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✷ Perfectly works in QM and (some) weakly coupled FT

✎  Why it does not work in strongly coupled FT ?

☛   Resurgence and trans-series, a breakthrough in 
“constructive” mathematics, ∼ 1980s (G. Edgar, ArXiV 
0801.4877)👽      

 ✷ A (messy) analog is OPE (1960s-70s)

✷ ✷ ✷   II. General remarks; 
         III. Renormalons in SUSY

I. Introduction
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Resurgent Trans-Series

• trans-series expansion:
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• J. Écalle (1980): set of functions with these trans-monomial
elements is closed under:

(Borel transform)+(analytic continuation)+(Laplace transform)

• “any reasonable function” has a trans-series expansion

• differential equations, iterated maps, ...

• trans-series expansion coefficients are highly correlated

• exponentially improved asymptotic expansions

Quantum Mechanics +

H = p2/2 + (ω2/2) x2 + g2x4      

Divergence of perturbation theory in quantum mechanics

e.g. ground state energy:
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I periodic Sine-Gordon potential: c
n
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I double-well: c
n

⇠ 3

n n!

note generic factorial growth of perturbative coefficients

E0= (ω/2) ∑ncng2n

V(x)

x
E0
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Dyson argument (1950s), Vainshtein (1964)

a) g2→- g2,
   b) Im E0 = (∑nc’ng2n )exp(-S/g2)

Borel summable: BE0(a)= (ω/2)f(a)= (ω/2) ∑ncng2n/n!

x

V_(x)

a0-S  ←bounce actionx
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      LBE0(g2)= (ω/2) ∫0
∞ da exp(-a/g2) f(a)

Expanding f(a) in LBE0(g2) we get g-series term by term

V(x)

x

Non-Borel-summable example: double well potential: 
Bogomolny, Zinn-Justin

tunneling

Quantifying the problem

Borel sum:

Failing 
case:

singularity 
on R+ !

Can deform contour, above or below, or send     

Leads to imaginary non-perturbative ambiguity in resummation

t t

Quantifies problem:  looks like an instanton factor!

Value of integral depends on how it is done!

a LBE0(g)= (ω/√2)(∑’ncng2n+e-Sinst∑’ncn’g2n  

                                                                +...)
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II. AF Field Theory
In AF strongly coupled field theory this program can be 
carried out only if the theory is

✷ is exactly solvable;

✷ ✷ can be treated (perhaps, after a deformation)
      quasiclassically.

Examples of field theory

4D Yang-Mills or QCD:

L=-(1/4g2) Gμνa Gμνa  +  iψDψ                   
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or
2D CP(N-1) model:

L= GAa ∂μΦA ∂μΦa 

GAa =   (∂ ∂ΦA)  ∂ ∂Φa log ∑A=a (1+ΦA Φa)         
g2
2
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Problem: What you see in Lagrangian is NOT the 
asymptotic state which could be detected. Neither is g2 ☹
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Coupling constant g2 is NO longer constant

Through dimensional transmutation

g2(Q)=
S0

β0 log (Q/Λ)

exp[-S0/(β0 g2(Q)) = Λ/Q

If Q ∼ Λ then g2 becomes undefined!!!

S0=8π2  YM
   =4π   CP

dynamical scale

1st coeff.
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cn[α(Q2)]n

n

??? ∼ (Λ2/Q2)k

Superasymptotics
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Figure 1: Bubble diagrams in QCD, with the gluon and matter field bubbles. The

corresponding IR renormalon produces the the most important IR singularity in

the Borel plane.
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Introduction

Renormalons in QCD are well studied (e.g. the review papers [1] and a
concise introduction [2]). They originate from bubble chains, as in Fig. 1.
Generally speaking, the very definition of a bubble chain in the form of Fig. 1
is inaccurate. The appropriate bubbles per se cannot be isolated in the form
of a chain since in this form they are not even gauge invariant. A consistent
complete calculation is quite contrived.

There is a useful trick, however. One adds to the theory N
f

flavors, where
N

f

is treated as a free parameter. Then, instead of the full calculation of the
genuine “bubble chain,” with gluon degrees of freedom in the bubble, one
calculates only the matter bubbles (which are gauge invariant in the chain
of Fig. 1), and then replaces

�2

3
N

f

! �0 (1)

where �0 is the first coe�cient in the � function which includes everything:
gluons (plus ghosts in the covariant gauges) and matter fields.

