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☺ 40 лет суперсимметрии, ∼ 40 тысяч работ опубликовано.

                         ЧАСТЬ 1
☺ Первое направление: феноменологическая 
суперсимметрия (для решение проблемы натуральности и 
стабилизации иерархии масс) 
☺ МССМ с середины 1970х           с1982 (Witten, иерархия)
   доминирующая парадигма (+ к Виттену темная материя)!

Supersymmetry entails that for every particle 
that has been found there are mirror particles 
that are identical in all respects except for their 
spin: e.g. photon, W, Z, and gluon — photino, wino, 
and gluino. 

BosonFermion

{  Qα̇ , Qβ} = 2σµα̇β Pµ

✸☄
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☺ Хиггсовская частица в стандартной модели  
                            НЕОБХОДИМА

☺ Ее масса и вакуумное ожидание расходятся 
                              квадратично 

☺ Если по дороге к Mpl нет новой физики, массы всех 
частиц “естественно” выталкиваются на Mpl

☺ Стандартная модель ненатуральна 
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☺ Открытие хиггсовской частицы с массой ≈ 125 ГэВ (и ничего
     более) стало ударом по МССМ-феноменологии. Относительно
     простая модель с единым масштабом нарушения SUSY  
     близким к электрослабому масштабу умерла! 

☺ Проблемы иерархии масс и натуральности 
    вернулись, масса t ≥ 5–10 ТэВ, finetuning ∼ (неск) промилле!

☺ Split supersymmetry, spread supersymmetry, A–terms, you name it, 
     still called “natural”
     (например, в первом и втором поколении суперпартнеры 
     чрезвычайно тяжелые и не проявятся, масса t   подгоняется 
     под 10 ТэВ, глюино и вино тяжелые и не будут видны на LHC)

      
      Исходная парадигма потерпела фиаско ☹ ☹ ☹

∼

∼
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Часть 2: Янг-Миллс в сильной связи / ☞КХД 
☺ Суперсимметри - мощный (и почти единственный) 
    аналитический инструмент в режиме конфайнмента

☺☺  Экскурс в историю:      Индекс Виттена (1982);
Суперинстантон в 3D (слабая связь)
Аффлек и др. (1982) ☜

Супер-Янг-Миллс
1982-83 
(ИТЭФ)
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words, g should be understood as a function g(MPV) such that the combination
entering the gluino condensate (13.7) does not depend on MPV. Let us write it as
follows:

(MPV)3TG

[
1

g2(MPV

]TG

exp

[
− 8π2

g2(MPV)

]
= const , (19.1)

where I replaced the parameter N in (13.7), relevant for SU(N)gauge, by TG making
this expression valid for arbitrary gauge group G.

The independence of the left-hand side on MPV gives the law of running of
the gauge coupling α(µ) = g2(µ)

4π (in the Pauli–Villars scheme). The result can be
formulated, of course, in the form of the exact β function. Taking the logarithm
and differentiating with respect to lnMPV, we arrive at

β(α) ≡ d α(MPV)

d lnMPV
= −3TG α2

2π

(
1 − TG α

2π

)−1

. (19.2)

In the derivation above it was assumed that both the gauge coupling g and the
Pauli–Villars regulator mass MPV are real.

19.2 Theories with matter

First, let us return to Eq. (18.10) valid in SU(2) SQCD with one flavor (two sub-
flavors). This expression implies that

m e−8π2/g2

Zg4
(MPV)5 = const. (19.3)

Here m is the physical (s)quark mass, and as such is MPV independent. At the same
time, the bare coupling g and the Z factor do depend on MPV. Taking the logarithm
of the left-hand side, differentiating with respect to lnMPV, and using the fact that
the anomalous dimension of the i-th flavor can be defined as

γi ≡ − d lnZi

d ln MPV
, (19.4)

we arrive at

β(α) = −α2

2π

5 + γ

1 − α
π

= −α2

2π

3 · 2 − (1 − γ)

1 − 2α
2π

. (19.5)

The second equality here is deliberately arranged in a special way to reveal the
nature of various coefficients, making possible an easy transition from SU(2)gauge

and one flavor to arbitrary gauge group G and arbitrary set of flavors. To this end

