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Spatial Computing Examples

Smarter
Planet



Deconstructing Precision 
Agriculture
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Csci 5715: Spatial Computing
www.spatial.cs.umn.edu/Courses/Fall17/5715/
• Computing in Navigation, e.g., Google Maps
• Spatial Database Management (SQL3/OGC) 
• Spatial Data Mining 
• Positioning, e.g., GPS, wi-fi
• Computing in Cartography & Remote Sensing

Csci 8715: Spatial Data Science Research
www.spatial.cs.umn.edu/Courses/Spring18/8715/
• Data-driven Sciences: food, energy, water, climate, smart 

cities, connected cars, spatial thinking, …
• Spatial Data Sciences: data models, query languages, 

spatial networks, spatial data mining & optimization, …
• Platforms from sensors to cloud
• Trends: spatio-temporal big data, indoors, GPS III, continuous 

earth observation, accountability, fairness, …

Courses
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Spatial Databases:Representative Projects

only in old plan
Only in new plan 
In both plans

Evacutation Route Planning
Parallelize 

Range 
Queries

Eco-Routing Storing graphs on disk

Details: Spatial Databases: Accomplishments and Research Needs, IEEE Transactions on 
Knowledge and Data Engineering, 11(1), 1999. (and recent update via a technical report)
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Spatial Data Mining:Example Projects

Nest locations Distance to open water

Vegetation durability Water depth

Location prediction: nesting sites Spatial outliers:  sensor (#9) on I-35

Co-location Patterns

Input: k = 4, 43 fatalities

KMR

Euclidean Distance

Network Distance

Spatial Network Activity Summarization

Details: Identifying patterns in spatial information: a survey of methods,  Wiley Interdisc. 
Reviews: Data Mining and Know. Discovery , 1(3):193-214, May/June 2011
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Why Data Mining?

• Holy Grail - Informed Decision Making

• Sensors & Databases increased rate of Data Collection

• Transactions, Web logs, GPS-track, Remote sensing, …

• Challenges:

• Volume (data) >> number of human analysts

• Some automation needed

• Approaches

• Database Querying, e.g., SQL3/OGIS

• Data Mining for Patterns

• …



Spatial Data Mining (SDM)

• The process of discovering
• interesting, useful, non-trivial patterns

• patterns: non-specialist

• exception to patterns: specialist

• from large spatial datasets

• Spatial pattern families
– Hotspots, Spatial clusters

– Spatial outlier, discontinuities

– Co-locations, co-occurrences

– Location prediction models

– …



Pattern Family 1: Hotspots, Spatial Cluster

• The 1854 Asiatic Cholera in London
• Near Broad St. water pump except a brewery



Impact of Snow’s Map

Discover Patterns, 
Generate Hypothesis

Test Hypothesis
(Experiments)

Develop 
Theory

Remove pump handle Germ Theory

1854: What 
causes Cholera?

Collect & 
Curate Data

? water pump
Impact: 
sewage system,  
drinking water supply 
…

Q? What are Choleras of today?
Q? How may Spatial Data Sc. Help?



Complicated Hotspots

• Complication Dimensions
• Time

• Spatial Networks

• Challenges: Trade-off b/w 
• Semantic richness and 

• Scalable algorithms



Pattern Family 2: Spatial Outliers

• Spatial Outliers, Anomalies, Discontinuities
• Traffic Data in Twin Cities

• Abnormal Sensor Detections

• Spatial and Temporal Outliers

Source:  A Unified Approach to Detecting Spatial Outliers, GeoInformatica, 7(2), Springer, June 2003.
(A Summary in Proc. ACM SIGKDD 2001) with C.-T. Lu, P. Zhang. 



Pattern Family 3: Predictive Models

• Location Prediction: 
• Predict Bird Habitat Prediction

• Using environmental variables

Details: Spatial Contextual Classification and Prediction Models for Mining Geospatial Data, S. Shekhar et al.,
IEEE Transactions on Multimedia, 4(2):174 - 188. 10.1109/TMM.2002.1017732.



