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POZDRAVLENIE IZ PROSTRANSTVENNO-VREMENNOGO DALEKA ...
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V 1984 godu �ri� Antonoviqu ispolnilos~ 50 let. Ka�ets�, byl �-
bile$iny$i seminar, v aktovom zale. Kak se$iqas vi�u – �ri$i Antonoviq
vverhu, na podiume, kak obyqno izluqa�wi$i spoko$istvie i uverennost~,
i �tot carstvenny$i �est, neulovimoe prikosnovenie ruki k qut~ sbito$i
pr�di roskoxnyh qernyh volos, s edva nameqennym serebr�nnym uzorom,
i vot pr�d~ u�e na meste, tam gde e$i i polo�eno byt~... Pomn� kak
wedro razdaval �ri$i Antonoviq, napravo i nalevo, ka�domu nemno�ko
si�ni� vysxih sfer.

V tot den~ v kabinete kotory$i � delil s Allo$i Miha$ilovno$i, Popovym
i Perelomovym, i kuda posle seminara prixel �ri$i Antonoviq, sos-
to�ls� bol~xo$i razgovor o nauke. �to bylo vrem� bol~xih o�idani$i.
Kvantova� hromodinamika ewe na pod~eme. Gribovskie kopii, instan-
tonnye modeli vakuuma, gl�boly i gibridy — pri zvuke �tih magiq-
eskih zaklinani$i u mnogih (v naxem malen~kom mirke) zakipala krov~.
Kazalos~, vot ewe poslednee usilie, i kvantova� hromodinamika budet
rexena. �to bylo do supersimmetriqno$i paradigmy, do strun iD-bran.

Nax sledu�wi$i podobny$i razgovor proizoxel vsego paru let spust�,
v naqale perestro$iki, v kurortnom poselke Salacgriva. Letom zdes~ so-
biralas~ �lita moskovsko$i i leningradsko$i intelligencii. Dl� nas – a
� priehal s �le$i i Ane$i na poldn�, po doroge iz P�rnu v Rigu – togda
�to byl nemyslimy$i zapad. � pomn� qinnye obmeny privetstvi�mi s
druz~�mi �ri� Antonoviqa i Ally Mihalo$ivny i dolgu� progulku
po doro�ke v sosnovom lesu, vdol~ berega mor�, gomon ptic i ne�arkoe
balti$iskoe solnce... Perva� tema, kak vsegda, politika. Vser~ez li
otkrylos~ okno v civilizaci�, ne zakroets� li? Gorbaqev ... Ligaqev
... (ka�ets�, Egor Kuzmiq, da kto pomnit ego segodn�) ... Razve mogli
my togda gadat~, qto vsego neskol~ko let spust� Salacgriva stanet
qast~� nezavisimo$i Latvii, a Sovetski$i So�z – “oplot vsego pro-
gressivnogo qeloveqestva” – rasseets� kak durno$i son, ostaviv lix~
nesqast~�, niwetu i gor~kie vospominani� millionam ni v qem ne povin-
nyh l�de$i?
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Nu a potom – to�e ne novost~ – plavno peretekli v fiziku. U�e
narastal val strunno$i tematiki. Perva� strunna� revol�ci� o neobho-
dimosti kotoro$i vse vrem� tverdili ... sverxilas~. D�on �llis,
priehavxi$i v IT�F na paru nedel~, ka�dy$i den~ zvonil v CERN 1

uznat~ ne zaverxilos~ li – ne da$i bog v ego otsutstvie – postroenie
“teorii vsego”. Sve�u� ide�, kak �to vsegda byvaet – i kak i dol�no
byt~ – nesli v massy samye molodye i �rkie. Da zdravstvu�t pionery!
Superstruny (i supersimmetri� v celom) iz zater�nnyh i �kzotiqeskih
uglov teorii vryvalis~ v mainstream, neuder�imo ottesn�� v storonu
predyduwi$i mainstream – kvantovu� hromodinamiku. O, �to p~�n�wee
quvstvo proryva ...

Vse �to obsu�dali my togda s �riem Antonoviqem. Naxi toqki
zreni� otqasti sovpadali, no vo mnogom i rashodilis~. U ka�dogo
byl svo$i scenari$i. Se$iqas, poqti dvadcat~ let spust�, vspomina� svoi
predskazani�, � sme�s~... Uvy, v nauke kak i v obwestvenno$i �izni,
buduwee, kak pravilo, okazyvaet� znaqitel~no bolee neo�idannym, qem
l�bye o�idani�.

Razgovor �tot my tak i ne okonqili – doro�ka v lesu okazalas~ ko-
roqe razgovora – da i mo�no li ego zakonqit~ voobwe? Za dvadcat~ let
mnogoe izmenilos~, i v teorii i v teorotdele IT�F. Inyh u� net, a
te daleqe ... Minimal~na� supersimmetriqna� standartna� model~ vy-
rodilas~ v progonku des�tka, esli ne sotni, parametrov. Kvantova� hro-
modinamika tak i ne rexena, hot� koe-kakie appetitnye kuski otkuxeny.
Revol�cionny$i zador teorii strun kak-to snik. “Teorii vsego” ka�ets�
ne poluqilos~. A ved~ byli ewe i vtora� i tret~� strunnye revol�-
cii.2

Harakter fiziki vysokih �nergi$i men�ets� na glazah – sv�z~ s �mpiri-
qeskimi korn�mi slabeet, uklon v storonu matematiqesko$i fiziki ras-
tet, i s �tim u�e niqego ne podelaex~. Pravda, vyrosla i vozmu�ala
astroparticle physics (long live dark matter and dark energy, the basis of our uni-
verse! – or ... is it multiverse?..), i vozrodilas~ v novom obliqii stara�
ide� Kalucy i Kla$ina – v vide bol~xih dopolnitel~nyh izmereni$i –

1Dl� molodyh l�de$i spexu dobavit~, qto pozvonit~ zagranicu iz
IT�Fa togda mo�no bylo tol~ko s odnogo telefona – u Pomelova na
stole v me�dunarodnom otdele, i pr�mogo nabora, koneqno, ne suwestvo-
valo. Razgovor nado bylo zakazyvat~ zaranee, qerez operatora. D�on
navern�ka materil pro seb� vs� �tu t�gomotinu, i tem ne menee proce-
dura povtor�las~ izo dn� v den~.

2Obyqno v strunno$i literature podrazumevaets�, qto v �tom kontek-
ste slovo “revol�ci�” – sinonim vysoqa$ixego dosti�eni�, no v silu
pon�tnyh istoriqeskih priqin � vse ravno ka�dy$i raz vzdragiva�.

2



s kotoro$i soskuqit~st� nevozmo�no. Qto �to: otnositel~no nebol~xo$i
zigzag na istoriqeskom puti fiziki, ili povorot vser~ez i nadolgo?

Dolo$i, dolo$i nostal~gi� po proxlomu. Luqxee lekarstvo – horoxa�
xutka. Vot nedavno nabrel v internete na miniat�ru tak iskusno sra-
botannu�, qto ponaqalu prin�l za qistu� monetu, lix~ poz�e obrativ
vnimanie na den~ publikacii – pervoe aprel�. Itak, April 1, 2004; posted
by Peter Woit (Department of Mathematics, Columbia University).

String Theorists Finally Admit Defeat 3

The news that next week’s “Science Times” will run an article by New York Times
reporter James Glanz in which several leading string theorists say that they are
giving up on the idea is rapidly spreading throughout the particle theory community.
Evidently Glanz recently went down to Princeton to interview Edward Witten, who
took the opportunity to announce that he has changed his mind about whether
string theory will ever be a “Theory of Everything”. When Glanz contacted other
string theorists and read to them what Witten had said, almost all of them told him
that they too had been having their doubts about the theory.

Glanz quotes Witten as follows:

“One night a few weeks ago I was sitting at my kitchen table trying to make sense
of Douglas’s latest work on the Kachru-Kallosh-Linde-Trivedi (KKLT) proposal and
all of a sudden it really hit me that this is a completely lost cause. If perturbative
string theory has any relation to Planck scale physics, then KKLT or something
like it should work and string theory is vacuous since it can never predict anything.
If perturbative string theory isn’t useful then we really don’t have anything since
we’ve never been able to come up with a non-perturbative version that makes sense.
Twenty years of this is enough. It’s time to give up.”

When Glanz asked him what he intends to do now, Witten responded:

“I don’t really know. There are still promising ideas about using string theory to
solve QCD, and I could keep working on those. Maybe I should take up something
completely different, like biology. I’m starting to worry that John Horgan was right
about the ‘End of Science’. Right now I just definitely need a long vacation.”

When Glanz read Witten’s statement over the phone to David Gross, Frederick
W. Gluck Professor of Physics at UCSB and Director of the Fred Kavli Institute for
Theoretical Physics, Gross thought for a moment and then told him “Yeah, despite
my quote last year from Churchill, I’ve also been thinking of giving up. Not sure
though how I’m going to break this to the two Freds.”

The news of Glanz’s article has had dramatic effects at many universities and
research institutes. At MIT yesterday, Professor Barton Zwiebach shocked students
in his Physics 8.251 “String Theory for Undergraduates” class by announcing that

3Reproduction, with kind permission of the author.
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he wasn’t going to collect the homework due that day and was canceling his lectures
for the rest of the semester. He also asked Cambridge University Press to halt
publication of his new undergraduate textbook called “A First Course in String
Theory”, the release of which had been planned for next month.

Search committees at several institutions that hadn’t finished their hiring yet this
season held new meetings to decide how to react to the news. A prominent theorist
at a University of California campus told me in an e-mail that “our chair had the
phone in his hand and had already dialed the number of a string theory graduate
student from Princeton we were going to offer a post-doc to. I ran into his office as
soon as I heard the news and stopped him just in time. Last week we were sure that
string theorists were the smartest guys around and considered only them for jobs,
but now there’s no way we’re going to hire any more, ever!”

At the Institute in Princeton this year’s “Summer Program for Graduate Students
in String Theory” scheduled for July has been canceled, with one of its organizers
remarking “what graduate student would now be crazy enough to show up for a
program like this?” Next week’s conference on “The Status of M-theory” at the
Michigan Center for Theoretical Physics has also been canceled on very short notice.
The director there, Michael Duff, commented “We had to do this because the status
of M-theory is all too clear. It’s passed on! This theory is no more! It has ceased to
be! It’s expired and gone to meet its maker! ... This is an ex-theory!”

A vot ewe odna xutka, kotora�, kak mne ka�ets�, zabavna tem, qto daet
predstavlenie ob otnoxenii sovremennyh studentov k raznym oblast�m
fiziki – iz teh, qto nynqe vhod�t v “d�entel~menski$i” nabor HEP-
teoretika (tak �e kak i o samo$i kompozicii �togo d�entel~menskogo
nabora):

Physical Theories as Women
Simon Dedeo

Department of Astrophysical Sciences, Princeton University

0. Newtonian gravity is your high-school girlfriend. As your first encounter with
physics, she’s amazing. You will never forget Newtonian gravity, even if you’re not
in touch very much anymore.

1. Electrodynamics is your college girlfriend. Pretty complex, you probably won’t
date long enough to really understand her.

2. Special relativity is the girl you meet at the dorm party while you’re dating
electrodynamics. You make out. It’s not really cheating because it’s not like you
call her back. But you have a sneaking suspicion she knows electrodynamics and
told her everything.

3. Quantum mechanics is the girl you meet at the poetry reading. Everyone
thinks she’s really interesting and people you don’t know are obsessed about her.
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You go out. It turns out that she’s pretty complicated and has some issues. Later,
after you’ve broken up, you wonder if her aura of mystery is actually just confusion.

