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Why Data Mining?

? Holy Grail – Informed Decision Making

? Lots of Data are Being Collected

• Business Applications:

– Transactions: retail, bank ATM, air travel, etc
– Web logs, e-commerce, GPS-track

• Scientific Applications:

– Remote sensing: e.g., NASA’s Earth Observing System
– Sky survey
– Microarrays generating gene expression data

? Challenges:

• Volume (data) À number of human analysts

• Some automation needed

? Data Mining may help!

• Provide better and custmized insights for business

• Help scientists for hypothesis generation
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Spatial Data

? Location-based Services

• Ex: MapQuest, Yahoo Maps, Google Maps, MapPoint

Figure 1: Google Local Search (http://maps.google.com)

? In-car Navigation Device

Figure 2: Emerson In-Car Navigation System (In Coutesy of Amazon.com)
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Spatial Data Mining (SDM)

? The process of discovering

• interesting, useful, non-trivial patterns

– patterns: non-specialist

– exception to patterns: specialist

• from large spatial datasets

? Spatial patterns

• Spatial outlier, discontinuities

– bad traffic sensors on highways (DOT)

• Location prediction models

– model to identify habitat of endangered species

• Spatial clusters

– crime hot-spots (NIJ), cancer clusters (CDC)

• Co-location patterns

– predator-prey species, symbiosis

– Dental health and fluoride
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Location As Attribute

? Location as attribute in spatial data mining

? What value is location as an explanatory variable?

• most events are associated with space and time

• surrogate variable

• critical to data analyses for many application domains

– physical science

– social science

? Location helps bring rich contexts

• Physical: e.g., rainfall, temperature, and wind

• Demographical: e.g., age group, gender, and income type

• Problem-specific

? Location helps bring relationships

• e.g., distance to open water
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Example Spatial Pattern: Spatial Cluster

? The 1854 Asiatic Cholera in London
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Example Spatial Pattern: Spatial Outliers

? Spatial Outliers

• Traffic Data in Twin Cities

• Abnormal Sensor Detections

• Spatial and Temporal Outliers

Average Traffic Volume(Time v.s. Station)
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Example Spatial Pattern: Predictive Models

? Location Prediction: Bird Habitat Prediction

• Given training data

• Predictive model building

• Predict new data
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Example Spatial Pattern: Co-locations
(backup)

? Given:

• A collection of different types of spatial events

? Illustration

? Find: Co-located subsets of event types
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What’s NOT Spatial Data Mining

? Simple Querying of Spatial Data

• Find neighbors of Canada given names and boundaries of
all countries

• Find shortest path from Boston to Houston in a freeway
map

• Search space is not large (not exponential)

? Testing a hypothesis via a primary data analysis

• Ex. Female chimpanzee territories are smaller than male
territories

• Search space is not large !

• SDM: secondary data analysis to generate multiple plau-
sible hypotheses

? Uninteresting or obvious patterns in spatial data

• Heavy rainfall in Minneapolis is correlated with heavy
rainfall in St. Paul, Given that the two cities are 10 miles
apart.

• Common knowledge: Nearby places have similar rainfall

? Mining of non-spatial data

• Diaper sales and beer sales are correlated in evening
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Application Domains

? Spatial data mining is used in

• NASA Earth Observing System (EOS): Earth science data

• National Inst. of Justice: crime mapping

• Census Bureau, Dept. of Commerce: census data

• Dept. of Transportation (DOT): traffic data

• National Inst. of Health(NIH): cancer clusters

• Commerce, e.g. Retail Analysis

? Sample Global Questions from Earth Science

• How is the global Earth system changing?

• What are the primary forcings of the Earth system?

• How does the Earth system respond to natural and human-
included changes?

• What are the consequences of changes in the Earth system
for human civilization?

• How well can we predict future changes in the Earth sys-
tem
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Example of Application Domains

? Sample Local Questions from Epidemiology[TerraSeer]

• What’s overall pattern of colorectal cancer?

• Is there clustering of high colorectal cancer incidence any-
where in the study area?

• Where is colorectal cancer risk significantly elevated?

• Where are zones of rapid change in colorectal cancer inci-
dence?

Figure 3: Geographic distribution of male colorectal cancer in Long Island, New York(in courtesy

of TerraSeer)
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Business Applications

? Sample Questions:

• What happens if a new store is added?