Colocation Example

• Cholera death, Broad Street water pump (1854, London)
• Higher Lung-cancer mortality (white males, 1950-69), WW2 ship building ( Asbestos )

• Food deserts, increased rate of obesity & cancer
• …

Sources: A. Jemal et al., “Recent Geographic Patterns of Lung Cancer and Mesothelioma Mortality Rates in 49 Shipyard 
Counties in the U.S., 1970-94”, Am J. Ind. Med. 2000, 37(5):512-21.

E. Paskett, Place as a rick factor: how Geography shapes where cancer strikes, Elektra Paskett,  
www.nyp.org/cancer/cancerprevention/cancer-prevention-articles/029-how-geography-shapes-where-cancer-strikes;

B. Tedeschi, Breaking the cycle of despair: One woman's battle for the health of Appalachia, June 20, 2016. 
https://www.statnews.com/2016/06/20/breaking-cycle-despair-one-womans-battle-health-appalachia/



Family 4: Co-locations/Co-occurrence

• Given: A collection of 
different types of 
spatial events

• Find: Co-located 
subsets of event 
types

Source:  Discovering Spatial Co-location Patterns: A General Approach, IEEE Transactions 
on Knowledge and Data Eng., 16(12), December 2004 (w/ H.Yan, H.Xiong). 



What’s NOT Spatial Data Mining (SDM)

• Simple Querying of Spatial Data
• Find neighbors of Canada, or shortest path from Boston to Houston

• Testing a hypothesis via a primary data analysis
• Ex. Is cancer rate inside Hinkley, CA higher than outside ?
• SDM: Which places have significantly higher cancer rates?

• Uninteresting, obvious or well-known patterns
• Ex. (Warmer winter in St. Paul, MN) => (warmer winter in Minneapolis, MN)
• SDM: (Pacific warming, e.g. El Nino) => (warmer winter in Minneapolis, MN)

• Non-spatial data or pattern
• Ex. Diaper  and beer sales are correlated 
• SDM: Diaper and beer sales are correlated in blue-collar areas (weekday evening)
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Data-Types: Non-Spatial vs. Spatial

• Non-spatial 
• Numbers, text-string, …
• e.g., city name, population

• Spatial (Geographically referenced)
– Location, e.g., longitude, latitude, elevation

– Neighborhood and extent

• Spatial Data-types
– Raster: gridded space

– Vector: point, line, polygon, …

– Graph: node, edge, path

Raster (Courtesy: UMN)

Vector (Courtesy: MapQuest)



Relationships: Non-spatial vs. Spatial

• Non-spatial Relationships
• Explicitly stored in a database
• Ex. New Delhi is the capital of India 

• Spatial Relationships
• Implicit, computed on demand
• Topological: meet, within, overlap, …
• Directional: North, NE, left, above, behind, …
• Metric: distance, area, perimeter
• Focal: slope
• Zonal: highest point in a country
• …



OGC Simple Features 

• Open GIS Consortium: Simple Feature Types
• Vector data types: e.g. point, line, polygons
• Spatial operations :

Examples of Operations in OGC Model



OGIS – Topological Operations

• Topology: 9-intersections 
• interior
• boundary 
• exterior

Interior(B) Boundary(B) Exterior(B)

Interior(A)

Boundary(A)
Exterior(A)



Research Needs for Data

• Limitations of OGC Model
• Direction predicates - e.g. absolute, ego-centric
• 3D and visibility, Network analysis, Raster operations
• Spatio-temporal

• Needs for New Standards & Research
• Modeling richer spatial properties listed above
• Spatio-temporal data, e.g., moving objects
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Limitations of Traditional Statistics

• Classical Statistics 
• Data samples: independent and identically distributed (i.i.d)

• Simplifies mathematics underlying statistical methods, e.g., Linear Regression

• Spatial data samples are not independent
• Spatial Autocorrelation metrics

• distance-based (e.g., K-function), neighbor-based (e.g., Moran’s I)
• Spatial Cross-Correlation metrics

• Spatial Heterogeneity
• Spatial data samples may not be identically distributed!
• No two places on Earth are exactly alike!