4. General relativity is your high-school girlfriend all grown up. Man, she is
amazing. You sort of regret not keeping in touch. She hates quantum mechanics for
obscure reasons.

5. Quantum field theory is from overseas, but she doesn’t really have an accent.
You fall deeply in love, but she treats you horribly. You are pretty sure she’s fooling
around with half of your friends, but you don’t care. You know it will end badly.

6. Cosmology is the girl that doesn’t really date, but has lots of hot friends. Some
people date cosmology just to hang out with her friends.

7. Analytical classical mechanics is a bit older, and knows stuff you don’t.
8. String theory is off in her own little world. She is either profound or insane. If

you start dating, you never see your friends anymore. It’s just string theory, 24/7.

Nu, a esli bolee ser~ezno, na vs�koe �vlenie mo�no vzgl�nut~ dvo-
�ko: “stakan libo napolovinu pust, libo napolovinu polon...” L�di ne
bogi – zaqem nam teori� vsego? Tak interesnee. Voprosov mnogo, i na
posledn�� stranicu za otvetom ne zagl�nex~. V obwem, segodn�, kak i
vsegda,

“... na tom rube�e,
krutom vira�e,
na uzko$i me�e me� ewe i u�e ...”

Tak stoit li br�z�at~: “vot v naxe vrem�...”? (�to �, koneqno, sam
sebe govor�...)

Rassu�da� logiqeski, � dol�en byl by napisat~ v �tot sbornik o
kvantovo$i hromodinamike, teme central~no$i dl� �ri� Antonoviqa na
prot��enii poslednih dvadcati p�ti let. Stohastiqeska� model~ vaku-
uma i ee prilo�eni� v nizko�nergetiqesko$i adronno$i fizike – l�bimoe
dit� �ri� Antonoviqa i G�ntera Doxa. Fizika adronov – i mo� perva�
l�bov~, kotora�, koneqno �e, ne zabyvaets�. V posledni$i raz � vernul-
s� k ne$i vser~ez i nadolgo, v seredine 90-h godov proxlogo veka (ruka
ne povoraqivaets�, no pridets� napisat~, – proxlogo veka). Vz�vxis~
dru�no s Kole$i Ural~cevym i Arkadiem Va$inxte$inom, udalos~ zakon-
qit~ razlo�enie po t��elym kvarkam, osnovy kotorogo byli zalo�eny
Mixe$i Voloxinym i mno$i v 1980-h. Potom, v 1999-om okolo polugoda
pytals� hot~ kak-to prodvinut~s� v kvark-adronno$i dual~nosti. S prak-
tiqesko$i toqki zreni� vopros qrezvyqa$ino va�ny$i, da kak k nemu pod-
stupit~s�? V obwem, prodvinuls� daleko ne tak daleko kak hotelos~.

S teh por byli vstreqi, no kakie-to mimoletnye. Interesy moi v
zametno$i mere smestilis~. Hot� i nade�s~ vernut~s� v bli�a$ixem
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buduwem k adronnym k-strunam i sledstvi�m planarno$i �kvivalentnosti,
no pisat~ nado o tom, qto interesuet v danny$i moment. Po�tomu – da
prostit men� �ri$i Antonoviq – napixu o supersimmetrii, toqnee, ob
odnom ee aspekte – central~nyh zar�dah. Tema �ta imeet pr�moe otnoxe-
nie k IT�Fu. Sam togo ne podozreva�, u istokov ee sto�l �en� Bogo-
mol~ny$i, v to vrem� aspirant IT�F. Horoxo pomn�, rabota pisalas~
na golub�tne, gde i sam � togda obretals�. To qto segodn� nazyvaets�
Bogomolny limit, Bogomolny completion, Bogomol’nyi-Prasad-Sommerfield (BPS)
saturation 4 [2, 3] – vse �to bylo vvedeno �ene$i v dosupersimmetriqnu�
�pohu, v 1974 godu, v processe razbiratel~stva s pol�kovskimi monopo-
l�mi, v kotorom na rannih �tapah uqastvovali tak�e Mixa Marinov [1]
i, osobenno, Arkadi$i Va$inxte$in, kotory$i, kak vsegda, koneqno, niqego
ne napisal. Rabota Bogomol~nogo – odna iz samyh citiruemyh iz sde-
lannyh v IT�Fe za vs� istori� ego suwestvovani�. �en� ne byl
moskviqom, i trebovalis~ special~nye usili�, qtoby ostavit~ ego v
IT�Fe, kakovye predprin�ty ne byli. Preprint vyxel v Qernogolovke.

Sledu�wi$i ni�e material – qto-to srednee me�du kratkim obzorom,
nabroskom nezaverxenno$i stat~i i glavo$i nenapisanno$i knigi.5 Budet
li ona napisana? Kto znaet...

4The above notions are among basic entries of modern internet-based encyclopedias. For
instance, ENCYCLOPEDIA 4U.com defines Bogomol’nyi-Prasad-Sommerfield bound as follows:
“The Bogomol’nyi-Prasad-Sommerfield bound refers to a series of inequalities for solutions of par-
tial differential equations depending on the homotopy class of the solution at infinity. This set
of inequalities is very useful for solving soliton equations. Often, by insisting that the bound is
satisfied (called ‘saturation’), one can come up with a simpler set of partial differential equations
to solve.”

5K so�aleni�, pomimo qisto literaturnyh ogrehov, ne hvataet vre-
meni vyverit~ vse minusy i dvo$iki v ko�fficientah. Obwa� struktura
i zakl�qitel~nye vyvody ot �togo ka�ets� ne strada�t.
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Remarks on Central Charges in Superalgebras

1. Central charges in superalgebras – generalities

In this Section we will briefly review general issues related to central charges (CC)
in superalgebras.

1.1. History. The first superalgebra in four dimensional field theory was dertived
by Golfand and Likhtman [4] in the form

{Q̄αQβ} = 2Pµ (γµ)αβ , {Q̄αQ̄β} = {QαQβ} = 0 , (1)

i.e. with no central charges. Possible occurrence of CC (elements of superalgebra
commuting with all other operators) was first mentioned in an unpublished paper of
Lopuszanski and M. Sohnius [5] where the last two anticommutators were modified
as

{QI
αQ

G
β } = ZIG

αβ . (2)

A more complete description of superalgebras with CC in quantum field theory was
worked out in [6]. The only central charges analyzed in this paper were Lorentz
scalars (in four dimensions). Thus, by construction, they could be relevant only to
extended supersymmetries. Then, a few years later, Witten and Olive [7] showed
that in supersymmtric theories with solitons, central extension of superalgebras is
typical; topological quantum numbers play the role of central charges. It was gen-
erally understood that superalgebras with (Lorentz-scalar) central charges can be
obtained from superalgebras without central charges in higher-dimensional space-
times by interpreting some of the extra components of the momentum as CC’s (see
e.g. [8]). That not all CC’s are of this type was known at this time at the algebraic
level (see e.g. [12]), but the dynamical role of these additional tensorial charges was
not fully appreciated until somewhat later. Central charges that are antisymmetric
tensors in various dimensions were introduced (in the supergravity context, in the
presence of p-branes) in Ref. [13] (see also [14]). These CC’s are relevant to extended
objects of the domain wall type. Their occurrence in four-dimensional super-Yang-
Mills theory (as a quantum anomaly) was first observed in [10]. A general theory
of central extensions of superalgebras in three and four dimensions was discussed
in Ref. [11]. It is worth noting that discussion in [11] of those central charges that
have the Lorentz structure of Pµ was not carried out in full.

1.2. Minimal SUSY. The minimal number of supercharges in various dimensions
is given in Table 1. Two-dimensional theories with a single supercharge, although
algebraically possible, require the loss of F and (−1)F . Therefore, if one wants to
keep the distinction between the “bosons” and ”fermions,” the minimal number of
supercharges in D = 2 is two.
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D 2 3 4 5 6 7 8 9 10

νQ (1∗) 2 2 4 8 8 8 16 16 16

Dim(ψ)C 2 2 4 4 8 8 16 16 32

# cond. 2 1 1 0 1 1 1 1 2

Table 1. The minimal number of supercharges, dimension of the
spinorial representation and the number of additional conditions (i.e.
the Majorana and/or Weyl conditions).

The minimal number of supercharges in Table 1 is given for a real representation.
Then, it is clear that, generally speaking, the maximal possible number of CC’s is
determined by the dimension of the symmetric matrix {QiQj} of the size νQ × νQ,
namely,

νCC =
νQ(νQ + 1)

2
. (3)

In fact, D anticommutators have the Lorentz structure of the energy-momentum
operator Pµ. Therefore, up to D central charges could be absrorbed in Pµ, gener-
ally speaking. In particular situations this number can be smaller, since although
algebraically the corresponding CC’s have the same structure as Pµ, they are dynam-
ically distinguishable. the point is that Pµ is uniquely defined through the conserved
and symmetric energy-momentum tensor of the theory.

The total set of CC’s can be arranged by classifying CC’s with respect to their
Lorentz structure. Below we will present this classification for D = 2, 3 and 4.

1.3. D = 2. Consider two-dimensional theories with two supercharges. From the
discussion above, on purely algebraic grounds, three CC’s are possible: one Lorentz-
scalar and a two-component vector,

{Qα, Qβ} = 2(γµγ0)αβ(Pµ + Zµ) + i(γ5)αβZ , (4)

The latter case would require existence of a vector order parameter taking distinct
values in different vacua. This will break Lorentz invariance and supersymmetry
of the vacuum state. Limiting ourselves to supersymmetric vacua we conclude that
only one (real) Lorentz-scalar central charge Z is possible. This central charge is
relevant to kinks in N = 1 theories.

1.4. D = 3. The central charge allowed in this case is a Lorentz-vector Zµ, i.e.

{Qα, Qβ} = 2(γµγ0)αβ(Pµ + Zµ), (5)

which we should arrange Zµ to be orthogonal to Pµ. By an appropriate choice of
reference frame it can always be cast in the form (0, 0, 1). In fact, this is the central
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charge of the previous section elevated by one dimension. It is associated with a
domain wall (or string) oriented along the second axis.

1.5. D = 4. Maximally one can have 10 CC’s which are decomposed into Lorentz
representations as (0,1) + (1,0) + (1/2, 1/2):

{Qα, Q̄α̇} = 2(γµ)αα̇(Pµ + Zµ),

{Qα, Qβ} = (Σµν)αβZ[µν], (6)

{Q̄α̇, Q̄β̇} = (Σ̄µν)α̇β̇Z̄[µν] , (7)

where (Σµν)αβ = (σµ)αα̇(σ̄ν)α̇
β is a chiral version of σµν (see e.g. [19]). The anti-

symmetric tensors Z[µν] and Z̄[µν] are associated with domain walls, and reduce to
a complex number and a spatial vector orthogonal to the domain wall. The (1/2,
1/2) CC Zµ is a Lorentz vector orthogonal to Pµ. It is associated with strings (flux
tubes), and reduces to one real number and a three-dimensional unit spatial vector
parallel to the string.

1.6. Extended SUSY. We will limit our attention here to exploring the reduction
of the minimal SUSY algebra in D = 4 to D = 2 and 3, namely the N = 2 SUSY
algebra in those dimensions. As should be clear from the discussion above, the
maximal number of CC’s is of course the same, and the only distinction we must
make is to provide a decomposition into both Lorentz and R-symmetry irreps.