• How much business a new store will divert from existing
stores

• Other “what if” questions:

– changes in population, ethic-mix, and transportation network

– changes in retail space of a store

– changes in choices and communication with customers

? Retail analysis: Huff model [Huff, 1963]

• A spatial interaction model

– Given a person p and a set S of choices

– Pr[person p selects choice c] ∝ perceived utility(∀c ∈ S, p)

– perceived utility(store c, person p) = f (square-footage(c), dis-

tance (c, p), parameters)

• Connection to SDM

– Parameter estimation, e.g., via regression

• For example:

– Predicting consumer spatial behaviors

– Delineating trade areas

– Locating retail and service facilities

– Analyzing market performance
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Map Construction

? Sample Questions

• Which features are anomalous?

• Which layers are related?

• How can the gaps be filled?

? Korea Data

• Latitude 37deg15min to 37deg30min

• Longitude 128deg23min51sec to 128deg23min52sec

? Layers

• Obstacles (Cut, embankment, depression)

• Surface drainage (Canal, river/stream, island, common
open water, ford, dam)

• Slope

• Soils (Poorly graded gravel, clayey sand, organic silt,disturbed
soil)

• Vegetation (Land subject to inundation, cropland, rice
field, evergreen trees, mixed trees)

• Transport (Roads, cart tracks, railways)
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Colocation in Example Data

? Road: river/stream

? Crop land/rice fields: ends of roads/cart roads

? Obstacles, dams and islands: river/streams

? Embankment obstacles and river/stream: clayey soils

? Rice, cropland, evergreen trees and deciduous trees
:river/stream

? Rice: clayey soil, wet soil and terraced fields

? Crooked roads: steep slope
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Colocation Example

? Interestingness

• Patterns to Non-Specialist vs. Exceptions to Specialist

? Road-River/Stream Colocation

Figure 4: Road-River Colocation Example(Korea dataset)

15



&

'

%

$

Spatial Data Mining: Accomplishments and Research Needs

SQL Example for Colocation Query

? SQL3/OGC (Postgres/Postgis)

? Detecting Road River Colocation Pattern:

• Spatial Query Fragment

CREATE TABLE Road-River-Colocation AS

SELECT DISTINCT R.*

FROM River-Area-Table T, Road-Line-Table R

WHERE distance ( T.geom, R.geom ) < 0.001;

CREATE TABLE Road-Stream-Colocation AS

SELECT DISTINCT R.*

FROM Stream-Line-Table T, Road-Line-Table R

WHERE distance ( T.geom, R.geom ) < 0.001;

CREATE TABLE Cartroad-River-Colocation AS

SELECT DISTINCT R.*

FROM River-Area-Table T, Cartroad-Line-Table R

WHERE distance ( T.geom, R.geom ) < 0.001;

CREATE TABLE Cartroad-Stream-Colocation AS

SELECT DISTINCT R.*

FROM Stream-Line-Table T, Cartroad-Line-Table R

WHERE distance ( T.geom, R.geom ) < 0.001;
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Colocation: Road-River

? 375 road features

? Center-line to center-line distance threshold = 0.001
units (about 100 meters)

? 77 % of all roads colocated with river

Figure 5: Road-River Colocation Example(Korea dataset)
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More Complex Colocation Examples

? Complex Colocation/Outlier Example:

• Cropland colocated with river, stream or road

Figure 6: Complex Colocation Example

18



&

'

%

$

Spatial Data Mining: Accomplishments and Research Needs

Outliers in Example Data

? Outlier detection

• Extra/erroneous features

• Positional accuracy of features

• Predict mislabeled/misclassified features

? Overlapping road and river

? Road crossing river and disconnected road Stream mis-
labeled as river

? Cropland close to river and road

? Cropland outliers on edges
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Outliers in Example

? Map production

• Identifying errors

– e.g., expected colocation : (bridge,
⋂
(road, river))

– violations illustrated below:

Figure 7: Finding errors in maps having road, river and bridges (Korea dataset)
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Overview

? Spatial Data Mining

• Find interesting, potentially useful, non-trivial patterns
from spatial data

? Components of Data Mining:

• Input: table with many columns, domain(column)