• …



Spatial Statistics: An Overview

• Point process
• Discrete points, e.g., locations of trees, accidents, crimes, …
• Complete spatial randomness (CSR): Poisson process in space
• K-function: test of CSR

• Geostatistics
– Continuous phenomena, e.g., rainfall, snow depth, …
– Methods: Variogram measure how similarity decreases with distance
– Spatial interpolation, e.g., Kriging

• Lattice-based statistics
– Polygonal aggregate data, e.g., census, disease rates, pixels in a raster
– Spatial Gaussian models, Markov Random Fields, Spatial Autoregressive Model



Spatial Autocorrelation (SA)

• First Law of Geography 
• All things are related, but nearby things are more related than distant things. [Tobler70]

• Spatial autocorrelation
• Traditional i.i.d. assumption is not valid
• Measures: K-function, Moran’s I, Variogram, …

Independent, Identically Distributed pixel 
property

Vegetation Durability with SA



Spatial Autocorrelation: K-Function

• Purpose: Compare a point dataset with a complete spatial random (CSR) data

• Input: A set of points

• where λ is intensity of event

• Interpretation: Compare k(h, data) with K(h, CSR)
• K(h, data) = k(h, CSR): Points are CSR

> means Points are clustered
< means Points are de-clustered 

EdatahK 1),( -= l [number of events within distance h of an arbitrary event]

CSR Clustered De-clustered



Cross-Correlation

• Cross K-Function Definition

• Cross K-function of some pair of spatial feature types
• Example

• Which pairs are frequently co-located
• Statistical significance

EhK jji
1)( -= l [number of type j event within distance h

of a randomly chosen type i event]



Recall Pattern Family 4: Co-locations

• Given: A collection of 
different types of 
spatial events

• Find: Co-located 
subsets of event 
types

Source:  Discovering Spatial Co-location Patterns: A General Approach, IEEE Transactions 
on Knowledge and Data Eng., 16(12), December 2004 (w/ H.Yan, H.Xiong). 



Illustration of Cross-Correlation

• Illustration of Cross K-function for Example Data

Cross-K Function for 
Example Data



Spatial Heterogeneity

• “Second law of geography” [M. Goodchild, UCGIS 2003]
• Global model might be inconsistent with regional models

• Spatial Simpson’s Paradox

• May improve the effectiveness of SDM, show support regions of a pattern



Spatial Heterogeneity: Gerrymandering

• Space partitioning affects statistical results!
– Gerrymandering Elections
– Gini-Index, Entropy
– Associations & correlations
– Modifiable Areal Unit Problem (MAUP)

Gini-Index 0.47 0.47 0 0.36

Entropy 0.97 0.97 0 0.77

Election Results 0 - 5 2 - 3 3 - 2

Partition Based 
Pearson’s Correlation

- -0.90
- 1

Partition



Neighbor Relationship vs. Space Partitioning

● Neighbor relationship graph 
● Honors continuity of geographic space methods 
● Partitions miss spatial interactions

(a) a map of 3 features (b) Spatial Partitions (c) Neighbor graph

Pearson’s Correlation 
(Partition based)

Ripley’s cross-K

- -0.90 0.33

- 1 0.5



Edge Effect

• Cropland on edges may not be classified as outliers
• No concept of spatial edges in classical data mining

Korea Dataset, 
Courtesy: Architecture Technology Corp. 



Research Challenges of Spatial Statistics

• State-of-the-art of Spatial Statistics

• Research Needs
• Correlating extended features, road, rivers, cropland
• Spatio-temporal statistics
• Spatial graphs, e.g., reports with street address

Data Types and Statistical Models



Outline

• Motivation

• Spatial Data Types

• Spatial Statistical Foundations

• Spatial Data Mining
• Location Prediction

• Hotspots

• Spatial Outliers

• Colocations

• Conclusions



Illustration of Location Prediction Problem

Nest Locations

Vegetation Index

Water Depth Distance to Open Water



Neighbor Relationship: W Matrix



Location Prediction Models

• Traditional Models, e.g., Regression  (with Logit or Probit), 
• Bayes Classifier, …

• Spatial Models
• Spatial autoregressive model (SAR)
• Markov random field (MRF) based Bayesian Classifier

eb += Xy

)Pr(
)Pr()|Pr()|Pr(

X
CCXXC ii

i =

ebr ++= XyWy

),Pr(
)|,Pr()Pr(),|Pr(

N

iNi
Ni CX

cCXCCXc =



Traditional Spatial

Decision Trees Spatial Decision Trees

Neural Networks Convolutional Neural Networks

Location Prediction Models

• Traditional Models, e.g., Regression  (with Logit or Probit), 
• Linear Regression, Bayes Classifier, …