• N = 2 in D = 3

The superalgebra can be decomposed into Lorentz and R-symmetry tensorial
structures as follows:

{Qi
α, Q

j
β} = 2(γµγ0)αβ[(Pµ + Zµ)δij + Z(ij)

µ ] + 2γ0
αβZ

[ij], (8)

where γ0 is the charge conjugation matrix. The maximal set of 10 CC’s enter as a
triplet of spacetime vectors Zij

µ and a singlet Z [ij]. The singlet CC is associated with
vortices (or lumps), and corresponds to the reduction of the (1/2,1/2) charge or the
4th component of the momentum vector inD = 4. The triplet Zij

µ is decomposed into
an R-symmetry singlet Zµ, algebraically indistinguishable from the momentum, and

a traceless symmetric combination Z
(ij)
µ . The former is equivalent to the vectorial

charge in the N = 1 algebra, while Z
(ij)
µ can be reduced to a complex number and

vectors specifying the orientation. We see that these are the direct reduction of the
(0,1) and (1,0) wall charges in D = 4.

• N = 2 in D = 2
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Lorentz invariance now provides a much weaker constraint, and one can in prin-
ciple consider different (p, q) superalgebras comprising p + q = 4 supercharges. We
will mention here only the nonchiral N = (2, 2) case correpsonding to dimensional
reduction of the N = 1 D = 4 algebra. The tensorial decomposition is as in (8),
but with the decomposition of D = 3 spacetime vectors into D = 2 vectors and a
singlet,

{Qi
α, Q

j
β} = 2(γµγ0)αβ[(Pµ +Zµ)δij +Z(ij)

µ ] + 2i(γ5)αβ(δijZ +Z(ij)] + 2γ0
αβZ

[ij], (9)

We discard all vectorial charges Zij
µ in this case for the reasons described above, and

are left with two singlets Z(ij), which are the reduction of the domain wall charges
in D = 4 and correpond to topological kink charges, and two further singlets Z and
Z [ij], arising via reduction from P2 and the vortex charge in D = 3.

1.7. A few words on extended supersymmetry (eight supercharges) in
D=4. Complete algebraic analysis of all tensorial central charges possible in this
is analogous to the previous cases and is rather straightforward. With eight super-
charges the maximal number of CC’s is 36. Dynamical aspect is less developed –
only a modest fraction of the above 36 CC’s are known to be nontrivially realized
in models studied in the literature. I will limit myself to a few remarks regarding
the well-established CC’s. I will use a complex (holomorphic) representation of the
supercharges. Then the supercharges are labeled as follows

Qf
α , Q̄α̇ g , α, α̇ = 1, 2 , f, g = 1, 2 . (10)

On general grounds one can write

{Qf
α, Q̄α̇ g} = 2δf

g Pαα̇ + 2(Zf
g )αα̇ ,

{Qf
α, Q

g
β} = Z

{fg}
{αβ} + εαβε

fg Z ,

{Q̄α̇ f , Q̄β̇ g} =
(
Z̄{α̇β̇}

)
{fg}

+ εαβε
fg Z̄ . (11)

Here (Zf
g )αα̇ are four vectorial central charges (1/2, 1/2), (16 components altogether)

while Z
{fg}
{αβ} and the complex conjugate are (1,0) and (0,1) central charges. Since the

matrix Z
{fg}
{αβ} is symmetric with respect to f, g, there are three flavor components,

while the total number of components residing in (1,0) and (0,1) central charges is
18. Finally, there are two scalar central charges, Z and Z̄.

Dynamically the above central charges can be described as follows. The scalar
CC’s Z and Z̄ are saturated by monopoles/dyons. One vectorial central charge Zµ

(with the additional condition P µZµ = 0) is saturated [16] by Abrikosov-Nielsen-
Olesen string (ANO for short) [15]. A (1,0) central charge with f = g is saturated
by domain walls [17].
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1.8. D = 3: Why BPS vortices cannot appear in theories with two super-
charges. BPS vortices in 2+1 dimensions were previously considered in [18] (see
also references therein). To simplify the discussion, we assume that we can choose
a real representation for the superalgebra within which

{Qα, Qβ} = γµ
αβPµ + · · · , (12)

where µ is a spacetime index. It then follows that, since the number of broken
translational generators is d, there are at least d broken supercharges. In practice
the number may be larger once we account for Lorentz invariance.

This simple argument tells us that, provided we are dealing with a 1/2-BPS soliton
in a supersymmetric theory (i.e. an object localized only in space not time), the
minimal matching between bosonic and fermionic zero modes in the translational
sector is one-to-one.

Consider now a putative BPS vortex in a theory with minimal N = 1 SUSY
in 2+1D. Such a configuration would require a worldvolume description with two
bosonic zero modes, but only one fermionic mode. This is not permitted by the
argument above, and indeed no configurations of this type are known. Vortices
always exhibit at least two fermionic zero modes and are thus BPS only in N = 2
theories.

2. “Monopole” central charges: anomalies and all that

In this section we will discuss the Lorentz-scalar central charges in Eq. (11) that
are saturated by monopoles/dyons. They will be referred to as monopole central
charges. A rather dramatic story is asssociated with them, a story which is not
yet finished. Historically they were the first to be introduced within the framework
of an extended 4D superalgebra [5, 6]. On the dynamical side, they appeared as
the first example of the “topological charge ↔ central charge” relation revealed by
Witten and Olive in their pioneering paper [7]. Twenty years later, the N = 2
model where these central charges first appeared, was solved by Seiberg and Witten
[20, 21], and the exact masses of the BPS-saturated monopoles/dyons found. No
direct comparison with the operator expression for the central charges was carried
out, however. In Ref. [22] it was noted that for the Seiberg-Witten formula to be
valid, a boson-term anomaly should exist in the monopole central charges. Even
before [22] a fermion-term anomaly was identified [23], which plays a crucial role
[24] for the monopoles in the Higgs regime (confined monopoles). What is still
lacking is a direct operator derivation of the above anomalies.
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2.1. The model. The simplest N = 2 model we will deal with was found [25] as
early as in 1974, see also [26] where the matter multiplets – the so called hypermul-
tiplets – first appeared.6 The N = 2 model in four dimensions can be obtained from
N = 1 super-Yang-Mills theory in six dimensions.

It is instructive to consider both, the Majorana and Weyl representations. The
gauge group is SU(2). In the Weyl representation one deals with two Weyl fermions,
λa

α (gluino) and ψa
α (gluino’s N = 2 superpartner). Then

L =
1

g2
0

{
−1

4
F a

µνF
µν a + λα ,a (iDαα̇)λ̄α̇ ,a +

1

2
DaDa

+ ψα ,a (iDαα̇)ψ̄α̇ ,a +Dµφ̄aDµφ
a

−
√

2εabc

(
φ̄aλbψc + h.c.

)
− i

2
Da εabc φ̄

bφc

}
, (13)

where where g0 is the bare coupling constant, and Da is an auxiliary field which can
be eliminated by virtue of the equation of motion,

Da =
i

2
εabc φ̄

bφc , (14)

while there are no F terms (i.e. they are set to zero) since we introduce no super-
potential.

The flat direction of the model can be parametrized as follows:

φ3 = v , φ1 = φ2 = 0 . (15)

Moreover, using the (anomalous) U(1) symmetry one can always make the vacuum
expectation value v real and positive. Generally speaking, such a rotation introduces
a vacuum angle θ, even if it was fine-tuned to zero in the beginning. The question of
θ-induced effects is interesting by itself, but I will not consider it here, deferring the
corresponding discussion till better times. Thus, I will assume θ = 0 after setting φ
real. For real and positive v the W -boson mass m is

m =
√

2 v . (16)

6There is a funny story about the emergence of the word “hypermultiplet” in this context. M.
Sohnius recollects [27]: When a French super-marché carries not only food and drink but also car
spares, garden furniture and ladies’ underwear, it becomes an hyper-marché. Correspondingly,
P. Fayet called N = 2 supersymmetry “hyper-symmetry.” Whereas that name has not stuck in
general, the matter multiplet of N = 2 supersymmetry is still called “hypermultiplet.”
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At the same time, in the Majorana representation

L =
1

g2
0

{
−1

4
F a

µνF
µν a +

1

2
χ̄a

i i /D χa
i +

1

2
DµAaDµA

a +
1

2
DµBaDµB

a

= +
1

2
Tr[A,B][A,B] +

i

2
εijTr

(
[χ̄i, χj]A+ ([χ̄i, γ5χj]B

)}
(17)

where χi (i = 1, 2) are two Majorana fermions, A is a scalar field and B is a
pseudoscalar field, all in the adjoint representation.

At the classical level the description of monopoles does not depend on fermions at
all. Let us consider static field configurations. Then, neglecting all time derivatives
and setting A0 = 0, one can write the Bogomolny completion of the energy functional
as follows:

E =

∫
d3x

{[
1√
2g0

F ∗a1 +
1

g
D1φ

a

]2

+

[
1√
2g0

F ∗a2 +
1

g
D2φ

a

]2

+

[
1√
2g0

F ∗a3 +
1

g
D3φ

a

]2
}
−
√

2

g2
0

∫
dSn (φa F ∗an ) , (18)

where the last term is the surface term, written as an integral over a large sphere,
and

F ∗m =
1

2
εmnk Fnk .

The Bogomolny equations for the monopole are

F ∗ai +
√

2Di φ
a = 0 . (19)

The solution to this equation is given by the famous hedgehog ansatz [28]

φa(~x) = δai xi

r
F (r) , Aa

i (~x) = εaij xi

r
W (r) , (20)

where r
√
~x2 while Aa

0 = 0. Equations (20) must be supplemented by boundary
conditions at the origin (where the solution must be regular), and at the spatial
infinity where F (r) → v and W (r) → 1. The profile functions F and W can be
found analytically, see e.g. [29].

2.2. Dimension of the BPS representations. As was first noted by Montonen
and Olive [34], all states in N = 2 model – W bosons and monopoles alike – are
BPS saturated. This results in the fact that supermultiplets of this model are short.
Regular (long) supermultiplet would contain 22N = 16 helicity states, while the
short ones contain 2N = 4 helicity states – two bosonic and two fermionic. This is
in full accord with the fact that the number of the fermion zero mode on the given
monopole solution is four, resulting in dim-4 representation of the supersymmetry
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algebra. If we combine particles and antiparticles together, as is customary in field
theory, we will have one Dirac spinor on the fermion side of the supermultiplet in
both cases, W -bosons/monopoles.

2.3. Supercurrents. The model, being N = 2, possesses two conserved supercur-
rents,

J I
αββ̇

=
1

g2
0

{
2iF a

βαλ̄
a
β̇
− 6εβαD

aλ̄a
β̇

+ 2
√

2
(
Dαβ̇φ̄

a
)
ψa

β

}
,

J II
αββ̇

=
1

g2
0

{
2iF a

βαψ̄
a
β̇
− 6εβαD

aψ̄a
β̇
− 2

√
2
(
Dαβ̇φ̄

a
)
λa

β

}
. (21)

The commutator of the corresponding supercharges is

{QI
α, Q

II
β } = −2

√
2i

g2
0

∫
d3x div

(
φ̄a

(
~Ea − i ~Ba

))

= −2
√

2i

g2
0

∫
dSn

(
φ̄a (Ea

n − i Ba
n)

)
. (22)

Everything is perfectly okay at the classical level. A crucial feature that I must stress
is the chiral structure of the classical central charge in Eq. (22). The classical U(1)
current argument tells us that the anticommutator {QI

α, Q
II
β } must be proportional

to φ̄ rather than φ; then, the particular structure of the supercurrents (22) implies
that the color-electric and color-magnetic fields enter in the combination Ea

n− i Ba
n.