Factorial divergence of the perturbative series in supersymmetric theories
was only scarcely discusses in the past [3]. Meanwhile, this is in interesting
question because renormalons in supersymmetric theories have peculiarities.
The latter are related to peculiarities of the operator product expansion
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Qk
Now, let us examine the Adler function (10) paying special attention to

the logarithmic dependence in (11), a crucial feature of QCD. We will first
focus on the IR domain. Omitting the overall constant C, inessential for our
purposes, we obtain
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The y integration in Eq. (13) represents all diagrams of the type depicted
in Fig. 1 after integration over the loop momentum k of the “large” fermion
loop (and the angles of the gluon momentum).

The y integral from zero to infinity is n!. A characteristic value of k2

saturating the integral is

y ∼ n or k2 ∼ Q2 exp
(

−n

2

)

. (14)

Thus, if Q2 is fixed and n is sufficiently large, the factorial divergence of
the coefficients in (12) is indeed due to the infrared behavior in the integral
(10). For what follows let us note that if at small k2 ∼ Λ2 the diagram in
Fig. 1 ceases to properly represent non-Abelian dynamics (which is the case
in QCD due to strong coupling in the IR), then the integral must be cut off
from below at k2 = Λ2, or at y = n∗ at large y. Here for each given Q2

n∗ = 2 ln
Q2

Λ2
. (15)

The summation of factorially divergent terms in the formula

D(Q2) =
αs
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∞
∑
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(
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)n

n! (16)

ceases to be valid at n = n∗. At n > n∗ the factorial growth is suppressed,
see Fig. 2, and must be truncated,

D(Q2) → αs

2
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Figure 1: Bubble diagrams in QCD, with the gluon and matter field bubbles. The

corresponding IR renormalon produces the the most important IR singularity in

the Borel plane.
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Introduction

Renormalons in QCD are well studied (e.g. the review papers [1] and a
concise introduction [2]). They originate from bubble chains, as in Fig. 1.
Generally speaking, the very definition of a bubble chain in the form of Fig. 1
is inaccurate. The appropriate bubbles per se cannot be isolated in the form
of a chain since in this form they are not even gauge invariant. A consistent
complete calculation is quite contrived.

There is a useful trick, however. One adds to the theory N
f

flavors, where
N

f

is treated as a free parameter. Then, instead of the full calculation of the
genuine “bubble chain,” with gluon degrees of freedom in the bubble, one
calculates only the matter bubbles (which are gauge invariant in the chain
of Fig. 1), and then replaces

�2

3
N

f

! �0 (1)

where �0 is the first coe�cient in the � function which includes everything:
gluons (plus ghosts in the covariant gauges) and matter fields.

Factorial divergence of the perturbative series in supersymmetric theories
was only scarcely discusses in the past [3]. Meanwhile, this is in interesting
question because renormalons in supersymmetric theories have peculiarities.
The latter are related to peculiarities of the operator product expansion

1

Friday, July 4, 14



M. Shifman  12

Towards hyperasymptotics       

Friday, July 4, 14



M. Shifman  13

OPE What can we do ?→'

Cf. K from
Jentschura’s talk

μ ∼ (a #)×Λ

Wilson 69, 73
SVZ, 1970s
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Renormalons and Supersymmetry (SYM)*

*Renormalons and instantons are NOT the only source of singularities in 
the Borel plane!
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Figure 1: Bubble diagrams in QCD, with the gluon and matter field bubbles. The

corresponding IR renormalon produces the the most important IR singularity in

the Borel plane.
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Factorial divergence of the perturbative series in supersymmetric theories
was only scarcely discusses in the past [3]. Meanwhile, this is in interesting
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1

OOPE = Gμνa Gμνa →    Borel plane singularity at a*= 4

 LBE0(g2)=  ∫0
∞ da exp(-a8π2/β0g2) f(a)

λ

(OPE) in supersymmetric Yang-Mills (SYM). It is well known that renor-
malons (obtained through the bubble chain procedure defined above) are the
manifestation of the gluon operators in OPE. There is a one-to-one corre-
spondence between the given bubble chain graph and an operator in OPE
(e.g. [2]).

In SYM one encounters with a more subtle situation. On the one hand, a
class of gluonic operators cannot have non vanishing vacuum expectation val-
ues (VEVs). This fact tells us that conventional renormalons do not appear
in diagrams where they usually belong in QCD. On the other hand, examina-
tion of the diagrams with bubbles made of matter leads us to the conclusion
that the bubbles appear in places other than the gluon lines and are thus
associated with operators of which one does not think in the framework of
QCD.