• Semi-Spatial : auto-correlation regularizer

• Spatial Models
• Spatial autoregressive model (SAR)
• Markov random field (MRF) based Bayesian Classifier

eb += Xy

)Pr(
)Pr()|Pr()|Pr(

X
CCXXC ii

i =

ebr ++= XyWy

),Pr(
)|,Pr()Pr(),|Pr(

N

iNi
Ni CX

cCXCCXc =

	𝜀 = 	 𝑦 − 𝑋𝛽 ( + 𝑦 − 𝑦*+,-./01
(

	𝜀 = 	 𝑦 − 𝛽𝑋 ( + 𝛽𝑋 − 𝛽𝑋*+,-./01
(



Comparing Traditional and Spatial Models

• Dataset: Bird Nest prediction
• Linear Regression 

• Lower prediction accuracy, coefficient of determination, 
• Residual error with spatial auto-correlation

• Spatial Auto-regression outperformed linear regression

ROC Curve
for learning

ROC Curve 
for testing



Prediction Error and Bias Trade-off

• Linear Regression (LR): Least Squares estimator

• LR with Auto-correlation Regularizer
• Least squares estimator

• Spatial Auto-Regression: 
• Maximum Likelihood Estimator

Source: Geospatial Data Science: A Transdisciplinary Approach. In Geospatial Data Science Techniques and 
Applications (pp. 17-56). CRC Press, 2017 (E. Eftelioglu,R.  Ali, X. Tang., Y. Xie, Y., Li and S. Shekhar).

eb += Xy

ebr ++= XyWy

eb += Xy
	𝜀 = 	 𝑦 − 𝛽𝑋 ( + 𝛽𝑋 − 𝛽𝑋*+,-./01

(

Bias

LR: Linear Regression

Spatial 
Auto-

Regression

LR with
Auto-correlation

Regularizer



Spatial Decision Tree

(a) aerial photo (b) aerial photo (c) true classes (d) DT prediction

45

wetland dry land

Input: Output:

(e) SDT prediction

DT: decision tree
SDT: spatial decision tree

Training samples: upper half
Test samples: lower half
Spatial neighborhood: maximum 11 pixels by11 pixels

Details: Focal-Test-Based Spatial Decision Tree Learning. IEEE Trans. Knowl. Data Eng. 27(6): 1547-1559, 
2015 (summary in Proc. IEEE Intl. Conf. on Data Mining, 2013).(w/ Z. Jiang et al.)



Spatial Decision Tree

ID f1 f2 Γ1 class 
A 1 1 green 
B 1 1 green 
C 1 3 green 
D 3 2 red 
E 3 2 red 
F 3 2 red 
G 1 1 green 
H 3 1 green 
I 1 3 green 
J 3 2 red 
K 1 2 red 
L 3 2 red 
M 1 1 green 
N 1 1 green 
O 1 3 green 
P 3 2 red 
Q 3 2 red 
R 3 2 red 

Traditional decision tree Spatial decision tree 

Inputs: table of records Inputs:  
•  feature maps, class map 
•  Rook neighborhood ID f1 f2 Γ1 class 

A 1 1 green 
B 1 1 green 
C 1 3 green 
G 1 1 green 
I 1 3 green 
K 1 2 red 
M 1 1 green 
N 1 1 green 
O 1 3 green 
D 3 2 red 
E 3 2 red 
F 3 2 red 
H 3 1 green 
J 3 2 red 
L 3 2 red 
P 3 2 red 
Q 3 2 red 
R 3 2 red 