2.4. Coupling constant renormalization. A straightforward analysis seems to
show 7 that the impact of renormalization reduces to the replacement of the bare
coupling g−2

0 in Eq. (22) by the (renormalized) effective coupling g−2 normalized at
the lowest relevant mass scale in the theory, i.e. at the scale v. Then we arrive at

{QI
α, Q

II
β } = −2

√
2i

g2

∫
dSn

(
φ̄a (Ea

n − i Ba
n)

)
. (23)

If one substitutes the color-electric and color-magnetic fields generated by the electric
and magnetic charge, respectively, one arrives at the following expression for the
central charge (and, correspondingly, the mass of the BPS state):

M =

∣∣∣∣√2v

(
1− 4π i

g2

)∣∣∣∣ . (24)

7Quantum corrections in the mass of the BPS saturated monopoles were first discussed in
Refs. [30, 31, 32] two decades ago.
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Let me parenthetically note that the general formula is

M =

∣∣∣∣√2v

(
ne −

4π i

g2
nm

)∣∣∣∣ , (25)

where ne,m are integer electric and magnetic numbers, but we will consider here
only the particular case when either ne =, 1 or nm = 0, 1. It must be noted, with
satisfaction, that for nm = 0 and ne = 1 we get the correct W -boson mass.

So far, everything seems perfectly cloudless. An indication that a problem exists
came from comparison of the result quoted in Eq. (24) with the exact solution found
in Ref. [20] in the limit of large v when all nonperturbative effects are neglected.
Such a comparison could have been made immediately after publication of Ref. [20],
but for reasons beyond my comprehension (and I must admit my own guilt too) it
was not carried out until recently, see [22].

2.5. Detecting an anomaly. The masses of the BPS-saturated states (W bosons
and monopoles) in the Seiberg-Witten exact solution can be presented by the formula

M =
√

2
∣∣∣a(

ne −
aD

a
nm

)∣∣∣ , (26)

where

aD = i a

(
4π

g2
0

− 2

π
ln
M0

a

)
, (27)

while the renormalized coupling constant is defined in terms of the ultraviolet pa-
rameters as follows:

∂aD

∂a
≡ 4πi

g2
. (28)

Because of the a ln a dependence, ∂aD/∂a differs from aD/a by a constant (nonlog-
arithmic) term, namely,

aD

a
= i

(
4π

g2
− 2

π

)
. (29)

Combining Eq. (26) and (29) we get

M =
√

2

∣∣∣∣a(
ne − i

(
4π

g2
− 2

π

)
nm

)∣∣∣∣ , (30)

This does not match Eq. (25) in the nonlogarithmic part (i.e. the part of the nm

term with no g2 factor). Since the relative weight of the electric and magnetic parts
in Eq. (23) is fixed to be ∼ g2, the presence of the above nonlogarithmic term implies
that, in fact, the chiral structure Ea

n−i Ba
n obtained at the canonic commutator level

cannot be maintained once quantum corrections are switched on. This is a quantum
anomaly.
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2.6. Getting the anomaly. First, I will present my argument and then try to
summarize that of Rebhan et al. [22], although I must admit that so far I failed to
make myself comfortable with the latter paper. (I am afraid, there is something not
quite kosher there; in any case, further analysis seems to be needed).

Our starting point will be the (superconformal) anomaly [33] in the supercurrent
(21), namely, (

εαβJ I
αββ̇

)
anom

=
N

8π2
F̄ a

α̇β̇
λ̄a ,α̇ (31)

for SU(N). Please, note the occurrence of the opposite-chirality field strength tensor
F̄ a

α̇β̇
. At the classical level the current J I

αββ̇
contains F a

αβ (which eventually leads to

Ea
n−i Ba

n in the anticommutator (23)) rather than F̄ a
α̇β̇

. The fact that at the quantum

level F̄ a
α̇β̇

pops up means that the anticommutator (23) does have an anomaly – an

N = 2 relative of the superconformal anomaly – which gives rise to Ea
n+i Ba

n, a term
of the opposite chiral structure. A rather straightforward calculation then gives{

QI
α, Q

II
β

}
anom

= −2
√

2i
1

4π2

∫
dSn

(
φ̄a (Ea

n + i Ba
n)

)
, (32)

to be compared with Eq. (22). (In the SU(N) we would have N/(8π2) instead of
1/(4π2) in Eq. (32).) Adding the canonic and the anomalous terms in

{
QI

α, Q
II
β

}
together we see that the fluxes generated by color-electric and color-magnetic terms
are now shifted, untied from each other, by a nonlogarithmic term in the magnetic
part. Normalizing to the electric term, MW =

√
2v, we get for the magnetic term

MM =
√

2v

(
4π

g2
− 2

π

)
, (33)

as it is necessary for the consistency with the exact Seiberg-Witten solution.
A few words about the analysis of of Rebhan et al. [22]. These authors did not

aim at establishing the operator form of the anomaly. Instead, they started from the
assumption that central charges relevant to the monopole problem in four dimensions
can be viewed as a dimensional reduction of the Golfand-Likhtman superalgebra
(1). Then they calculated the matrix element of the energy-momentum tensor (more
exactly, its fermion part) in 4+ε dimensions in the monopole background field. Upon
analytic continuation to ε→ 0 they find a finite nonlogarithmic term consistent with
(33) which is interpreted as an anomaly.

That the Golfand-Likhtman superalgebra (1) generates central charges upon dimes-
nional reduction is known for a long time (see e.g. the book [8]). A crucial question
is whether all relevant supercharges can be obtained through this procedure. In the
problem at hand the answer is negative.

To illustrate this assertion let us consider N = 1 Yang-Mills theory in D = 6.
As well-known, dimensional reduction of this theory to D = 4 gives rise to four-
dimensional N = 2 model we deal with here. Assume that the six-dimensional
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superalgebra has the form (1) with

Pµ =

∫
θµ0(x) d

5x (34)

(here θµ0 is the six-dimensional energy-momentum tensor), dimensionally reduced
to D = 4. Then ask whether the result for µ = 4, 5 can reduce to Eq. (22). The
answer seems to be negative. Let me explain why.

First note that the Weyl spinor in six dimensions has four (complex) components,
Ψ = {Ψ1,2,3,4} while σµ matrices can be chosen as follows:

σµ = {1, γ0γ1, γ0γ2, γ0γ3, γ0, iγ0γ5} , (35)

so that all spatial matrices are Hermitean and anticommuting. (Here γµ,5 are the
Dirac matrices.) Then, suppressing the color indices, one can write

LD=6 = −1

4
F µνFµν + Ψ† σµ (iDµ) Ψ , (36)

where I have also set g2 = 1 to ease the notation. The gauge coupling constant can
be easily restored at the very end. In the six-dimensional language this Lagrangean
in N = 1, i.e. it has eight supercharges (see Table 1). In four dimensions this theory
is N = 2. The dimensional reduction is carried out in a standard way, namely, x4.5

are compactified, and only zero modes in x4.5 are retained. In practical terms this
means that we just drop the x4.5 dependence. Given our choice of the σµ matrices,
from the 4D perspective, A4 is a scalar field while A5 is pseudoscalar. These two
fields can be combined into a complex field

φ =
A4 + iA5√

2
. (37)

We will also need the expression for the energy-momentum tensor, which has the
following canonic form:

θµν = F µα F ν
α − 1

4
gµν FαβFαβ

+
i

4

{
Ψ†σµDνΨ + Ψ†σνDµΨ−Ψ†σµ

←
Dν Ψ−Ψ†σν

←
Dµ Ψ

}
. (38)

Upon dimensional reduction to D = 4, combining this expression with equations of
motion, one readily gets

θ04 = −div
(
A4 ~E

)
− i

4
div

(
Ψ†~γΨ

)
,

θ05 = −div
(
A5 ~E

)
+

1

4
div

(
Ψ†~γγ5Ψ

)
. (39)

17



Here we omitted terms vanishing by virtue of equations of motion. Quick inspection
shows that

∫
d3xθ04(5) cannot represent the central charge in full, as it is obvious

from Eq. (22) that at the classical level the color-electric and color-magnetic fields
enter in a unified chiral combination Ea

n − i Ba
n, while the dimensional reduction of

the energy-momentum tensor gives rise only to the color-electric field. How does
the color-magnetic field emerge?

This is only possible if the algebra (1) gets a central extension already at 6D-level.
It is not difficult to infer a general structure of this central extension. Namely,

{Q̄αQβ} = 2
(
σA

)
αβ

∫
dx {θ0A

+ ε0ABCDE ∂
B

(
i

24
Ψ†σC σD σEΨ + AC∂D AE + ...

) }
, (40)

where the ellipces stand for the non-Abelian part of the gauge-boson term. Upon
reduction to four dimensions the fermion part in the second line in Eq. (40) cancels
that in Eq. (39) – at the classical level there are no fermion terms in the anti-
commutator of the supercharges, as is clearly seen in Eq. (22). The boson part
generates missing terms with the color-magnetic fields which complete the boson
part of Eq. (39) making it compatible with (22).

A question which immediately comes to my mind is whether one can use dimen-
sional reduction (from 4 + ε) to obtain the anomalous part of the central charge.
Since the second line in Eq. (40) contains ε, its continuation to 4 + ε is problematic,
to put it mildly. It is not clear to me at all how to treat it in 4+ε. On the other hand,
the fermion terms in Eq. (39) can be trivially extended to 4 + ε. If one subtracts
the part at D = 4 (which is presumably cancelled (?) by (40), the difference is, nat-
urally, proportional to ε. A properly defined gauge-field-background loop with the
fermion vertices from Eq. (39) (which will also require specification of γ5 in 4 + ε),

being divergent, provides 1/ε times, presumably, div
(
A5 ~E

)
or div

(
A4 ~B

)
. The

product is ε independent and finite at ε = 0 which certainly smells of anomaly. At
least operationally, this is what happens in the calculation of Ref. [22] which, as was
mentioned above, proves to be compatible with the exact Seiberg-Witten formula.
A task for the future is to work out a fully transparent operator interpretation of
the procedure, along the lines discussed above. The same mechanism which is re-
sponsible for the generation of the bosonic anomaly destroys, at one-loop level, the
cancellation of the bifermion terms which took place at the tree level. This gives
rise to the fermion part of the central charge anomaly. In fact, the occurrence of
such anomalous terms had been inferred previously [17, 24].
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2.7. Bifermion part of the anomaly. The story begins with the discovery [10] of
the gluino condensate term in the domain-wall central charge in N = 1 supersym-
metric gluodynamics. The fact that it should have N = 2 superpartners was first
mentioned in [17]. It is not difficult to see that in the general case, in the model
under consideration

Zfg ∼ N

16π2
λf

αλ
g
β , (41)

where f and g are “subflavor” indices (i.e. two Weyl spinors, λ and ψ in Eq. (13)).
The same indices f and g label the supercharges, see Eq. (21). There are two options:
one can antisymmetrize with respect to α and β and symmetrize with respect to f
and g, and vice versa. In the first case we get the domain-wall central charges, while
in the latter case obviously arrive at an anomaly in the monopole central charge.
The origin is common. In Ref. [24] it was established that, for the SU(2) model,

{Qf
αQ

g
β} = εαβ ε

fg 2

∫
d3x ζ0(x) ,

ζ0 =
1

2
ε0νρσ 1

8
√

2π2
∂ν

(
λa

fα(σρ)
αα̇(σ̄σ)α̇βλ

afβ
)
. (42)

No direct contact with the consideration of Ref. [22] has been established so far.
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And Bogomolny Equations In The Abelian Higgs Model, Phys. Lett. B 329, 39 (1994) [hep-
th/9311055]; S. C. Davis, A. C. Davis and M. Trodden, N = 1 supersymmetric cosmic strings,
Phys. Lett. B 405, 257 (1997) [hep-ph/9702360].