• Statistical Foundation

• Output: patterns and interest measures

– e.g., predictive models, clusters, outliers, associations

• Computational process: algorithms

21
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Overview

⇒ Input

? Statistical Foundation

? Output

? Computational process

22
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Overview of Input

? Data

• Table with many columns(attributes)

tid f1 f2 . . . fn

0001 3.5 120 . . . Yes

0002 4.0 121 . . . No

Table 1: Example of Input Table

– e.g., tid: tuple id; fi: attributes

• Spatial attribute: geographically referenced

• Non-spatial attribute: traditional

? Relationships among Data

• Non-spatial

• Spatial

23
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Data in Spatial Data Mining

? Non-spatial Information

• Same as data in traditional data mining

• Numerical, categorical, ordinal, boolean, etc

• e.g., city name, city population

? Spatial Information

• Spatial attribute: geographically referenced

– Neighborhood and extent

– Location, e.g., longitude, latitude, elevation

• Spatial data representations

– Raster: gridded space

– Vector: point, line, polygon

– Graph: node, edge, path

Figure 8: Raster and Vector Data for UMN Campus (in courtesy of UMN, MapQuest)
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Relationships on Data in Spatial Data Mining

? Relationships on non-spatial data

• Explicit

• Arithmetic, ranking(ordering), etc.

• Object is instance of a class, class is a subclass of another
class, object is part of another object, object is a mem-
bership of a set

? Relationships on Spatial Data

• Many are implicit

• Relationship Categories

– Set-oriented: union, intersection, and membership, etc

– Topological: meet, within, overlap, etc

– Directional: North, NE, left, above, behind, etc

– Metric: e.g., Euclidean: distance, area, perimeter

– Dynamic: update, create, destroy, etc

– Shape-based and visibility

• Granularity

Granularity Elevation Example Road Example

local elevation on road?

focal slope adjacent to road?

zonal highest elevation in a zone distance to nearest road

Table 2: Examples of Granularity
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OGC Model

? Open GIS Consortium Model

• Support spatial data types: e.g. point, line, polygons

• Support spatial operations as follows:

Operator Type Operator Name

Basic Function SpatialReference()

Envelope()

Export()

IsEmpty()

IsSimple()

Boundary()

Topological/Set Operators Equal

Disjoint

Intersect

Touch

Cross

Within

Contains

Overlap

Spatial Analysis Distance

Buffer

ConvexHull

Intersection

Union

Difference

SymmDiff

Table 3: Examples of Operations in OGC Model
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Mining Implicit Spatial Relationships

? Choices:

• Materialize spatial info + classical data mining

• Customized spatial data mining techniques

Relationships Materialization Customized SDM Tech.

Topological Neighbor, Inside, Outside Classical Data Mining NEM, co-location

Euclidean Distance, can be used K-means

density DBSCAN

Directional North, Left, Above Clustering on sphere

Others Shape, visibility

Table 4: Mining Implicit Spatial Relationships

? What spatial info is to be materialized?

• Distance measure:

– Point: Euclidean

– Extended objects: buffer-based

– Graph: shortest path

• Transactions: i.e., space partitions

– Circles centered at reference features

– Gridded cells

– Min-cut partitions

– Voronoi diagram
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Research Needs for Data

? Limitations of OGC Model

• Aggregate functions - e.g. mapcube

• Direction predicates - e.g. absolute, ego-centric

• 3D and visibility

• Network analysis

• Raster operations

? Needs for New Research

• Modeling semantically rich spatial properties

• Moving objects

• Spatial time series data

28
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Overview

√ Input

⇒ Statistical Foundation

? Output

? Computational process
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Statistics in Spatial Data Mining

? Classical Data Mining

• Learning samples are independently distributed

• Cross-correlation measures, e.g., χ2, Pearson

? Spatial Data Mining

• Learning sample are not independent

• Spatial Autocorrelation

– Measures:

∗ distance-based(e.g., K-function)

∗ neighbor-based(e.g., Moran’s I)

• Spatial Cross-Correlation

– Measures: distance-based, e.g., cross K-function

• Spatial Heterogeneity
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Overview of Statistical Foundation

? Spatial Statistics[Cressie, 1991][Hanning, 2003]

• Geostatistics

– Continuous

– Variogram: measure how similarity decreases with distance

– Spatial prediction: spatial autocorrelation

• Lattice-based statistics

– Discrete location, neighbor relationship graph

– Spatial Gaussian models

∗ Conditionally specified spatial Gaussian model

∗ Simultaneously specified spatial Gaussian model

– Markov Random Fields, Spatial Autoregressive Model

• Point process

– Discrete

– Complete spatial randomness (CSR): Poisson process in space

– K-function: test of CSR
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Spatial Autocorrelation(SA)

