a hotspot
Output: No hotspots ! Output: A hotspot!
Highest LR circle p-value = 0.128 p-value = 0.001
00r K . ° 3 ' N

o % . ° ° o :

80r o o 3

70r . T ° o ° o 3

sl o o S % I ) povaesogor
| T .. Tt )

30r °‘~O-' o )

20 ° o o °O °° ° )

10 ° c? o o °° )

0 ° ,’?O © ° ) o i o on
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i Number of cases: 144

¢ P-value: 0.001

1854 London Cholera
Output: A hotspot!
p-value = 0.001

Expected cases: 62.13
Log likelihood ratio: 60.37
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Complex Hotspots
Semantic Gap between Spatial and Machine Learning

* Environmental Criminology
* Routine Activities Theory, Crime Pattern Theory, Doughnut Hole pattern

* Formulation: rings, where inside density is significantly higher than outside ...

L_Input _ Output: Ring Shaped 2

Hotspot Detection (RHD) g'r‘l‘g"i:g'lng;t::‘d

Crime Analysis

.
-
o Count {c)= 4
A - LR, = 23.02 )
) \ A ® ¥
i p-valve = 0.04 y - % ‘.'%
Count (c) = 4 ® S AL
LRs = 10.61 ' s

Mathematics Concepts Relationships

Sets Set Theory Member, set-union, set-difference, ...

Vector Space Linear Algebra Matrix & vector operations

Euclidean Spaces Geometry Circle, Ring, Polygon, Line_String, Convex hull, ...
Boundaries, Topology, Interior, boundary, Neighbor, inside, surrounds, ...,
Graphs, Graph Theory, Nodes, edges, paths, trees, ...

Spatial Graphs Spatial graphs, ... Path with turns, dynamic segmentation, ...

-Shaped Hotspot Detection: A Summary of Results, IEEE ICDM 2014 (w/ E. Eftelioglu et al.



Spatial-Concept/Theory-Aware Clusters

« Spatial Theories, e.g,, environmental criminology
* Circles = Doughnut holes | >

* Geographic features, e.g., rivers, streams, roads, ..
* Hot-spots => Hot Geﬁraphic-features

: \$ 4
: F\
: | -3\
- | ~. | s\
\ \
n. “{ P ’I
e e . Yl““' i_ ¢ . a b
. ./ 3 . I.Q..’// » - ;/:0
’ ) { A\ , o NA ' Y e
(a) Input (b) Crimestat K-means with Eu- (c) Crimestat K-means with (d) KMR
clidean Distance Network Distance

Source: A K-Main Routes Approach to Spatial Network Activity Summarization,
IEEE Transactions on Knowledge and Data Eng., 26(6), 2014.)
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Outline

« Motivation

« Spatial Data Types

« Spatial Statistical Foundations
« Spatial Data Mining

* Location Prediction
* Hotspots

» Spatial Outliers

» Colocations
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Outliers: Global (G) vs. Spatial (S)

Average Traffic Volume(Time v.s. Station)
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Outlier Detection Tests: Variogram Cloud

» Graphical Test: Variogram Cloud

Original Data Points Variogram Cloud
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Outlier Detection - Scatterplot

« Quantitative Tests: Scatter Plot

Original Data Points Scatter Plot
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Outlier Detection Test: Moran Scatterplot

» Graphical Test: Moran Scatter Plot

Original Data Points
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Moran Scatter Plot
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Outlier Detection Tests: Spatial Z-test

* Quantitative Tests: Spatial Z-test
« Algorithmic Structure: Spatial Join on neighbor relation

Original Data Points Outliers Detected Using Spatial Test
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Spatial Outlier Detection: Computation

« Separate two phases
« Model Building
« Testing: test a node (or a set of nodes)

« Computation Structure of Model Building
» Key insights:
« Spatial self join using N(x) relationship
« Algebraic aggregate function computed in one scan of spatial join

it
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Trends in Spatial Outlier Detection

» Multiple spatial outlier detection
- Eliminating the influence of neighboring outliers

« Multi-attribute spatial outlier detection
« Use multiple attributes as features

» Scale up for large data
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Outline

« Motivation

« Spatial Data Types

« Spatial Statistical Foundations
« Spatial Data Mining

* Location Prediction
* Hotspots

» Spatial Outliers

» Colocations

 Conclusions

T
......

g
i ;
H}%patial Computing

UNIVERSITY OF MINNESOTA ] Resifiren'ciSip
Driven to Discover - /




Learning Objectives

 After this segment, students will be able to
 Contrast colocations and associations
 Describe colocation interest measures
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Background: Association Rules

» Association rule e.g. (Diaperin T => Beer in T)

Transaction Items Bought

1 {socks, n, milk, E‘ , beef, egg, ...}

2 {pillow, Ei, toothbrush, ice-cream, muffin, ...}
3 { B, E"" , pacifier, formula, blanket, ...}

n {battery, juice, beef, egg, chicken, ...}

«  Support: probability (Diaper and Beerin T) = 2/5
« Confidence: probability (Beer in T | Diaperin T) = 2/2

« Apriori Algorithm

«  Support based pruning using monotonicity

"""""
i 4 =
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Association Rules Limitations

« Transaction is a core concept!
* Support is defined using transactions
« Apriori algorithm uses transaction based Support for pruning