[19] M. A. Shifman and A. I. Vainshtein, Instantons versus supersymmetry: Fifteen years later, in
M. Shifman, ITEP Lectures in Particle Physics and Field Theory (World Scientific, Singapore
1999), Vol. 2, pp. 485-648 [hep-th/9902018].

[20] N. Seiberg and E. Witten, Electric-magnetic duality, monopole condensation, and confinement
in N = 2 supersymmetric Yang-Mills theory, Nucl. Phys. B426, 19 (1994), (E) B430, 485
(1994) [hep-th/9407087].

[21] N. Seiberg and E. Witten, Monopoles, duality and chiral symmetry breaking in N=2 super-
symmetric QCD, Nucl. Phys. B431, 484 (1994) [hep-th/9408099].

[22] A. Rebhan, P. van Nieuwenhuizen and R. Wimmer, A new anomaly in the central charge of
the N = 2 monopole, hep-th/0401116.

[23] M. Shifman and A. Yung, Localization of non-Abelian gauge fields on domain walls at weak
coupling (D-brane prototypes), hep-th/0312257.

[24] M. Shifman and A. Yung, Non-Abelian string junctions as confined monopoles, hep-
th/0403149.

[25] P. H. Dondi and M. Sohnius, Supergauge Transformations With Isospin Symmetry, Nucl.
Phys. B 81, 317 (1974).

[26] A. Salam and J. Strathdee, Supersymmetry, Parity And Fermion - Number Conservation,
Nucl. Phys. B 97, 293 (1975).

[27] M. F. Sohnius, Introducing Supersymmetry, Phys. Rept. 128, 39 (1985).

20



[28] G. ’t Hooft, Magnetic Monopoles In Unified Gauge Theories, Nucl. Phys. B 79, 276 (1974);
A. M. Polyakov, Particle Spectrum In Quantum Field Theory, Pisma Zh. Eksp. Teor. Fiz. 20,
430 (1974) [JETP Lett. 20, 194 (1974)].

[29] R. Rajaraman, Solitons and Instantons, (North Holland, Amsterdam, 1982).
[30] A. D’Adda, R. Horsley and P. Di Vecchia, Supersymmetric Magnetic Monopoles And Dyons,

Phys. Lett. B 76, 298 (1978).
[31] R. K. Kaul, Monopole Mass In Supersymmetric Gauge Theories, Phys. Lett. B 143, 427

(1984).
[32] C. Imbimbo and S. Mukhi, Index Theorems And Supersymmetry In The Soliton Sector. 2.

Magnetic Monopoles In (3+1)-Dimensions, Nucl. Phys. B 249, 143 (1985).
[33] M. Grisaru, Anomalies in Supersymmetric Theories, in Recent Developments in Gravitation,

Ed. M. Levy and S. Deser (Plenum Publishing, 1979), p. 577; for an updated version of the
article see The Many Faces of the Superworld, ed. M. Shifman (World Scientific, 2000), p. 370.

[34] C. Montonen and D. I. Olive, Magnetic Monopoles As Gauge Particles?, Phys. Lett. B 72,
117 (1977).

21



POZDRAVLENIE IZ PROSTRANSTVENNO-VREMENNOGO DALEKA ...
M. Xifman

Institut teoretiqesko$i fiziki,
Universitet Minnesoty,

Minneapolis, Minnesota 55455, SXA

V 1984 godu �ri� Antonoviqu ispolnilos~ 50 let. Ka�ets�, byl �-
bile$iny$i seminar, v aktovom zale. Kak se$iqas vi�u – �ri$i Antonoviq
vverhu, na podiume, kak obyqno izluqa�wi$i spoko$istvie i uverennost~,
i �tot carstvenny$i �est, neulovimoe prikosnovenie ruki k qut~ sbito$i
pr�di roskoxnyh qernyh volos, s edva nameqennym serebr�nnym uzorom,
i vot pr�d~ u�e na meste, tam gde e$i i polo�eno byt~... Pomn� kak
wedro razdaval �ri$i Antonoviq, napravo i nalevo, ka�domu nemno�ko
si�ni� vysxih sfer.
V tot den~ v kabinete kotory$i � delil s Allo$i Miha$ilovno$i, Popovym

i Perelomovym, i kuda posle seminara prixel �ri$i Antonoviq, sos-
to�ls� bol~xo$i razgovor o nauke. �to bylo vrem� bol~xih o�idani$i.
Kvantova� hromodinamika ewe na pod~eme. Gribovskie kopii, instan-
tonnye modeli vakuuma, gl�boly i gibridy — pri zvuke �tih magiq-
eskih zaklinani$i u mnogih (v naxem malen~kom mirke) zakipala krov~.
Kazalos~, vot ewe poslednee usilie, i kvantova� hromodinamika budet
rexena. �to bylo do supersimmetriqno$i paradigmy, do strun iD-bran.
Nax sledu�wi$i podobny$i razgovor proizoxel vsego paru let spust�,

v naqale perestro$iki, v kurortnom poselke Salacgriva. Letom zdes~ so-
biralas~ �lita moskovsko$i i leningradsko$i intelligencii. Dl� nas – a
� priehal s �le$i i Ane$i na poldn�, po doroge iz P�rnu v Rigu – togda
�to byl nemyslimy$i zapad. � pomn� qinnye obmeny privetstvi�mi s
druz~�mi �ri� Antonoviqa i Ally Mihalo$ivny i dolgu� progulku
po doro�ke v sosnovom lesu, vdol~ berega mor�, gomon ptic i ne�arkoe
balti$iskoe solnce... Perva� tema, kak vsegda, politika. Vser~ez li
otkrylos~ okno v civilizaci�, ne zakroets� li? Gorbaqev ... Ligaqev
... (ka�ets�, Egor Kuzmiq, da kto pomnit ego segodn�) ... Razve mogli
my togda gadat~, qto vsego neskol~ko let spust� Salacgriva stanet
qast~� nezavisimo$i Latvii, a Sovetski$i So�z – “oplot vsego pro-
gressivnogo qeloveqestva” – rasseets� kak durno$i son, ostaviv lix~
nesqast~�, niwetu i gor~kie vospominani� millionam ni v qem ne povin-
nyh l�de$i?

1



Nu a potom – to�e ne novost~ – plavno peretekli v fiziku. U�e
narastal val strunno$i tematiki. Perva� strunna� revol�ci� o neobho-
dimosti kotoro$i vse vrem� tverdili ... sverxilas~. D�on �llis,
priehavxi$i v IT�F na paru nedel~, ka�dy$i den~ zvonil v CERN 1

uznat~ ne zaverxilos~ li – ne da$i bog v ego otsutstvie – postroenie
“teorii vsego”. Sve�u� ide�, kak �to vsegda byvaet – i kak i dol�no
byt~ – nesli v massy samye molodye i �rkie. Da zdravstvu�t pionery!
Superstruny (i supersimmetri� v celom) iz zater�nnyh i �kzotiqeskih
uglov teorii vryvalis~ v mainstream, neuder�imo ottesn�� v storonu
predyduwi$i mainstream – kvantovu� hromodinamiku. O, �to p~�n�wee
quvstvo proryva ...
Vse �to obsu�dali my togda s �riem Antonoviqem. Naxi toqki

zreni� otqasti sovpadali, no vo mnogom i rashodilis~. U ka�dogo
byl svo$i scenari$i. Se$iqas, poqti dvadcat~ let spust�, vspomina� svoi
predskazani�, � sme�s~... Uvy, v nauke kak i v obwestvenno$i �izni,
buduwee, kak pravilo, okazyvaet� znaqitel~no bolee neo�idannym, qem
l�bye o�idani�.
Razgovor �tot my tak i ne okonqili – doro�ka v lesu okazalas~ ko-

roqe razgovora – da i mo�no li ego zakonqit~ voobwe? Za dvadcat~ let
mnogoe izmenilos~, i v teorii i v teorotdele IT�F. Inyh u� net, a
te daleqe ... Minimal~na� supersimmetriqna� standartna� model~ vy-
rodilas~ v progonku des�tka, esli ne sotni, parametrov. Kvantova� hro-
modinamika tak i ne rexena, hot� koe-kakie appetitnye kuski otkuxeny.
Revol�cionny$i zador teorii strun kak-to snik. “Teorii vsego” ka�ets�
ne poluqilos~. A ved~ byli ewe i vtora� i tret~� strunnye revol�-
cii.2

Harakter fiziki vysokih �nergi$i men�ets� na glazah – sv�z~ s �mpiri-
qeskimi korn�mi slabeet, uklon v storonu matematiqesko$i fiziki ras-
tet, i s �tim u�e niqego ne podelaex~. Pravda, vyrosla i vozmu�ala
astroparticle physics (long live dark matter and dark energy, the basis of our uni-
verse! – or ... is it multiverse?..), i vozrodilas~ v novom obliqii stara�
ide� Kalucy i Kla$ina – v vide bol~xih dopolnitel~nyh izmereni$i –

1Dl� molodyh l�de$i spexu dobavit~, qto pozvonit~ zagranicu iz
IT�Fa togda mo�no bylo tol~ko s odnogo telefona – u Pomelova na
stole v me�dunarodnom otdele, i pr�mogo nabora, koneqno, ne suwestvo-
valo. Razgovor nado bylo zakazyvat~ zaranee, qerez operatora. D�on
navern�ka materil pro seb� vs� �tu t�gomotinu, i tem ne menee proce-
dura povtor�las~ izo dn� v den~.

2Obyqno v strunno$i literature podrazumevaets�, qto v �tom kontek-
ste slovo “revol�ci�” – sinonim vysoqa$ixego dosti�eni�, no v silu
pon�tnyh istoriqeskih priqin � vse ravno ka�dy$i raz vzdragiva�.
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s kotoro$i soskuqit~st� nevozmo�no. Qto �to: otnositel~no nebol~xo$i
zigzag na istoriqeskom puti fiziki, ili povorot vser~ez i nadolgo?
Dolo$i, dolo$i nostal~gi� po proxlomu. Luqxee lekarstvo – horoxa�

xutka. Vot nedavno nabrel v internete na miniat�ru tak iskusno sra-
botannu�, qto ponaqalu prin�l za qistu� monetu, lix~ poz�e obrativ
vnimanie na den~ publikacii – pervoe aprel�. Itak, April 1, 2004; posted
by Peter Woit (Department of Mathematics, Columbia University).

String Theorists Finally Admit Defeat 3

The news that next week’s “Science Times” will run an article by New York Times
reporter James Glanz in which several leading string theorists say that they are
giving up on the idea is rapidly spreading throughout the particle theory community.
Evidently Glanz recently went down to Princeton to interview Edward Witten, who
took the opportunity to announce that he has changed his mind about whether
string theory will ever be a “Theory of Everything”. When Glanz contacted other
string theorists and read to them what Witten had said, almost all of them told him
that they too had been having their doubts about the theory.

Glanz quotes Witten as follows:

“One night a few weeks ago I was sitting at my kitchen table trying to make sense
of Douglas’s latest work on the Kachru-Kallosh-Linde-Trivedi (KKLT) proposal and
all of a sudden it really hit me that this is a completely lost cause. If perturbative
string theory has any relation to Planck scale physics, then KKLT or something
like it should work and string theory is vacuous since it can never predict anything.
If perturbative string theory isn’t useful then we really don’t have anything since
we’ve never been able to come up with a non-perturbative version that makes sense.
Twenty years of this is enough. It’s time to give up.”