? First Law of Geography

• ”All things are related, but nearby things are more related
than distant things. [Tobler, 1970]”
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Figure 9: Spatial Randomness vs. Autocorrelation

? Spatial autocorrelation

• Nearby things are more similar than distant things

• Traditional i.i.d. assumption is not valid

• Measures: K-function, Moran’s I, Variogram, · · ·
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Spatial Autocorrelation: Distance-based
Measure

? K-function Definition:

• Test against randomness for point pattern

• K(h) = λ−1E[number of events within distance h of an
arbitrary event]

– λ is intensity of event

• Model departure from randomness in a wide range of scales

? Inference

• For Poisson complete spatial randomness(csr): K(h) = πh2

• Plot Khat(h) against h, compare to Poisson csr

– >: cluster

– <: decluster/regularity
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Spatial Autocorrelation: Topological Measure

? Moran’s I Measure Definition:

MI =
zWzt

zzt

• z = {x1 − x̄, . . . , xn − x̄}
– xi : data values

– x̄: mean of x

– n: number of data

• W : the contiguity matrix

? Ranges between -1 and +1

• higher positive value ⇒ high SA, Cluster, Attract

• lower negative value ⇒ interspersed, de-clustered, repel

• e.g., spatial randomness ⇒ MI = 0

• e.g., distribution of vegetation durability ⇒ MI = 0.7

• e.g., checker board ⇒ MI = -1
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Cross-Correlation

? Cross K-Function Definition

• Kij(h) = λ−1
j E [number of type j event within distance h

of a randomly chosen type i event]

• Cross K-function of some pair of spatial feature types

• Example

– Which pairs are frequently co-located?

– Statistical significance
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Figure 10: Example Data (o and * ; x and +)

35



&

'

%

$

Spatial Data Mining: Accomplishments and Research Needs

Illustration of Cross-Correlation

? Illustration of Cross K-Function for Example Data
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Spatial Slicing

? Spatial heterogeneity

• “Second law of geography”[M. Goodchild, UCGIS 2003]

• Global model might be inconsistent with regional models

– spatial Simpson’s Paradox (or Ecological Inference)

(a) Global Model (b) Regional Models

? Spatial Slicing

• Slicing inputs can improve the effectiveness of SDM

• Slicing output can illustrate support regions of a pattern

– e.g., association rule with support map
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Edge Effect

? Cropland on edges may not be classified as outliers

? No concept of spatial edges in classical data mining
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Research Challenges of Spatial Statistics

? State-of-the-art of Spatial Statistics

Point Process Lattice Geostatistics

raster
√ √

vector point
√ √ √

line
√

polygon
√ √

graph

Table 5: Data Types and Statistical Models

? Research Needs

• Correlating extended features:

– Example data: Korea data

– e.g. road, river (line strings)

– e.g. cropland (polygon), road, river

• Edge effect

• Relationship to classical statistics

– Ex. SVM with spatial basis function vs. SAR
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Overview

√ Input

√ Statistical Foundation

⇒ Output

? Computational process
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General Approaches in SDM

? Materializing spatial features, use classical DM

• Ex. Huff’s model - distance(customer, store)

• Ex. spatial association rule mining[Koperski, Han, 1995]

• Ex: wavelet and fourier transformations

• commercial tools: e.g., SAS-ESRI bridge

? Spatial slicing, use classical DM

• Ex. association rule with support map[P. Tan et al]
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Figure 12: Association rule with support map(FPAR-high → NPP-high)

• commercial tools: e.g.,Matlab, SAS, R, Splus

? Customized spatial techniques

• Ex. geographically weighted regression: parameter = f(loc)

• e.g., MRF-based Bayesian Classifier (MRF-BC)

• commercial tools

– e.g.,Splus spatial/R spatial/terraseer + customized codes
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Overview of Data Mining Output

? Supervised Learning: Prediction

• Classification

• Trend

? Unsupervised Learning:

• Clustering

• Outlier Detection

• Association

? Input Data Types vs. Output Patterns

Patterns Point Process Lattice Geostatistics

Prediction
√ √

Trend
√

Clustering
√ √

Outliers
√ √ √

Associations
√ √

Table 6: Output Patterns vs. Statistical Models
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Illustrative Application to Location
Prediction (Backup)