148

we note that TSU(2) = 2, and Tfund = 1, and compare Eq. (19.5) with the general
expressions (15.44) and (19.2). The following NSVZ formula 57 ensues:

β(α) ≡ d α (MPV)

d ln MPV
= −α2

2π

[

3 TG −
∑

i

T (Ri)(1 − γi)

](
1 − TG α

2π

)−1

. (19.6)

A few explanatory remarks are in order with regards to this formula. The mat-
ter fields are in arbitrary representation R. This representation can be reducible,
R =

∑
Ri. The sum in (19.6) run over all irreducible representations, or, which is

the same, over all flavors. Besides the gauge interaction, the matter fields can have
arbitrary (self)interactions through super-Yukawa terms, i.e. an arbitrary renor-
malizable superpotential is allowed. The possible superpotential does not explicitly
show up in the NSVZ formula (19.6). It is hidden in the anomalous dimensions
which certainly do depend on the presence/absence of the superpotential. In con-
tradistinction to the pure gauge case, Eq. (19.6) does not fix the running of the
gauge coupling per se; rather, it expresses the running of the gauge coupling via the
anomalous dimensions of the matter fields (19.4). The denominator in Eq. (19.6) is
due to the holomorphic anomaly [89] mentioned in passing in Section 18.

It is intstructive to examine how the general formula (19.6) works in some par-
ticular cases. Let us start from the theories with extended supersymmetry, N = 2.
The simplest such theory can be presented as N = 1 theory containing one matter
field in the adjoint representation (which enters the same extended N = 2 super-
multiplet as the gluon field, see Section 16). Therefore, its Z factor Z = 1/g2 and
γ = β/α. In addition, we can allow for some number of the matter hypermultiplets
in arbitrary color representations (please, remember that every hypermultiplet con-
sists of two N = 1 chiral superfields). N = 2 supersymmetry leads to Z = 1 for all
hypermultiplets. Indeed, for N = 2 the Kähler potential (the kinetic term of the
matter field) is in-one-to-one correspondence with the superpotential. The latter is
not renormalized perturbatively owing to N = 1 supersymmetry. Hence, the Kähler
potential for the hypermultiplets is not renormalized too, implying that Z = 1.

Taking into account these facts we derive from Eq. (19.6) the following gauge
coupling β function:

βN=2(α) = −α2

2π

[

2 TG −
∑

i

T (Ri)

]

. (19.7)

Here the summation runs over the N = 2 matter hypermultiplets. This result proves
that the β function is one-loop in N = 2 theories.

We can now make one step further passing to N = 4. In terms of N = 2
this theory corresponds to one matter hypermultiplet in the adjoint representation.

57The relation between the NSVZ β function and standard perturbative calculations based on
dimensional reduction is discussed e.g. in [90].

149

NSVZ β exact function, 1983, TG = N for SU(N)

Чуть позже с произвольной материей:

γi аномальная размерность поля материи Ri

☞  Superinstanton calculus

Элемент зайберговской дуальности (1994), конформ. окно
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Конденсат глюино через аналитическое продолжение из слабой 
связи в сильную, Вайнштейн, МШ, 1987

instantons. In other words,

dρ2

ρ2
d2β̄ d2θ̄0 F (ρ2

inv) = 16 dρ2
inv δ(ρ2

inv)F (ρ2
inv) . (18.6)

The instanton generated-superpotential is

Winst(Φ) =
Λ5

one−fl

Φ2
. (18.7)

The result presented in Eq. (18.7) bears a topological nature: it does not depend
on the particular form of the integrand F (ρ2

inv) since the integral is determined by
ρ2 = 0. The integrand is given by the exponent only at small ρ2. No matter how it
behaves as a function of ρ2, the formula for the superpotential is the same, provided
that the integration over ρ2 is convergent at large ρ2.

Technically, the saturation at ρ2 = 0 makes the calculation self-consistent (re-
member, at ρ2 = 0 the instanton solution becomes exact in the Higgs phase) and
explains why the result (18.7) gets no perturbative corrections in higher orders.

We see that in the model at hand the instanton does generate a superpotential
which lifts the vacuum degeneracy. (This superpotential bears the name of Af-
fleck, Dine and Seiberg, ADS for short.) The result is exact both perturbatively and
nonperturbatively.