When Glanz asked him what he intends to do now, Witten responded:

“I don’t really know. There are still promising ideas about using string theory to
solve QCD, and I could keep working on those. Maybe I should take up something
completely different, like biology. I’m starting to worry that John Horgan was right
about the ‘End of Science’. Right now I just definitely need a long vacation.”

When Glanz read Witten’s statement over the phone to David Gross, Frederick
W. Gluck Professor of Physics at UCSB and Director of the Fred Kavli Institute for
Theoretical Physics, Gross thought for a moment and then told him “Yeah, despite
my quote last year from Churchill, I’ve also been thinking of giving up. Not sure
though how I’m going to break this to the two Freds.”

The news of Glanz’s article has had dramatic effects at many universities and
research institutes. At MIT yesterday, Professor Barton Zwiebach shocked students
in his Physics 8.251 “String Theory for Undergraduates” class by announcing that

3Reproduction, with kind permission of the author.
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he wasn’t going to collect the homework due that day and was canceling his lectures
for the rest of the semester. He also asked Cambridge University Press to halt
publication of his new undergraduate textbook called “A First Course in String
Theory”, the release of which had been planned for next month.

Search committees at several institutions that hadn’t finished their hiring yet this
season held new meetings to decide how to react to the news. A prominent theorist
at a University of California campus told me in an e-mail that “our chair had the
phone in his hand and had already dialed the number of a string theory graduate
student from Princeton we were going to offer a post-doc to. I ran into his office as
soon as I heard the news and stopped him just in time. Last week we were sure that
string theorists were the smartest guys around and considered only them for jobs,
but now there’s no way we’re going to hire any more, ever!”

At the Institute in Princeton this year’s “Summer Program for Graduate Students
in String Theory” scheduled for July has been canceled, with one of its organizers
remarking “what graduate student would now be crazy enough to show up for a
program like this?” Next week’s conference on “The Status of M-theory” at the
Michigan Center for Theoretical Physics has also been canceled on very short notice.
The director there, Michael Duff, commented “We had to do this because the status
of M-theory is all too clear. It’s passed on! This theory is no more! It has ceased to
be! It’s expired and gone to meet its maker! ... This is an ex-theory!”

A vot ewe odna xutka, kotora�, kak mne ka�ets�, zabavna tem, qto daet
predstavlenie ob otnoxenii sovremennyh studentov k raznym oblast�m
fiziki – iz teh, qto nynqe vhod�t v “d�entel~menski$i” nabor HEP-
teoretika (tak �e kak i o samo$i kompozicii �togo d�entel~menskogo
nabora):

Physical Theories as Women
Simon Dedeo

Department of Astrophysical Sciences, Princeton University

0. Newtonian gravity is your high-school girlfriend. As your first encounter with
physics, she’s amazing. You will never forget Newtonian gravity, even if you’re not
in touch very much anymore.

1. Electrodynamics is your college girlfriend. Pretty complex, you probably won’t
date long enough to really understand her.

2. Special relativity is the girl you meet at the dorm party while you’re dating
electrodynamics. You make out. It’s not really cheating because it’s not like you
call her back. But you have a sneaking suspicion she knows electrodynamics and
told her everything.

3. Quantum mechanics is the girl you meet at the poetry reading. Everyone
thinks she’s really interesting and people you don’t know are obsessed about her.
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You go out. It turns out that she’s pretty complicated and has some issues. Later,
after you’ve broken up, you wonder if her aura of mystery is actually just confusion.

4. General relativity is your high-school girlfriend all grown up. Man, she is
amazing. You sort of regret not keeping in touch. She hates quantum mechanics for
obscure reasons.

5. Quantum field theory is from overseas, but she doesn’t really have an accent.
You fall deeply in love, but she treats you horribly. You are pretty sure she’s fooling
around with half of your friends, but you don’t care. You know it will end badly.

6. Cosmology is the girl that doesn’t really date, but has lots of hot friends. Some
people date cosmology just to hang out with her friends.

7. Analytical classical mechanics is a bit older, and knows stuff you don’t.
8. String theory is off in her own little world. She is either profound or insane. If

you start dating, you never see your friends anymore. It’s just string theory, 24/7.

Nu, a esli bolee ser~ezno, na vs�koe �vlenie mo�no vzgl�nut~ dvo-
�ko: “stakan libo napolovinu pust, libo napolovinu polon...” L�di ne
bogi – zaqem nam teori� vsego? Tak interesnee. Voprosov mnogo, i na
posledn�� stranicu za otvetom ne zagl�nex~. V obwem, segodn�, kak i
vsegda,

“... na tom rube�e,
krutom vira�e,
na uzko$i me�e me� ewe i u�e ...”

Tak stoit li br�z�at~: “vot v naxe vrem�...”? (�to �, koneqno, sam
sebe govor�...)
Rassu�da� logiqeski, � dol�en byl by napisat~ v �tot sbornik o

kvantovo$i hromodinamike, teme central~no$i dl� �ri� Antonoviqa na
prot��enii poslednih dvadcati p�ti let. Stohastiqeska� model~ vaku-
uma i ee prilo�eni� v nizko�nergetiqesko$i adronno$i fizike – l�bimoe
dit��ri� Antonoviqa i G�ntera Doxa. Fizika adronov – i mo� perva�
l�bov~, kotora�, koneqno �e, ne zabyvaets�. V posledni$i raz � vernul-
s� k ne$i vser~ez i nadolgo, v seredine 90-h godov proxlogo veka (ruka
ne povoraqivaets�, no pridets� napisat~, – proxlogo veka). Vz�vxis~
dru�no s Kole$i Ural~cevym i Arkadiem Va$inxte$inom, udalos~ zakon-
qit~ razlo�enie po t��elym kvarkam, osnovy kotorogo byli zalo�eny
Mixe$i Voloxinym i mno$i v 1980-h. Potom, v 1999-om okolo polugoda
pytals� hot~ kak-to prodvinut~s� v kvark-adronno$i dual~nosti. S prak-
tiqesko$i toqki zreni� vopros qrezvyqa$ino va�ny$i, da kak k nemu pod-
stupit~s�? V obwem, prodvinuls� daleko ne tak daleko kak hotelos~.
S teh por byli vstreqi, no kakie-to mimoletnye. Interesy moi v

zametno$i mere smestilis~. Hot� i nade�s~ vernut~s� v bli�a$ixem
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buduwem k adronnym k-strunam i sledstvi�m planarno$i �kvivalentnosti,
no pisat~ nado o tom, qto interesuet v danny$i moment. Po�tomu – da
prostit men� �ri$i Antonoviq – napixu o supersimmetrii, toqnee, ob
odnom ee aspekte – central~nyh zar�dah. Tema �ta imeet pr�moe otnoxe-
nie k IT�Fu. Sam togo ne podozreva�, u istokov ee sto�l �en� Bogo-
mol~ny$i, v to vrem� aspirant IT�F. Horoxo pomn�, rabota pisalas~
na golub�tne, gde i sam � togda obretals�. To qto segodn� nazyvaets�
Bogomolny limit, Bogomolny completion, Bogomol’nyi-Prasad-Sommerfield (BPS)
saturation 4 [2, 3] – vse �to bylo vvedeno �ene$i v dosupersimmetriqnu�
�pohu, v 1974 godu, v processe razbiratel~stva s pol�kovskimi monopo-
l�mi, v kotorom na rannih �tapah uqastvovali tak�e Mixa Marinov [1]
i, osobenno, Arkadi$i Va$inxte$in, kotory$i, kak vsegda, koneqno, niqego
ne napisal. Rabota Bogomol~nogo – odna iz samyh citiruemyh iz sde-
lannyh v IT�Fe za vs� istori� ego suwestvovani�. �en� ne byl
moskviqom, i trebovalis~ special~nye usili�, qtoby ostavit~ ego v
IT�Fe, kakovye predprin�ty ne byli. Preprint vyxel v Qernogolovke.
Sledu�wi$i ni�e material – qto-to srednee me�du kratkim obzorom,

nabroskom nezaverxenno$i stat~i i glavo$i nenapisanno$i knigi.5 Budet
li ona napisana? Kto znaet...

4The above notions are among basic entries of modern internet-based encyclopedias. For
instance, ENCYCLOPEDIA 4U.com defines Bogomol’nyi-Prasad-Sommerfield bound as follows:
“The Bogomol’nyi-Prasad-Sommerfield bound refers to a series of inequalities for solutions of par-
tial differential equations depending on the homotopy class of the solution at infinity. This set
of inequalities is very useful for solving soliton equations. Often, by insisting that the bound is
satisfied (called ‘saturation’), one can come up with a simpler set of partial differential equations
to solve.”

5K so�aleni�, pomimo qisto literaturnyh ogrehov, ne hvataet vre-
meni vyverit~ vse minusy i dvo$iki v ko�fficientah. Obwa� struktura
i zakl�qitel~nye vyvody ot �togo ka�ets� ne strada�t.
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Remarks on Central Charges in Superalgebras

1. Central charges in superalgebras – generalities

In this Section we will briefly review general issues related to central charges (CC)
in superalgebras.

1.1. History. The first superalgebra in four dimensional field theory was dertived
by Golfand and Likhtman [4] in the form

{Q̄αQβ} = 2Pµ (γµ)αβ , {Q̄αQ̄β} = {QαQβ} = 0 , (1)

i.e. with no central charges. Possible occurrence of CC (elements of superalgebra
commuting with all other operators) was first mentioned in an unpublished paper of
Lopuszanski and M. Sohnius [5] where the last two anticommutators were modified
as

{QI
αQ

G
β } = ZIG

αβ . (2)

A more complete description of superalgebras with CC in quantum field theory was
worked out in [6]. The only central charges analyzed in this paper were Lorentz
scalars (in four dimensions). Thus, by construction, they could be relevant only to
extended supersymmetries. Then, a few years later, Witten and Olive [7] showed
that in supersymmtric theories with solitons, central extension of superalgebras is
typical; topological quantum numbers play the role of central charges. It was gen-
erally understood that superalgebras with (Lorentz-scalar) central charges can be
obtained from superalgebras without central charges in higher-dimensional space-
times by interpreting some of the extra components of the momentum as CC’s (see
e.g. [8]). That not all CC’s are of this type was known at this time at the algebraic
level (see e.g. [12]), but the dynamical role of these additional tensorial charges was
not fully appreciated until somewhat later. Central charges that are antisymmetric
tensors in various dimensions were introduced (in the supergravity context, in the
presence of p-branes) in Ref. [13] (see also [14]). These CC’s are relevant to extended
objects of the domain wall type. Their occurrence in four-dimensional super-Yang-
Mills theory (as a quantum anomaly) was first observed in [10]. A general theory
of central extensions of superalgebras in three and four dimensions was discussed
in Ref. [11]. It is worth noting that discussion in [11] of those central charges that
have the Lorentz structure of Pµ was not carried out in full.

1.2. Minimal SUSY. The minimal number of supercharges in various dimensions
is given in Table 1. Two-dimensional theories with a single supercharge, although
algebraically possible, require the loss of F and (−1)F . Therefore, if one wants to
keep the distinction between the “bosons” and ”fermions,” the minimal number of
supercharges in D = 2 is two.

7



D 2 3 4 5 6 7 8 9 10

νQ (1∗) 2 2 4 8 8 8 16 16 16

Dim(ψ)C 2 2 4 4 8 8 16 16 32

# cond. 2 1 1 0 1 1 1 1 2

Table 1. The minimal number of supercharges, dimension of the
spinorial representation and the number of additional conditions (i.e.
the Majorana and/or Weyl conditions).