1 1 1 3 3 3 
1 3 1 3 1 3 
1 1 1 3 3 3 

1 1 3 2 2 2 
1 1 3 2 2 2 
1 1 3 2 2 2 

Feature f1 

Feature f2 

Class map 
1 .3 .3 .3 .3 1 
.3 -1 0 0 -1 .3 
1 .3 .3 .3 .3 1 

Focal function Γ1 

I(f1 ≤ 1) 

green red 
+ - 

C 
G 

A 
B 

I 

M D 
E 

L 

P 

F 
J 

Q 
R 

N 

H 

I(f1 ≤ 1) * Γ1 

green red 
+ - 

A B C D E F 
G H I J K L 
M N O P Q R 

Predicted map 
A B C D E F 
G H I J K L 
M N O P Q R 

Predicted map 

ID f1 f2 Γ1 class 
A 1 1 1 green 
B 1 1 0.3 green 
C 1 3 0.3 green 
G 1 1 0.3 green 
I 1 3 0 green 
K 1 2 -1 red 
M 1 1 1 green 
N 1 1 0.3 green 
O 1 3 0.3 green 
D 3 2 0.3 red 
E 3 2 0.3 red 
F 3 2 1 red 
H 3 1 -1 green 
J 3 2 0 red 
L 3 2 0.3 red 
P 3 2 0.3 red 
Q 3 2 0.3 red 
R 3 2 1 red 

O 
K 

C 
G 

A 
B 

I 

M D 
E 

L 

P 

F 
J 

Q 
R 

N 

K 
O 
H 

1 1 1 3 3 3 
1 3 1 3 1 3 
1 1 1 3 3 3 



Modeling Spatial Heterogeneity: GWR

• Geographically Weighted Regression (GWR)
• Goal: Model spatially varying relationships 
• Example:

Where                   are location dependent

'' eb += Xy
'' and eb

Source: resources.arcgis.com



Research Needs for Location Prediction

• Spatial Auto-Regression
• Estimate W
• Scaling issue

• Spatial interest measure
• e.g., distance(actual, predicted)

br Xvs.Wy

Actual Sites Pixels with
actual sites

Prediction 1 Prediction 2.
Spatially more interesting

than Prediction 1
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Limitations of K-Means

• K-Means does test Statistical Significance
• Finds chance clusters in complete spatial randomness (CSR)

Classical 
Clustering

Spatial 
Clustering



Spatial Scan Statistics (SatScan)

• Goal: Omit chance clusters

• Ideas: Likelihood Ratio, Statistical Significance

• Steps
• Enumerate candidate zones & choose zone X with highest likelihood ratio (LR)

• LR(X) = p(H1|data) / p(H0|data)
• H0: points in zone X show complete spatial randomness (CSR)
• H1: points in zone X are clustered 

• If LR(Z) >> 1 then test statistical significance
• Check how often is LR( CSR ) > LR(Z) 

using 1000 Monte Carlo simulations



SaTScan Example
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Source: Ring-Shaped Hotspot Detection, IEEE Trans. Know. & Data Eng., 28(12), 2016. 
(A Summary in Proc. IEEE ICDM 2014) (w/ E. Eftelioglu et al.) 

1854 London Cholera, p-value = 0.001
Output: A hotspot! 



SatScan Examples

0 20 40 60 80 1000

10

20

30

40

50

60

70

80

90

100

X

Y

SatScan output with a continuous Poisson model on a CSR dataset

p−value: 0.128

Complete Spatial Randomness 
Output: No hotspots !
Highest LR circle p-value = 0.128

0 20 40 60 80 1000

10

20

30

40

50

60

70

80

90

100
SatScan output on clustered dataset: one significant cluster found

X

Y

P−value: 0.001

Data with a hotspot
Output: A hotspot! 

p-value = 0.001

1854 London Cholera 
Output: A hotspot! 

p-value = 0.001



Spatial-Concept/Theory-Aware Clusters

• Geographic features, e.g., rivers, streams, roads,  …
• Hot-spots => Hot Geographic-features, e.g., Linear Hotspots

• Spatial Theories, e.g,, environmental criminology
• Circles è Doughnut holes

Pedestrian fatalities 
Orlando, FL

Circular hotspots 
by SatScan

!"#$%&'()(*+,-.!"#$%&'()(*+,*/

Linear hotspots

!"#$%&'()(*+*,
-'./012(3$45()(,+66!"#$%&'()(*+*,

-'./012(3$45()(,+67

!"#$%&'()(*+*8
-'./012(3$45()(7+96

Details: Significant Linear Hotspot Discovery, IEEE Transactions on Big Data, 3(2):140-153, 2017. 
(Summary in Proc. Geographic Info. Sc., Springer LNCS 8728, pp. 284-300, 2014.