In the absence of the tree-level superpotential the induced superpotential leads
to a run-away vacuum – the lowest energy state is achieved at an infinite value
of Φ. One can stabilize the theory by adding the mass term mΦ2 in the classical
superpotential. The total superpotential then takes the form

W(Φ) = mΦ2 + Winst(Φ) . (18.8)

One can trace the origin of the second term to the anomaly (15.48) in the original
full theory (i.e. the theory before integrating out the gauge fields).

Finding the critical points of ADS superpotential we get two supersymmetric
vacua at

〈Φ2〉 = ±
[
Λ5

one−fl

m

]1/2

. (18.9)

Now, with the ADS superpotential in hands, we are able to calculate the gluino
condensate by virtue of the Konishi relation (??) which in the case at hand implies

〈Tr λ2〉 = 16π2m〈Φ2〉 = ±16π2
[
mΛ5

one−fl

]1/2
= ±16π2

[
m e−8π2/g2

Zg4
(MPV)5

]1/2

.

(18.10)
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m/Z = mbare

√ mbare

exact
Общая формула

SU(2) SQCD with one flavor:

of the order parameter, the gluino condensate 〈λλ〉, labeling N distinct vacua of
super-Yang–Mills theory (see Section 13) with the gauge group SU(N) .

Supersymmetric gluodynamics is described by the Lagrangian (13.1). There is a
large variety of domain walls in supersymmetric gluodynamics, as shown in Fig. 4.12.
Minimal, or elementary, walls interpolate between vacua n and n + 1, while k-walls
interpolate between n and n + k.
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Figure 4.12: N vacua for SU(N). The vacua are labeled by the vacuum expectation value
〈λλ〉 = −6N Λ3 exp(2π i k/N) where k = 0, 1, ..., N − 1. Elementary walls interpolate
between two neighboring vacua.

In N = 1 gauge theories with arbitrary matter content and superpotential the
general relation (1.7) takes the form

{Qα , Qβ} = −4 Σαβ Z̄ , (4.32)

where

Σαβ = −1

2

∫
dx[µdxν] (σ

µ)αα̇(σ̄ν)α̇
β (4.33)

is the wall area tensor, and [50, 54]

Z =
2

3
∆

{[

3W −
∑

f

Qf
∂W
∂Qf

]

−
[

3N −
∑

f T (Rf )

16π2
Tr W 2 +

1

8

∑

f

γfD̄
2(Q̄f eV Qf)

]}

θ=0

, (4.34)

cf. Eq. (15.48) in Section 15.5. In (4.34) ∆ implies taking the difference at two spatial
infinities in the direction perpendicular to the surface of the wall. The first term in
the second line presents the gauge anomaly in the central charge. The second term in
the second line is a total superderivative. Therefore, it vanishes after averaging over

228

a a

Схожий метод (поднятый на невероятную высоту) в прорывном 
решении N=2 супер-Янг-Миллса Зайберга-Виттена (1994).
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Натяжение доменных стенок в супер-глюодинамике, 
Гия  Двали, МШ, 1995-96 (BPS-protected!)
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In N = 1 gauge theories with arbitrary matter content and superpotential the
general relation (1.7) takes the form

{Qα , Qβ} = −4 Σαβ Z̄ , (4.32)

where

Σαβ = −1

2

∫
dx[µdxν] (σ

µ)αα̇(σ̄ν)α̇
β (4.33)

is the wall area tensor, and [50, 54]

Z =
2

3
∆

{[

3W −
∑

f

Qf
∂W
∂Qf

]

−
[

3N −
∑

f T (Rf )

16π2
Tr W 2 +

1

8

∑

f

γfD̄
2(Q̄f eV Qf)

]}

θ=0

, (4.34)

cf. Eq. (15.48) in Section 15.5. In (4.34) ∆ implies taking the difference at two spatial
infinities in the direction perpendicular to the surface of the wall. The first term in
the second line presents the gauge anomaly in the central charge. The second term in
the second line is a total superderivative. Therefore, it vanishes after averaging over
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any supersymmetric vacuum state. Hence, it can be safely omitted. The first line
presents the classical result, see Section 15.5. At the classical level Qf (∂W/∂Qf ) is
a total superderivative too which can be seen from the Konishi anomaly (15.38). If
we discard all anomalies and total superderivatives (just for a short while), we return
to Z = 2∆(W), the formula obtained in the Wess–Zumino model, see Eq. (4.19).
At the quantum level, with anomalies included, Qf (∂W/∂Qf ) ceases to be a total
superderivative because of the Konishi anomaly. It is still convenient to eliminate
Qf (∂W/∂Qf ) in favor of TrW 2 by virtue of the Konishi relation (15.38). In this
way one arrives at