0 20 40 60 80 100 120 140 160

0

10

20

30

40

50

60

70

80

nz = 85

Nest sites for 1995 Darr location

Marsh land
Nest sites

(a) Nest Locations

0 20 40 60 80 100 120 140 160

0

10

20

30

40

50

60

70

80

nz = 5372

Vegetation distribution across the marshland

0 10 20 30 40 50 60 70 80 90

(b) Vegetation

0 20 40 60 80 100 120 140 160

0

10

20

30

40

50

60

70

80

nz = 5372

Water depth variation across marshland

0 10 20 30 40 50 60 70 80 90

(c) Water Depth

0 20 40 60 80 100 120 140 160

0

10

20

30

40

50

60

70

80

nz = 5372

Distance to open water

0 10 20 30 40 50 60

(d) Distance to Open Water

43



&

'

%

$

Spatial Data Mining: Accomplishments and Research Needs

Prediction and Trend

? Prediction

• Continuous: trend, e.g., regression

– Location aware: spatial autoregressive model(SAR)

• Discrete: classification, e.g., Bayesian classifier

– Location aware: Markov random fields(MRF)

Classical Spatial

y = Xβ + ε y = ρWy + Xβ + ε

Pr(Ci|X) = Pr(X|Ci)Pr(Ci)
Pr(X) Pr(ci|X,CN) = Pr(ci)∗Pr(X,CN |ci)

Pr(X,CN )

Table 7: Prediction Models

• e.g., ROC curve for SAR and regression
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Figure 13: (a) Comparison of the classical regression model with the spatial autoregression model

on the Darr learning data. (b) Comparison of the models on the Stubble testing data.
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Spatial Contextual Model: SAR

? Spatial Autoregressive Model (SAR)

y = ρWy + Xβ + ε.

• Assume that dependent values y′i are related to each other

yi = f (yj) i 6= j.

• Directly model spatial autocorrelation using W

? Geographically Weighted Regression (GWR)

• A method of analyzing spatially varying relationships

– parameter estimates vary locally

• Models with Gaussian, logistic or Poisson forms can be
fitted

• Example:

y = Xβ′ + ε′.

• where β′ and ε′ are location dependent
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Spatial Contextual Model: MRF

? Markov Random Fields Gaussian Mixture Model (MRF-
GMM)

• Undirected graph to represent the interdependency rela-
tionship of random variables

• A variable depends only on neighbors

• Independent of all other variables

• fC(Si) independent of fC(Sj), if W (si, sj) = 0

• Predict fC(si), given feature value X and neighborhood

class label CN

Pr(ci|X,CN) =
Pr(ci) ∗ Pr(X,CN |ci)

Pr(X, CN)

– Assume: Pr(ci), P r(X,CN |ci), andPr(X,CN) are mixture

of Gaussian distributions.
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Research Needs for Spatial Classification

? Open Problems

• Estimate W for SAR and MRF-BC

• Scaling issue in SAR

– scale difference: ρWy vs. Xβ

• Spatial interest measure: e.g., avg dist(actual, predicted)

A

= nest location

P   = predicted nest in pixel

A  =  actual nest in pixel
P P

A

APP

AA

A

(a)

A

AA

(b) (d)(c)

P
P

Legend

Figure 14: An example showing different predictions: (a)The actual sites, (b)Pixels with actual

sites, (c)Prediction 1, (d)Prediction 2. Prediction 2 is spatially more accurate than 1.
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Clustering

? Clustering: Find groups of tuples

? Statistical Significance

• Complete spatial randomness, cluster, and decluster

Figure 15: Inputs: Complete Spatial Random (CSR), Cluster, and Decluster

Figure 16: Classical Clustering

Data is of Complete

Spatial Randomness

3: Mean Dense

1: Unusually Dense 2: Desnse

4: Sparse

3
3

4

3

2

1 2

3

3

2

3

2

2

1
Data is of 
Decluster Pattern

Figure 17: Spatial Clustering
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Clustering

? Similarity Measures

• Non-spatial: e.g., soundex

• Classical clustering: Euclidean, metric, graph-based

• Topological: neighborhood EM(NEM)

– seeks a partition that is both well clustered in feature space

and spatially regular

– Implicitly based on locations

• Interest measure:

– spatial continuity

– cartographic generalization

– unusual density

– keep nearest neighbors in common cluster

? Challenges

• Spatial constraints in algorithmic design

– Clusters should obey obstacles

– Ex. rivers, mountain ranges, etc
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Semi-Supervised Bayesian Classification