Legionnaires’ Disease Outbreak in New York
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Details: Ring-Shaped Hotspot Detection, IEEE Trans. Know. & Data Eng., 28(12), 2016. 
(A Summary in Proc. IEEE ICDM 2014) (w/ E. Eftelioglu et al.) 
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Outliers: Global (G) vs. Spatial (S)



Outlier Detection Tests: Variogram Cloud

• Graphical Test: Variogram Cloud



Outlier Detection – Scatterplot

• Quantitative Tests: Scatter Plot



Outlier Detection Test: Moran Scatterplot

• Graphical Test: Moran Scatter Plot



Outlier Detection Tests: Spatial Z-test

• Quantitative Tests: Spatial Z-test
• Algorithmic Structure: Spatial Join on neighbor relation



(Shingle Creek, MN Study Site)

63Flow Anomalies 
Example Forensics: When and where do contaminants enter Shingle Creek?

www.sfgate.com/cgi-
bin/news/oilspill/busan

(HydroLab sensor)

Details: Discovering Flow Anomalies: A SWEET Approach, IEEE Intl. Conf. on Data Mining, 2008 (w/J. 
Kang et al.).

Dissolved 
Oxygen

Rainfall

6/4/08 13:06 - 6/5/08 19:34

After heavy rains on 
June 4th and 5th



Spatial Outlier Detection: Computation

• Separate two phases
• Model Building
• Testing: test a node (or a set of nodes)

• Computation Structure of Model Building
• Key insights:

• Spatial self join using N(x) relationship
• Algebraic aggregate function computed in one scan of spatial join



Trends in Spatial Outlier Detection

• Multiple spatial outlier detection
• Eliminating the influence of neighboring outliers

• Multi-attribute spatial outlier detection
• Use multiple attributes as features

• Spatio-temporal anomalies
• Anomalous trajectories, patterns of life

• Scale up for large data
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Learning Objectives

• After this segment, students will be able to
• Contrast colocations and associations

• Describe colocation interest measures



Background: Association Rules 

• Association rule e.g. (Diaper in T => Beer in T)

• Support: probability (Diaper and Beer in T) = 2/5
• Confidence: probability (Beer in T | Diaper in T) = 2/2

• Apriori Algorithm
• Support based pruning using monotonicity
• Computationally efficient, scales to larger dataset than correlation coefficient



Association Rules Limitations

• Transaction is a core concept!
• Support is defined using transactions
• Apriori algorithm uses transaction based Support for pruning

• However, spatial data is embedded in continuous space
• Transactionizing continuous space is non-trivial !
• Recall Gerrymandering (Modifiable Areal Unit Problem)



Association Rules and Gerrymandering (MAUP)

● Support is sensitive to spatial partitioning
● Association Rules may miss spatial interactions

● However, Ripley’s K are computationally expensive

(a) a map of 3 features (b) Spatial Partitions (c) Neighbor graph

Pearson’s 
Correlation

Support Ripley’s 
cross-K

- -0.90 0 0.33

- 1 0.5 0.5



Spatial Colocation
Details: Discovering colocation patterns from spatial data sets: a general approach, 
IEEE Trans. on Know. and Data Eng., 16(12), 2004 (w/ Y. Huang et al.). 

Feature set: ( ,   , ,  ,     )
Feature Subsets: 

Participation ratio (pr): 
pr(A  , (A,B)    ) = fraction of A instances neighboring feature { B} = 2/3 
pr(B. , (A,B).   ) = ½ 

Participation index (A,B.    ) = pi(A,B.       ) 
= min{ pr(A.   , (A,B).   ),    pr(B. ,    (A,B).  ) } 
= min (2/3, ½ ) = ½ 

Participation Index Properties: 
(1) Computational: Non-monotonically decreasing like support measure
(2) Statistical: Upper bound on Ripley’s Cross-K function 



Neighbor Relationship vs. Space Partitioning

● Neighbor relationship graph 
● Honors continuity of geographic space methods 
● Partitions miss spatial interactions