Z = 2∆

{
W −

N −
∑

f T (Rf )

16π2
Tr W 2

}

θ=0

. (4.35)

We see that the superpotential W is amended by the anomaly; in the operator form

W −→ W −
N −

∑
f T (Rf)

16π2
Tr W 2 . (4.36)

Of course, in pure super-Yang–Mills theory only the anomaly term survives.
Equation (4.34) implies that in pure gluodynamics (super-Yang–Mills theory

without matter) the domain wall tension is

T =
N

8π2

∣∣〈Trλ2〉vac f − 〈Trλ2〉vac i

∣∣ (4.37)

where vaci,f stands for the initial (final) vacuum between which the given wall in-
terpolates. Furthermore, the gluino condensate 〈Trλ2〉vac was calculated — exactly
— long ago [55], using the very same methods which were later advanced and per-
fected by Seiberg and Witten in their quest for the dual Meissner effect in N = 2
(see [2, 3]). Namely,

2 〈Trλ2〉 = 〈λa
αλa ,α〉 = −6NΛ3 exp

(
2πik

N

)
, k = 0, 1, ..., N − 1 . (4.38)

Here k labels the N distinct vacua of the theory, see Fig. 4.12, and Λ is a dynamical
scale, defined in the standard manner (i.e. in accordance with Ref. [56]) in terms of
the ultraviolet parameters, MUV (the ultraviolet regulator mass), and g2

0 (the bare
coupling constant),

Λ3 =
2

3
M3

UV

(
8π2

Ng2
0

)
exp

(
− 8π2

Ng2
0

)
. (4.39)

In each given vacuum the gluino condensate scales with the number of colors as
N . However, the difference of the values of the gluino condensates in two vacua which

229

∼ N если i, f близки друг к другу

Виттен, 1996,  Доменная стенка = D brane, т.к. N ∼ 1/gs
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N=3

qi or q[ij]

the same

N ∞

→ ori
ent

i

‘t Hooft

→

N=3 q[ij]

qi

Armoni-Shifman-Veneziano (2003): Planar equivalence between
SUSY-Yang-Mills and orientifold daughter AND orientifold large 
N limit (replacing  ‘t Hooft limit).
               

Each Weyl λij → Dirac ψ[ij]

M. Shifman  12
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• Summary: SUSY gluodynamics at large N is 
equivalent to nonsupersymmetric orientifold 
daughter which at N=3 => one-flavor QCD!

 quark condensate in one-fl QCD at N= ∞ 
 calculable!

Infinite number of degeneracies: e.g. 0+ & 0- ⎮1+ & 2+ ⎮...;

M. Shifman  13
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✵  k flavors of Ψ[ij] ’s

A new “orientifold” large N expansion

‘t H
oof

t: f
und

ament
al D

irac
 qu

ark
s at

 all
 N

orineti: Dirac Ψ [ij] at all N 

The same at N=3!

Γgl/Γqu∼N -1                                      Γgl/Γqu∼N 0                                             

Обе феноменологии хороши ...
M. Shifman  14
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Z

Z

Z
Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z Z

QCD vacuum

QCD string condensed magnetic monopoles

Nambu-’t Hooft-Mandelstam dream, 1975

"...[monopoles] turn to develop a non-zero vacuum expectation 
value. Since they carry color-magnetic charges, the vacuum will 
behave like a superconductor for color-magnetic charges. What 
does that mean? Remember that in ordinary electric 
superconductors, magnetic charges are connected by magnetic 
vortex lines ... We now have the opposite: it is the color charges 
that are connected by color-electric flux tubes."
G. 't Hooft (1976)
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magnet magnet
N

Superconductor 
of the 2nd kind

B→
→→→

Abrikosov (ANO) 
vortex (flux tube)