The minimal number of supercharges in Table 1 is given for a real representation.
Then, it is clear that, generally speaking, the maximal possible number of CC’s is
determined by the dimension of the symmetric matrix {QiQj} of the size νQ × νQ,
namely,

νCC =
νQ(νQ + 1)

2
. (3)

In fact, D anticommutators have the Lorentz structure of the energy-momentum
operator Pµ. Therefore, up to D central charges could be absrorbed in Pµ, gener-
ally speaking. In particular situations this number can be smaller, since although
algebraically the corresponding CC’s have the same structure as Pµ, they are dynam-
ically distinguishable. the point is that Pµ is uniquely defined through the conserved
and symmetric energy-momentum tensor of the theory.

The total set of CC’s can be arranged by classifying CC’s with respect to their
Lorentz structure. Below we will present this classification for D = 2, 3 and 4.

1.3. D = 2. Consider two-dimensional theories with two supercharges. From the
discussion above, on purely algebraic grounds, three CC’s are possible: one Lorentz-
scalar and a two-component vector,

{Qα, Qβ} = 2(γµγ0)αβ(Pµ + Zµ) + i(γ5)αβZ , (4)

The latter case would require existence of a vector order parameter taking distinct
values in different vacua. This will break Lorentz invariance and supersymmetry
of the vacuum state. Limiting ourselves to supersymmetric vacua we conclude that
only one (real) Lorentz-scalar central charge Z is possible. This central charge is
relevant to kinks in N = 1 theories.

1.4. D = 3. The central charge allowed in this case is a Lorentz-vector Zµ, i.e.

{Qα, Qβ} = 2(γµγ0)αβ(Pµ + Zµ), (5)

which we should arrange Zµ to be orthogonal to Pµ. By an appropriate choice of
reference frame it can always be cast in the form (0, 0, 1). In fact, this is the central
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charge of the previous section elevated by one dimension. It is associated with a
domain wall (or string) oriented along the second axis.

1.5. D = 4. Maximally one can have 10 CC’s which are decomposed into Lorentz
representations as (0,1) + (1,0) + (1/2, 1/2):

{Qα, Q̄α̇} = 2(γµ)αα̇(Pµ + Zµ),

{Qα, Qβ} = (Σµν)αβZ[µν], (6)

{Q̄α̇, Q̄β̇} = (Σ̄µν)α̇β̇Z̄[µν] , (7)

where (Σµν)αβ = (σµ)αα̇(σ̄ν)α̇β is a chiral version of σµν (see e.g. [19]). The anti-

symmetric tensors Z[µν] and Z̄[µν] are associated with domain walls, and reduce to
a complex number and a spatial vector orthogonal to the domain wall. The (1/2,
1/2) CC Zµ is a Lorentz vector orthogonal to Pµ. It is associated with strings (flux
tubes), and reduces to one real number and a three-dimensional unit spatial vector
parallel to the string.

1.6. Extended SUSY. We will limit our attention here to exploring the reduction
of the minimal SUSY algebra in D = 4 to D = 2 and 3, namely the N = 2 SUSY
algebra in those dimensions. As should be clear from the discussion above, the
maximal number of CC’s is of course the same, and the only distinction we must
make is to provide a decomposition into both Lorentz and R-symmetry irreps.

• N = 2 in D = 3

The superalgebra can be decomposed into Lorentz and R-symmetry tensorial
structures as follows:

{Qi
α, Q

j
β} = 2(γµγ0)αβ[(Pµ + Zµ)δij + Z(ij)

µ ] + 2γ0
αβZ

[ij], (8)

where γ0 is the charge conjugation matrix. The maximal set of 10 CC’s enter as a
triplet of spacetime vectors Zij

µ and a singlet Z [ij]. The singlet CC is associated with
vortices (or lumps), and corresponds to the reduction of the (1/2,1/2) charge or the
4th component of the momentum vector in D = 4. The triplet Zij

µ is decomposed into
an R-symmetry singlet Zµ, algebraically indistinguishable from the momentum, and

a traceless symmetric combination Z
(ij)
µ . The former is equivalent to the vectorial

charge in the N = 1 algebra, while Z
(ij)
µ can be reduced to a complex number and

vectors specifying the orientation. We see that these are the direct reduction of the
(0,1) and (1,0) wall charges in D = 4.

• N = 2 in D = 2

9



Lorentz invariance now provides a much weaker constraint, and one can in prin-
ciple consider different (p, q) superalgebras comprising p + q = 4 supercharges. We
will mention here only the nonchiral N = (2, 2) case correpsonding to dimensional
reduction of the N = 1 D = 4 algebra. The tensorial decomposition is as in (8),
but with the decomposition of D = 3 spacetime vectors into D = 2 vectors and a
singlet,

{Qi
α, Q

j
β} = 2(γµγ0)αβ[(Pµ +Zµ)δij +Z(ij)

µ ] + 2i(γ5)αβ(δijZ +Z(ij)] + 2γ0
αβZ

[ij], (9)

We discard all vectorial charges Zij
µ in this case for the reasons described above, and

are left with two singlets Z(ij), which are the reduction of the domain wall charges
in D = 4 and correpond to topological kink charges, and two further singlets Z and
Z [ij], arising via reduction from P2 and the vortex charge in D = 3.

1.7. A few words on extended supersymmetry (eight supercharges) in
D=4. Complete algebraic analysis of all tensorial central charges possible in this
is analogous to the previous cases and is rather straightforward. With eight super-
charges the maximal number of CC’s is 36. Dynamical aspect is less developed –
only a modest fraction of the above 36 CC’s are known to be nontrivially realized
in models studied in the literature. I will limit myself to a few remarks regarding
the well-established CC’s. I will use a complex (holomorphic) representation of the
supercharges. Then the supercharges are labeled as follows

Qf
α , Q̄α̇ g , α, α̇ = 1, 2 , f, g = 1, 2 . (10)

On general grounds one can write

{Qf
α, Q̄α̇ g} = 2δfg Pαα̇ + 2(Zf

g )αα̇ ,

{Qf
α, Q

g
β} = Z

{fg}
{αβ} + εαβε

fg Z ,

{Q̄α̇ f , Q̄β̇ g} =
(
Z̄{α̇β̇}

)
{fg}

+ εαβε
fg Z̄ . (11)

Here (Zf
g )αα̇ are four vectorial central charges (1/2, 1/2), (16 components altogether)

while Z
{fg}
{αβ} and the complex conjugate are (1,0) and (0,1) central charges. Since the

matrix Z
{fg}
{αβ} is symmetric with respect to f, g, there are three flavor components,

while the total number of components residing in (1,0) and (0,1) central charges is
18. Finally, there are two scalar central charges, Z and Z̄.

Dynamically the above central charges can be described as follows. The scalar
CC’s Z and Z̄ are saturated by monopoles/dyons. One vectorial central charge Zµ
(with the additional condition P µZµ = 0) is saturated [16] by Abrikosov-Nielsen-
Olesen string (ANO for short) [15]. A (1,0) central charge with f = g is saturated
by domain walls [17].
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1.8. D = 3: Why BPS vortices cannot appear in theories with two super-
charges. BPS vortices in 2+1 dimensions were previously considered in [18] (see
also references therein). To simplify the discussion, we assume that we can choose
a real representation for the superalgebra within which

{Qα, Qβ} = γµαβPµ + · · · , (12)

where µ is a spacetime index. It then follows that, since the number of broken
translational generators is d, there are at least d broken supercharges. In practice
the number may be larger once we account for Lorentz invariance.

This simple argument tells us that, provided we are dealing with a 1/2-BPS soliton
in a supersymmetric theory (i.e. an object localized only in space not time), the
minimal matching between bosonic and fermionic zero modes in the translational
sector is one-to-one.

Consider now a putative BPS vortex in a theory with minimal N = 1 SUSY
in 2+1D. Such a configuration would require a worldvolume description with two
bosonic zero modes, but only one fermionic mode. This is not permitted by the
argument above, and indeed no configurations of this type are known. Vortices
always exhibit at least two fermionic zero modes and are thus BPS only in N = 2
theories.

2. “Monopole” central charges: anomalies and all that

In this section we will discuss the Lorentz-scalar central charges in Eq. (11) that
are saturated by monopoles/dyons. They will be referred to as monopole central
charges. A rather dramatic story is asssociated with them, a story which is not
yet finished. Historically they were the first to be introduced within the framework
of an extended 4D superalgebra [5, 6]. On the dynamical side, they appeared as
the first example of the “topological charge ↔ central charge” relation revealed by
Witten and Olive in their pioneering paper [7]. Twenty years later, the N = 2
model where these central charges first appeared, was solved by Seiberg and Witten
[20, 21], and the exact masses of the BPS-saturated monopoles/dyons found. No
direct comparison with the operator expression for the central charges was carried
out, however. In Ref. [22] it was noted that for the Seiberg-Witten formula to be
valid, a boson-term anomaly should exist in the monopole central charges. Even
before [22] a fermion-term anomaly was identified [23], which plays a crucial role
[24] for the monopoles in the Higgs regime (confined monopoles). What is still
lacking is a direct operator derivation of the above anomalies.
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2.1. The model. The simplest N = 2 model we will deal with was found [25] as
early as in 1974, see also [26] where the matter multiplets – the so called hypermul-
tiplets – first appeared.6 The N = 2 model in four dimensions can be obtained from
N = 1 super-Yang-Mills theory in six dimensions.

It is instructive to consider both, the Majorana and Weyl representations. The
gauge group is SU(2). In the Weyl representation one deals with two Weyl fermions,
λaα (gluino) and ψaα (gluino’s N = 2 superpartner). Then

L =
1

g2
0

{
−1

4
F a
µνF

µν a + λα ,a (iDαα̇)λ̄α̇ ,a +
1

2
DaDa

+ ψα ,a (iDαα̇)ψ̄α̇ ,a +Dµφ̄aDµφ
a

−
√

2εabc
(
φ̄aλbψc + h.c.

)
− i

2
Da εabc φ̄

bφc
}
, (13)

where where g0 is the bare coupling constant, and Da is an auxiliary field which can
be eliminated by virtue of the equation of motion,

Da =
i

2
εabc φ̄

bφc , (14)

while there are no F terms (i.e. they are set to zero) since we introduce no super-
potential.

The flat direction of the model can be parametrized as follows:

φ3 = v , φ1 = φ2 = 0 . (15)

Moreover, using the (anomalous) U(1) symmetry one can always make the vacuum
expectation value v real and positive. Generally speaking, such a rotation introduces
a vacuum angle θ, even if it was fine-tuned to zero in the beginning. The question of
θ-induced effects is interesting by itself, but I will not consider it here, deferring the
corresponding discussion till better times. Thus, I will assume θ = 0 after setting φ
real. For real and positive v the W -boson mass m is

m =
√

2 v . (16)

6There is a funny story about the emergence of the word “hypermultiplet” in this context. M.
Sohnius recollects [27]: When a French super-marché carries not only food and drink but also car
spares, garden furniture and ladies’ underwear, it becomes an hyper-marché. Correspondingly,
P. Fayet called N = 2 supersymmetry “hyper-symmetry.” Whereas that name has not stuck in
general, the matter multiplet of N = 2 supersymmetry is still called “hypermultiplet.”
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At the same time, in the Majorana representation

L =
1

g2
0

{
−1

4
F a
µνF

µν a +
1

2
χ̄ai i /D χai +

1

2
DµAaDµA

a +
1

2
DµBaDµB

a

= +
1

2
Tr[A,B][A,B] +

i

2
εijTr

(
[χ̄i, χj]A+ ([χ̄i, γ5χj]B

)}
(17)

where χi (i = 1, 2) are two Majorana fermions, A is a scalar field and B is a
pseudoscalar field, all in the adjoint representation.