(a) a map of 3 features (b) Spatial Partitions (c) Neighbor graph

Pearson’s 
Correlation

Support Ripley’s 
cross-K

Participation Index
(colocation)

- -0.90 0 0.33 0.5

- 1 0.5 0.5 1



Participation Index >= Cross-K Function 

Cross-K (A,B) 2/6 = 0.33 3/6 = 0.5 6/6 = 1

PI (A,B) 2/3 = 0.66 1 1 

A.1

A.3

B.1

A.2B.2

A.1

A.3

B.1

A.2B.2

A.1

A.3

B.1

A.2B.2



Spatial Colocation: Trends

• Algorithms
• Join-based  algorithms

• One spatial join per candidate colocation

• Join-less algorithms 

• Statistical Significance
• ?Chance-patterns

• Spatio-temporal
• Which events co-occur in space and time?

• (bar-closing, minor offenses, drunk-driving citations)

• Which types of objects move together?



Cascading spatio-temporal pattern (CSTP)

75

q Input:  Urban Activity Reports  
q Output: CSTP

q Partially ordered subsets of ST event types.
q Located together in space.
q Occur in stages over time.

q Applications: Public Health, Public Safety,  …

TimeT1

Assault(A) Drunk Driving (C)Bar Closing(B)

Aggregate(T1,T2,T3)TimeT3TimeT2

B A

C

CSTP: P1

Details: Cascading Spatio-Temporal Pattern Discovery, IEEE Trans. on Know. & Data Eng, 24(11), 2012. 
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MDCOP Motivating Example : 
Input 

• Manpack stinger

(2 Objects)

• M1A1_tank

(3 Objects)

• M2_IFV

(3 Objects)

• Field_Marker

(6 Objects)

• T80_tank 

(2 Objects)

• BRDM_AT5 
(enemy) (1 Object)

• BMP1
(1 Object)
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MDCOP Motivating Example : Output
• Manpack stinger

(2 Objects)

• M1A1_tank

(3 Objects)

• M2_IFV

(3 Objects)

• Field_Marker

(6 Objects)

• T80_tank 

(2 Objects)

• BRDM_AT5 
(enemy) (1 Object)

• BMP1
(1 Object)

Details: Mixed-Drove Spatiotemporal Co-Occurrence Pattern Mining,
IEEE Transactions on Knowledge and Data Engineering, 20(10), Oct. 2008. 



Outline

• Motivation
• Use cases

• Pattern families

• Spatial Data Types

• Spatial Statistical Foundations

• Spatial Data Mining

• Conclusions



Summary

What’s Special About Mining Spatial Data ?
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Goals: 
• Design compelling visions, Identify gaps 
• Develop a research agenda
55 Participants (Data-driven FEW & Data Sciences)

Global Temperature

Global Population

State
Nexus Dashboard

Locations

Potentially Transformative Research Agenda: 
• National FEW Nexus Observatory & Dashboard for 
chokepoint monitoring, alerts, warnings
• Novel Physics-aware Data Science for mining nexus 
patterns in multi-scale spatio-temporal-network data despite 
non-stationarity, auto-correlation, uncertainty, etc.
• Scalable tools for consensus Geo-design via participative 
planning with nexus observations and policy projections
• An INFEWS data science community to address crucial 
gaps, and shape next-generation Data Science

NSF INFEWS Data Science Workshop 
(@ USDA NIFA, Oct. 5th-6th, 2015; Shekhar, Mulla, & Schmoldt; www.spatial.cs.umn.edu/few)

Finding 1: Data & Data Science are crucial!
• Understand problems, connections,  impacts
• Monitor FEW resources, and trends to detect risks
• Support decision and policy making
• Communicate with public and stakeholders

Finding 2: However, there are show-stopper gaps.
1. Data Gaps: No global water & energy census, 
Heterogeneous data formats & collection protocols
2. Data Science (DS) Gaps: Current DS methods 
are inadequate for spatio-temporal-network 
FEW data.

Aral Sea Shrinkage (1978-2014)
Due to Cotton Farms

Alerts

Global  Population

Foo
d

Energy Water Data
Sc.

14 10 11 20

Gov. Aca. Industry

26 24 5

Sea-Surface Temperature 
Anomaly

Trends