→ NSS

☞ The Meissner effect: 1930s, 1960s

magnetic flux

Abelian   ☚

Cooper pair condensate

M. Shifman  16

DUAL MEISSNER EFFECT (Nambu-’t Hooft-Mandelstam, ∼1975)                  

Wednesday, October 9, 13



☺   First demonstration of the dual Meissner 
      effect: Seiberg & Witten, 1994    ☺

SU(2) →U(1), monopoles ➔ 

Monopoles become light if  |φ3|≾ Λ ➔ At two points, 

massless! N=1 deform. forces M condensatition ➔ 

U(1) broken, electric flux tube formed ➔ 

☞  Dynamical Abelization ... dual Abrikosov string

• gluons+complex scalar superpartner

• two gluinos

• Georgi-Glashow model built in

analytic continuation
M. Shifman 17
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M Non-Abelian theory, but 

Abelian flux tube   ⅀

Hanany, Strassler, Zaffaroni ’97         SW=Abelian strings, “wrong” 
confinement...

But...

Wednesday, October 9, 13



☞ Non-Abelian Strings, 2003 → Now

M. Shifman 19

Hanany-Tong
Auzzi et al.
Shifman-Yung

☞ Non-Abelian nature → to come as close to Nature as possible

Bulk G×G→CF locking→(Gdiag→H)→G/H coset model

on the world sheet → (susy in bulk→susy on ws)

★ ★ ★ ★           N=2→ N=(2,2)

 N=1 → N=(2,0) nonminimal;          N=0 → N= 0

                
❖ Gaiotto, 2012 & Gaiotto, Gukov, Seiberg, 2013 “surface defects”...

.........

Wednesday, October 9, 13



SU(2)/U(1) = CP(1)∼O(3) sigma model

classically gapless excitation

“Non-Abelian” string is formed if all non-
Abelian degrees of freedom participate in 
dynamics at the scale of string formation

M. Shifman 20
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M ANO strings are there because of U(1)!
M  New strings:

st
ri
ng

x
y

M. Shifman 21

π1(U(1)×SU(2)) nontrivial due to Z2 center of SU(2)z

α

ANO
p

x eia
✓

1 0
0 1

◆

T=4πξ

Non-Abelian
p

x

✓
eia 0
0 1

◆

TU(1)±T3SU(2)

T=2πξ
SU(2)/U(1) ←orientational moduli; O(3) σ model

x0 ← string center in perp. plane

Wednesday, October 9, 13



π1(SU(2)×U(1)) = Z2: rotate by π around 3-d axis in SU(2) 

   → -1;  another -1 rotate by π in U(1) 

M ANO strings are there because of U(1)!
M  New strings:

st
ri
ng

x
y

M. Shifman 21

π1(U(1)×SU(2)) nontrivial due to Z2 center of SU(2)z

α

ANO
p

x eia
✓

1 0
0 1

◆

T=4πξ

Non-Abelian
p

x

✓
eia 0
0 1

◆

TU(1)±T3SU(2)

T=2πξ
SU(2)/U(1) ←orientational moduli; O(3) σ model

x0 ← string center in perp. plane
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z

Z   string junction

B B

B B

2

3 3

Figure 2: Z2 string junction.

have the same tension. Hence, two different strings form a stable junction. Figure 2
shows this junction in the limit

ΛCP(1) ! |∆m| !
√

ξ (4)

corresponding to the lower left corner of Fig. 1. The magnetic fluxes of the U(1) and
SU(2) gauge groups are oriented along the z axis. In the limit (4) the SU(2) flux
is oriented along the third axis in the internal space. However, as |∆m| decreases,
fluctuations of Ba

z in the internal space grow, and at ∆m → 0 it has no particular
orientation in SU(2) (the lower right corner of Fig. 1). In the language of the
worldsheet theory this phenomenon is due to restoration of the O(3) symmetry in
the quantum vacuum of the CP(1) model.

The junctions of degenerate strings present what remains of the monopoles in
this highly quantum regime [11, 12]. It is remarkable that, despite the fact we are
deep inside the highly quantum regime, holomorphy allows one to exactly calculate
the mass of these monopoles. This mass is given by the expectation value of the kink
central charge in the worldsheet CP(N − 1) model (including the anomaly term).