Transaction Items Bought
1 {socks, w, milk, E“ ; beef, egg, ...}
2 {pillow, Ej, toothbrush, ice-cream, muffin, ...}
3 { &, E" , pacifier, formula, blanket, ...}
Al Cl

Bl

 However, spatial data is embedded in continuous space ..
« Transactionizing continuous space is non-trivial ! 5
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Spatial Association Rule vs. Colocation

« Spatial Association Rule (Han 95)
« Output = (B,C) a1
Al c1 » Transactions by Reference feature C
o Transactions: (C1, B1), (C2, B2) X5
Support (A.B) = &, Support(B,C)=2 /2 = 1 : <
_ - e Cross-K Function
i Cross-K (A, B) =2/4=0.5
Cross-K(B, C) =2/4=0.5
Input = Spatial Output = (A,B), (B, C) Al Cl
feature A,B, C, : : ks i P
& their » Colocation - Neighborhood graph -
. A2
Instances Output = (A,B), (B, C)
PI(A,B) = min(2/2,1/2) = 0.5 B2 %
PI(B,C) = min(2/2,2/2) = 1 o
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Spatial Association vs. Cross-K Function

« Spatial Association Rule (Han 95)
° Output = (B,C) with threshold 0.5
- - « Transactions by Reference feature, e.g. C Al
Bl Transactions: (C1, B1), (C2, B2)
Support (A.B) = & D —
-~ Support(B,C)=2/2 =1
c2
» Cross-K Function
Input = Feature Cross-K (A, B) =2/4=0.5
- Cross-K(B, C) =2/4 =0.5 Al cl
A’B’ and, C, & Cross-K(A,C)=0 e B1 /
instances A1, A2, e
B1, B2, C1, C2 A2
Output = (A,B), (B, C) with threshold 0.5 e \
c2

i 1 | ;
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Spatial Colocation

Features: A.B.C A1 -
Feature Instances: Al, A2, B1, B2, C1, C2 Ea i /
Feature Subsets: (A,B), (A,C), (B,C), (A,B,C) —~
Participation ratio (pr):
pr(A, (A,B)) = fraction of A instances neighboring feature {B} =2/2 =1 \
pr(B, (A,B))=1%=0.5 c2

Participation index (A,B) = pi(A,B) = min{ pr(A, (A,B)), pr(B, (A,B)) } =min (1, %2 ) =0.5
pi(B, C) = min{ pr(B, (B,C)), pr(C, (B,C)) } =min (1,1)=1

Participation Index Properties:

(1) Computational: Non-monotonically decreasing like support measure

(2)_Statistical: Upper bound on Ripley’s Cross-K function
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Participation Index >= Cross-K Function

Bl @——A Al Bl @——A Al B.1 Al

AA3 A3 A3
B2 @——A A2 B.2 A2 B.2 A2

Cross-K (A,B)

PI (A,B)
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Association Vs. Colocation

Associations Colocations
underlying space Discrete market baskets
event-types item-types, €.g., Beer
collections Transaction (T)

prevalence measure | Support, e.g., Pr.[ Beer in T]

conditional Pr.[ Beerin T | Diaper in T ]
probability measure
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Spatial Colocation: Trends

» Algorithms

» Join-based algorithms
One spatial join per candidate colocation

« Join-less algorithms

* Spatio-temporal
* Which events co-occur in space and time?
« (bar-closing, minor offenses, drunk-driving citations)
*  Which types of objects move together?

it
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Cascading spatio-temporal pattern (CSTP)

TimeT1 TimeT2 TimeT3 Aggregate(T1,T2,T3)
A ] A
® ]
A A g
O A ] = N - A‘ =
A H A
® Bar Closing(B) A Assault(A) B Drunk Driving (C)

O /nput: Urban Activity Reports

Q Output: CSTP CSTP: P1
Q Partially ordered subsets of ST event types. C
U Located together in space.
U Occur in stages over time.

U Applications: Public Health, Public Safety, ...

Details: Cascading Spatio-Temporal Pattern Discovery, IEEE Trans. on Know. & Data Eng, 24(11), 2012.
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MDCOP Motlvatln Exam nle :

®
Manpack stinger
.AY " " 14 | p g
. (2 Objects)

MI1A1 tank
(3 Objects)

M2 _IFV
(3 Oiets)

Field Marker
(6 Objects)

® T80 tank
(2 Objects)

BRDM_ATS
(enemy) (1 Object)



MDCOP Motlvatlng Example : Output

‘ 4Y T' b AR ® Manpack stinger
e | : (2 Objects)

-

MI1A1 tank
(3 Objects)

M2 _IFV

Field Marker
(6 Objects)

® T80 tank
(2 Objects)

BRDM_ATS5
(enemy) (1 Object)
' N
Details: Mixed-Drove Spatiotemporal 5 Occufrence P§ ' : l\ ol
IEEE Transactions on Knowledgeand Data,En gineering ' Rt .
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Outline

 Motivation
 Use cases
o Pattern families

« Spatial Data Types

« Spatial Statistical Foundations
« Spatial Data Mining

e Conclusions
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Summary

What's Special About Mining Spatial Data ?

Spatial DM

Input Data Often implicit
relationships, complex

types

Statistical Foundation

Output | Association

Clusters

Outlier

Prediction
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