In supersymmetric theories, in carrying out the renormalon analysis, one
can consider, for instance, the following two-point functions
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1 Bubble chains through matter loops in SYM

Let us examine the renormalon calculation method based on the matter loops
in application to SYM. To this end one should expand supersymmetric glu-
odynamics to include N
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matter fermions in the fundamental representation
of SU(N),
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But!..

Theorem: VEV’s of all purely gluonic operators 
vanish in SUSY ☹ ☹ ☹

Non-vanishing-VEV operators contain λ2 λ2, i.e.
start from dim = 6.

But!..

Using matter bubble trick (as in QCD) we see:
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k

x x

qq
p−k

p−q

pp

Figure 6: An additional bubble diagrams in SYM, with the bubbles attached to

the gluino lines. The corresponding IR renormalon cancels that in Fig. 1

is strongly coupled the Seiberg-Witten points, in much the same way as
N=1 SYM, discussed previously. In the vicinity of the Seiberg-Witten points
renormalon chains are conceptually the same as discussed above. Cancella-
tion should occur only in those cases in which VEVs of relevant operators
are forbidden by N=2 supersymmetry. There are many of them. Still there
are operators with nontrivial VEVs. Some of them are (Tr�2)k.

7 Hunch (Nov. 14)

Basing on an indirect line of thinking I suggest (as a working hypothesis) that
the renormalon depicted in Fig. 1 is canceled by the renormalon depicted in
Fig. 6.

If the numerical coe�cients are right, the operator which these two graphs
(combined together) give in OPE is

�1

4
Ga

µ⌫

Ga

µ⌫

+ i �̄a�̄µ D
µ

,�a (22)

i.e. exactly the highest component in TrW 2.
Needless to say, this cancellation (presumably) extends to UV renor-

malons too.

11

k

x x

qq
p−k

p−q

pp

Figure 6: An additional bubble diagrams in SYM, with the bubbles attached to

the gluino lines. The corresponding IR renormalon cancels that in Fig. 1

is strongly coupled the Seiberg-Witten points, in much the same way as
N=1 SYM, discussed previously. In the vicinity of the Seiberg-Witten points
renormalon chains are conceptually the same as discussed above. Cancella-
tion should occur only in those cases in which VEVs of relevant operators
are forbidden by N=2 supersymmetry. There are many of them. Still there
are operators with nontrivial VEVs. Some of them are (Tr�2)k.

7 Hunch (Nov. 14)

Basing on an indirect line of thinking I suggest (as a working hypothesis) that
the renormalon depicted in Fig. 1 is canceled by the renormalon depicted in
Fig. 6.

If the numerical coe�cients are right, the operator which these two graphs
(combined together) give in OPE is

�1

4
Ga

µ⌫

Ga

µ⌫

+ i �̄a�̄µ D
µ

,�a (22)

i.e. exactly the highest component in TrW 2.
Needless to say, this cancellation (presumably) extends to UV renor-

malons too.

11

Conjecture:
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squark

x x

gluino

quark

Figure 5: Lines with bubbles are soft. Those without bubbles are hard.

5 Renormalons in Higgsed YM theories

It is customary to say that in fully Higgsed YM theories (i.e. with all gauge
boson acquiring masses m � ⇤) renormalons disappear (see [2]). This state-
ment requires a reservation.

Since the gauge coupling is frozen at m, renormalon as a tool for revealing
infrared sensitivity of the theory indeed disappears. The theory is weakly
coupled and fully solvable. At the same time, renormalon-related factorial
divergence of the perturbative series proceeds up to a certain point.

Let us examine this issue in more detail. For simplicity we will keep in
mind SU(2) QCD with an additional “Higgs” field. A VEV of the Higgsed
field v gives equal masses to all three gauge bosons. We will assume that
these masses m � ⇤. N

f

fundamental fermions (N
f

 10) can be added to
the theory to be used as a renormalon chain “revealer.” These quarks can be
assumed massless (or nearly massless).

Let us turn to the graph in Fig. 1, assuming that the external momentum
q incoming in the right cross and outgoing from the left cross in this figure
is large, Q2 � m2 (the opposite case will be discussed later).

8

O=λ2 λ2
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Conclusions

✷ Resurgence in strongly coupled AF FT has subtrleties
   and is not yet technically achieved;                  

✷ We are at the level of mathematically constructing 
   hyperasymptotics;

✷ Conceptual basis is Wilson OPE adapted to QCD (SVZ)                 

✷ IN SYM there are additional technical problems not
   addressed in the past.
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