? Motivation: high cost of collecting labeled samples

? Semi-supervised MRF

• Idea: use unlabeled samples to improve classification

– Ex. reduce salt-N-pepper noise

• Effects on land-use data - smoothing

BC

Pixel−Based

MRF−BC

Context−Based

Supervised Semi−Supervised

Figure 18: Bayesian Classifier (Top Left); Semi-Supervised BC (Top Right);BC-MRF (Bottom

Left); BC-EM-MRF (Bottom Right)
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Spatial Outlier Detection

? Spatial Outlier Detection

• Finding anomalous tuples

• Global vs. Spatial outlier

• Detection Approaches

– Graph-based outlier detection: Variogram, Moran Scatter Plot

– Quantitative outlier detection: Scatter Plot, Z-score

? Location-awareness
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An Example of Spatial Outlier Detection
(Backup)

? Consider Scatter Plot

? Model Building

• Neighborhood aggregate function fN
aggr : E(x) = 1

k

∑
y∈N(x) f(y)

• Distributive aggregate functions

–
∑

f(x),
∑

E(x),
∑

f(x)E(x),
∑

f 2(x),
∑

E2(x)

• Algebraic aggregate functions

– m = N
P

f(x)E(x)−P f(x)
P

E(x)

N
P

f2(x)−(
P

f(x)2

– b =
P

f(x)
P

E2(x)−P f(x)
P

f(x)E(x)

N
P

f2(x)−(
P

f(x))2

– σε =
√

Syy−(m2Sxx)

(n−2)
,

– where Sxx =
∑

f 2(x)− [ (
P

f(x))2

n
]

– and Syy =
∑

E2(x)− [ (
P

E(x))2

n
]

? Testing

• Difference function Fdiff

– ε = E(x)− (m ∗ f(x) + b)

– where E(x) = 1
k

∑
y∈N(x) f(y)

• Statistic test function ST

– | ε−µε

σε
| > θ
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Spatial Outlier Detection

? Separate two phases

• Model Building

• Testing: test a node (or a set of nodes)

? Computation Structure of Model Building

• Key insights:

– Spatial self join using N(x) relationship

– Algebraic aggregate function can be computed in

one disk scan of spatial join

? Computation Structure of Testing

• Single node: spatial range query

– Get All Neighbors(x) operation

• A given set of nodes

– Sequence of Get All Neighbor(x)
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Research Needs in Spatial Outlier Detection

? Multiple spatial outlier detection

• Eliminating the influence of neighboring outliers

• Incremental

? Multi-attribute spatial outlier detection

• Use multiple attributes as features

? Design of spatial statistical tests

? Scale up for large data
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Association Rules - An Analogy

? Association rule e.g. (Diaper in T ⇒ Beer in T)

• Support: probability(Diaper and Beer in T) = 2/5

• Confidence: probability(Beer in T|Diaper in T)= 2/2

? Algorithm Apriori [Agrawal, Srikant, VLDB94]

• Support based pruning using monotonicity

? Note: Transaction is a core concept!
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Spatial Colocation

? Association

• Domain(fi) = union { any, domain(fi)}

• Finding frequent itemsets from fi

• Co-location

– Effect of transactionizing: loss of info

– Alternative: use spatial join, statistics

0 10 20 30 40 50 60 70 80
0
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40
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Co−location Patterns − Sample Data

X
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0
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20

30

40

50

60

70

80
Co−location Patterns − Sample Data

X

Y

(d)

Figure 19: a) A spatial dataset. Shapes represent different spatial feature types. (b) Transaction-

azing continuous space splits circled instances of colocation patterns into separated transactions
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Spatial Colocation Approaches

? Approaches

• Spatial Join-based Approaches

– Join based on map overlay, e.g. [Estivill-Castro and Lee, 1001]

– Join using K-function, e.g. [Shekhar and Huang, 2001]

• Transaction-based Approaches

– e.g., [Koperski and Han, 1995] and [Morimoto,2001]

? Challenges

• Neighborhood definition

• “Right” transactionazation

• Statistical interpretation

• Computational complexity

– large number of joins

– join predicate is a conjunction of:

∗ neighbor

∗ distinct item types
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Overview

√ Input

√ Statistical Foundation

√ Output

⇒ Computational process
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Computational Process

? Most algorithmic strategies are applicable

? Algorithmic Strategies in Spatial Data Mining:

Classical Algorithms Algorithmic Strategies in SDM Comments

Divide-and-Conquer Space Partitioning possible info

loss

Filter-and-Refine Minimum-Bounding-Rectangle(MBR), Predi-

cate Approximation

Ordering Plane Sweeping, Space Filling Curves possible info

loss

Hierarchical Structures Spatial Index, Tree Matching

Parameter Estimation Parameter estimation with spatial autocorre-

lation

Table 8: Algorithmic Strategies in Spatial Data Mining

? Challenges

• Does spatial domain provide computational efficiency?