What remains to be done? The most recent investigations zero in on N = 1
theories, which are much closer relatives of QCD than N = 2. I have time to say
just a few words on the so-called M model suggested recently [13] which seems quite
promising.

2.3 M model

The unwanted feature of N = 2 theory, making it less similar to QCD, is the
presence of the adjoint scalar field. One can get rid of it making it heavy. To
this end we must endow the adjoint superfield by a mass term. Supersymmetry of
the model becomes N = 1. Moreover, to avoid massless modes in the bulk theory
(in the limit of very heavy adjoint fields) we must introduce a “meson” superfield
MA

B analogous to that emerging in the magnetic Seiberg dual, see Sect. 1, with an
appropriately superpotential. After the adjoint field is eliminated the theory has no
’t Hooft–Polyakov monopoles in the quasiclassical limit. Nevertheless, a non-Abelian

6

⇠⇠⇠⇠ ⇠⇠⇠⇠ ⇠⇠⇠⇠⇠⇠⇠⇠ ⇠⇠⇠⇠

= kink

Evolution in dimensionless parameter m2/ξ

Yung + M.S.
Hanany, Tong

M. Shifman 22
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ΛCP(1)

Λ
−1

CP(1)

Δ m
−1

ξ
−1/2

ξ=0

Δ m =0

ξ=0

Δ m >> ξ
1/2

The ’t Hooft−Polyakov
monopole

Almost free monopole

B

ξ
−1/2

< << Δ m < ξ
1/2

Confined monopole,
quasiclassical regime

Δ m 0

Confined monopole,
highly quantum regime

Figure 1: Various regimes for monopoles and strings.

was in full swing.1 BPS domain walls, analogs of D branes, had been identified
in supersymmetric Yang–Mills theory. It had been demonstrated that such walls
support gauge fields localized on them. and BPS saturated string-wall junctions
had been constructed [8]. And yet, non-Abelian flux tubes, the basic element of the
non-Abelian Meissner effect, remained elusive.

2.1 Non-Abelian flux tubes

They were first found [9, 10] in U(2) super-Yang–Mills theories with extended su-
persymmetry, N = 2, and two matter hypermultiplets. If one introduces a non-
vanishing Fayet–Iliopoulos parameter ξ the theory develops isolated quark vacua,
in which the gauge symmetry is fully Higgsed, and all elementary excitations are
massive. In the general case, two matter mass terms allowed by N = 2 are unequal,
m1 != m2. There are free parameters whose interplay determines dynamics of the
theory: the Fayet–Iliopoulos parameter ξ, the mass difference ∆m and a dynamical
scale parameter Λ, an analog of the QCD scale ΛQCD. Extended supersymmetry
guarantees that some crucial dependences are holomorphic, and there is no phase
transition.

The number of colors can be arbitrary. The benchmark model supporting non-
Abelian flux tubes has the gauge group SU(N)×U(1) and N flavors. The N =
2 vector multiplet consists of the U(1) gauge field Aµ and the SU(N) gauge field Aa

µ,

1This program started from the discovery of the BPS domain walls in N = 1 supersymmetric
gluodynamics [7].
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Kink = Confined Monopole

✵ Kinks are confined in 4D (attached to strings).
✵ ✵ Kinks are confined in 2D: 
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Dewar flask

4D ↔ 2D Correspondence

☛     World-sheet theory ↔ strongly coupled bulk 

theory inside   
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Break N = 2 down to  N = 1 in the bulk 

Deformation of the bulk:  ADD W= μ(Aa)2 + μ′A2

Lheterotic = z†
R i∂L zR +

⇥
gzR R

�
i∂Lf†�yR +H.c.

⇤
�g2

0|g|2
⇣

z†
R zR

⌘⇣
Ry†

LyL

⌘

at small γ
ζR is Goldstino

Evac = |g|2
���hRy†

R yLi
���
2

(0,2) supersymmetry is 
spontaneously broken!

(2,2) supersymmetry is broken down to (0,2)

 Heterotic deformation the of the World-sheet theory:
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A treasure trove of novel 2D 
models with intriguing dynamics

☛     Heterotic models on string world-sheet 
under intense discussion!!!

Спасибо!

Instead of conclusions
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