– Low dimensionality: 2-3

– Spatial autocorrelation

– Spatial indexing methods

• Generalize to solve spatial problems

– Linear regression vs SAR

∗ Continuity matrix W is assumed known for SAR, however,

estimation of anisotropic W is non-trivial

– Spatial outlier detection: spatial join

– Co-location: bunch of joins
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Example of Computational Process

? Teleconnection

• Find locations with climate correlation over θ

– e.g., El Nino affects global climate

Figure 20: Global Influence of El Nino during the Northern Hemisphere Winter(D: Dry;

W:Warm; R:Rainfall)
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Example: Teleconnection (Cont’)

? Challenge:

• high dim(e.g., 600) feature space

• 67k land locations and 100k ocean locations

• 50-year monthly data

? Computational Efficiency

• Spatial autocorrelation:

– Reduce Computational Complexity

• Spatial indexing to organize locations

– Top-down tree traversal is a strong filter

– Spatial join query: filter-and-refine

∗ save 40% to 98% computational cost at θ = 0.3 to 0.9
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Parameter estimation for SAR

? Spatial Auto-Regression Model

• Estimate ρ and β for y = ρWy + Xβ + ε

• The estimation uses maximum-likelihood (ML) theory

? Log-likelihood function LLF = log-det + SSE + const

• log-det = ln |I− ρW|
• SSE = 1

2σ2{yT (I− ρW)TMTM(I− ρW)y}

? Computational Insight:

• LLF is uni-modal [Kazar et al., 2005]: breakthrough result

• Optimal ρ found by Golden Section Search or Binary Search
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Reducing Computational Cost

? Exact Solution

• Bottleneck = evaluation of log-det

• Reduce cost by getting a seed for ρ minimizing SSE term
[Kazar et.al., 2005]

? Approximate Solution

• Reduce cost by approximating log-determinant term

• E.g., Chebyshev Polynomials, Taylor Series [LeSage and
Pace, 2001]

• Comparison of Accuracy, e.g., Chebyshev Polynomials À
Taylor series [Kazar et.al., 2004]

? Parallel Solution

=     

n x 1 n x n

+   

n x mn x 1 m x 1

+

n x 1

yWy βρ X ε

? Computational Challenges

• Eigenvalue + Least square + M. L.

• Computing all eigenvalues of a large matrix

• Memory requirement
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Life Cycle of Data Mining

? CRISP-DM (CRoss-Industry Standard Process for DM)

• Application/Business Understanding

• Data Understanding

• Data Preparation

• Modeling

• Evaluation

• Deployment

• [1] CRISP-DM URL: http://www.crisp-dm.org

Figure 21: Phases of CRISP-DM [1]

? Is CRISP-DM adequate for Spatial Data Mining?
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Summary

? What’s Special About Spatial Data Mining?

• Input Data

• Statistical Foundation

• Output Patterns

• Computational Process

Classical DM Spatial DM

Input All explicit, simple types often Implicit relationships, complex types

and transactions

Stat Foundation Independence of samples spatial autocorrelation

Output Interest measures: set-based Location-awareness

Computational Process Combinatorial optimization Computational efficiency opportunity

Spatial autocorrelation, plane-sweeping

Numerical alg. New complexity: SAR, co-location mining

Estimation of anisotropic W is nontrivial

Objective Function Max likelihood Map Similarity(Actual, Predicted)

Min sum of squared errors

Constraints Discrete space Keep NN together

Support threshold Honor geo-boundaries

Confidence threshold

Other Issues Edge effect, scale

Table 9: Summary of Spatial Data Mining
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Book

http://www.cs.umn.edu/research/shashi-group

Figure 22: Spatial Databases: A Tour (a) English Version (b) Russian Version (c) Chinese Version
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