At the classical level the description of monopoles does not depend on fermions at
all. Let us consider static field configurations. Then, neglecting all time derivatives
and setting A0 = 0, one can write the Bogomolny completion of the energy functional
as follows:

E =

∫
d3x

{[
1√
2g0

F ∗a1 +
1

g
D1φ

a

]2

+

[
1√
2g0

F ∗a2 +
1

g
D2φ

a

]2

+

[
1√
2g0

F ∗a3 +
1

g
D3φ

a

]2
}
−
√

2

g2
0

∫
dSn (φa F ∗an ) , (18)

where the last term is the surface term, written as an integral over a large sphere,
and

F ∗m =
1

2
εmnk Fnk .

The Bogomolny equations for the monopole are

F ∗ai +
√

2Di φ
a = 0 . (19)

The solution to this equation is given by the famous hedgehog ansatz [28]

φa(~x) = δai
xi
r
F (r) , Aai (~x) = εaij

xi
r
W (r) , (20)

where r
√
~x2 while Aa0 = 0. Equations (20) must be supplemented by boundary

conditions at the origin (where the solution must be regular), and at the spatial
infinity where F (r) → v and W (r) → 1. The profile functions F and W can be
found analytically, see e.g. [29].

2.2. Dimension of the BPS representations. As was first noted by Montonen
and Olive [34], all states in N = 2 model – W bosons and monopoles alike – are
BPS saturated. This results in the fact that supermultiplets of this model are short.
Regular (long) supermultiplet would contain 22N = 16 helicity states, while the
short ones contain 2N = 4 helicity states – two bosonic and two fermionic. This is
in full accord with the fact that the number of the fermion zero mode on the given
monopole solution is four, resulting in dim-4 representation of the supersymmetry
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algebra. If we combine particles and antiparticles together, as is customary in field
theory, we will have one Dirac spinor on the fermion side of the supermultiplet in
both cases, W -bosons/monopoles.

2.3. Supercurrents. The model, being N = 2, possesses two conserved supercur-
rents,

J I
αββ̇

=
1

g2
0

{
2iF a

βαλ̄
a
β̇
− 6εβαD

aλ̄a
β̇

+ 2
√

2
(
Dαβ̇φ̄

a
)
ψaβ

}
,

J II
αββ̇

=
1

g2
0

{
2iF a

βαψ̄
a
β̇
− 6εβαD

aψ̄a
β̇
− 2
√

2
(
Dαβ̇φ̄

a
)
λaβ

}
. (21)

The commutator of the corresponding supercharges is

{QI
α, Q

II
β } = −2

√
2i

g2
0

∫
d3x div

(
φ̄a
(
~Ea − i ~Ba

))

= −2
√

2i

g2
0

∫
dSn

(
φ̄a (Ea

n − i Ba
n)
)
. (22)

Everything is perfectly okay at the classical level. A crucial feature that I must stress
is the chiral structure of the classical central charge in Eq. (22). The classical U(1)
current argument tells us that the anticommutator {QI

α, Q
II
β } must be proportional

to φ̄ rather than φ; then, the particular structure of the supercurrents (22) implies
that the color-electric and color-magnetic fields enter in the combination Ea

n− i Ba
n.

2.4. Coupling constant renormalization. A straightforward analysis seems to
show 7 that the impact of renormalization reduces to the replacement of the bare
coupling g−2

0 in Eq. (22) by the (renormalized) effective coupling g−2 normalized at
the lowest relevant mass scale in the theory, i.e. at the scale v. Then we arrive at

{QI
α, Q

II
β } = −2

√
2i

g2

∫
dSn

(
φ̄a (Ea

n − i Ba
n)
)
. (23)

If one substitutes the color-electric and color-magnetic fields generated by the electric
and magnetic charge, respectively, one arrives at the following expression for the
central charge (and, correspondingly, the mass of the BPS state):

M =

∣∣∣∣√2v

(
1− 4π i

g2

)∣∣∣∣ . (24)

7Quantum corrections in the mass of the BPS saturated monopoles were first discussed in
Refs. [30, 31, 32] two decades ago.
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Let me parenthetically note that the general formula is

M =

∣∣∣∣√2v

(
ne −

4π i

g2
nm

)∣∣∣∣ , (25)

where ne,m are integer electric and magnetic numbers, but we will consider here
only the particular case when either ne =, 1 or nm = 0, 1. It must be noted, with
satisfaction, that for nm = 0 and ne = 1 we get the correct W -boson mass.

So far, everything seems perfectly cloudless. An indication that a problem exists
came from comparison of the result quoted in Eq. (24) with the exact solution found
in Ref. [20] in the limit of large v when all nonperturbative effects are neglected.
Such a comparison could have been made immediately after publication of Ref. [20],
but for reasons beyond my comprehension (and I must admit my own guilt too) it
was not carried out until recently, see [22].

2.5. Detecting an anomaly. The masses of the BPS-saturated states (W bosons
and monopoles) in the Seiberg-Witten exact solution can be presented by the formula

M =
√

2
∣∣∣a(ne − aD

a
nm

)∣∣∣ , (26)

where

aD = i a

(
4π

g2
0

− 2

π
ln
M0

a

)
, (27)

while the renormalized coupling constant is defined in terms of the ultraviolet pa-
rameters as follows:

∂aD
∂a
≡ 4πi

g2
. (28)

Because of the a ln a dependence, ∂aD/∂a differs from aD/a by a constant (nonlog-
arithmic) term, namely,

aD
a

= i

(
4π

g2
− 2

π

)
. (29)

Combining Eq. (26) and (29) we get

M =
√

2

∣∣∣∣a(ne − i(4π

g2
− 2

π

)
nm

)∣∣∣∣ , (30)

This does not match Eq. (25) in the nonlogarithmic part (i.e. the part of the nm
term with no g2 factor). Since the relative weight of the electric and magnetic parts
in Eq. (23) is fixed to be ∼ g2, the presence of the above nonlogarithmic term implies
that, in fact, the chiral structure Ea

n−i Ba
n obtained at the canonic commutator level

cannot be maintained once quantum corrections are switched on. This is a quantum
anomaly.
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2.6. Getting the anomaly. First, I will present my argument and then try to
summarize that of Rebhan et al. [22], although I must admit that so far I failed to
make myself comfortable with the latter paper. (I am afraid, there is something not
quite kosher there; in any case, further analysis seems to be needed).

Our starting point will be the (superconformal) anomaly [33] in the supercurrent
(21), namely, (

εαβJ I
αββ̇

)
anom

=
N

8π2
F̄ a
α̇β̇
λ̄a ,α̇ (31)

for SU(N). Please, note the occurrence of the opposite-chirality field strength tensor
F̄ a
α̇β̇

. At the classical level the current J I
αββ̇

contains F a
αβ (which eventually leads to

Ea
n−i Ba

n in the anticommutator (23)) rather than F̄ a
α̇β̇

. The fact that at the quantum

level F̄ a
α̇β̇

pops up means that the anticommutator (23) does have an anomaly – an

N = 2 relative of the superconformal anomaly – which gives rise to Ea
n+i Ba

n, a term
of the opposite chiral structure. A rather straightforward calculation then gives{

QI
α, Q

II
β

}
anom

= −2
√

2i
1

4π2

∫
dSn

(
φ̄a (Ea

n + i Ba
n)
)
, (32)

to be compared with Eq. (22). (In the SU(N) we would have N/(8π2) instead of
1/(4π2) in Eq. (32).) Adding the canonic and the anomalous terms in

{
QI
α, Q

II
β

}
together we see that the fluxes generated by color-electric and color-magnetic terms
are now shifted, untied from each other, by a nonlogarithmic term in the magnetic
part. Normalizing to the electric term, MW =

√
2v, we get for the magnetic term

MM =
√

2v

(
4π

g2
− 2

π

)
, (33)

as it is necessary for the consistency with the exact Seiberg-Witten solution.
A few words about the analysis of of Rebhan et al. [22]. These authors did not

aim at establishing the operator form of the anomaly. Instead, they started from the
assumption that central charges relevant to the monopole problem in four dimensions
can be viewed as a dimensional reduction of the Golfand-Likhtman superalgebra
(1). Then they calculated the matrix element of the energy-momentum tensor (more
exactly, its fermion part) in 4+ε dimensions in the monopole background field. Upon
analytic continuation to ε→ 0 they find a finite nonlogarithmic term consistent with
(33) which is interpreted as an anomaly.

That the Golfand-Likhtman superalgebra (1) generates central charges upon dimes-
nional reduction is known for a long time (see e.g. the book [8]). A crucial question
is whether all relevant supercharges can be obtained through this procedure. In the
problem at hand the answer is negative.

To illustrate this assertion let us consider N = 1 Yang-Mills theory in D = 6.
As well-known, dimensional reduction of this theory to D = 4 gives rise to four-
dimensional N = 2 model we deal with here. Assume that the six-dimensional
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superalgebra has the form (1) with

Pµ =

∫
θµ0(x) d5x (34)

(here θµ0 is the six-dimensional energy-momentum tensor), dimensionally reduced
to D = 4. Then ask whether the result for µ = 4, 5 can reduce to Eq. (22). The
answer seems to be negative. Let me explain why.

First note that the Weyl spinor in six dimensions has four (complex) components,
Ψ = {Ψ1,2,3,4} while σµ matrices can be chosen as follows:

σµ = {1, γ0γ1, γ0γ2, γ0γ3, γ0, iγ0γ5} , (35)

so that all spatial matrices are Hermitean and anticommuting. (Here γµ,5 are the
Dirac matrices.) Then, suppressing the color indices, one can write

LD=6 = −1

4
F µνFµν + Ψ† σµ (iDµ) Ψ , (36)

where I have also set g2 = 1 to ease the notation. The gauge coupling constant can
be easily restored at the very end. In the six-dimensional language this Lagrangean
in N = 1, i.e. it has eight supercharges (see Table 1). In four dimensions this theory
is N = 2. The dimensional reduction is carried out in a standard way, namely, x4.5

are compactified, and only zero modes in x4.5 are retained. In practical terms this
means that we just drop the x4.5 dependence. Given our choice of the σµ matrices,
from the 4D perspective, A4 is a scalar field while A5 is pseudoscalar. These two
fields can be combined into a complex field

φ =
A4 + iA5√

2
. (37)

We will also need the expression for the energy-momentum tensor, which has the
following canonic form:

θµν = F µα F ν
α −

1

4
gµν FαβFαβ

+
i

4

{
Ψ†σµDνΨ + Ψ†σνDµΨ−Ψ†σµ

←
Dν Ψ−Ψ†σν

←
Dµ Ψ

}
. (38)

Upon dimensional reduction to D = 4, combining this expression with equations of
motion, one readily gets

θ04 = −div
(
A4 ~E

)
− i

4
div

(
Ψ†~γΨ

)
,

θ05 = −div
(
A5 ~E

)
+

1

4
div

(
Ψ†~γγ5Ψ

)
. (39)
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Here we omitted terms vanishing by virtue of equations of motion. Quick inspection
shows that

∫
d3xθ04(5) cannot represent the central charge in full, as it is obvious

from Eq. (22) that at the classical level the color-electric and color-magnetic fields
enter in a unified chiral combination Ea

n − i Ba
n, while the dimensional reduction of

the energy-momentum tensor gives rise only to the color-electric field. How does
the color-magnetic field emerge?

This is only possible if the algebra (1) gets a central extension already at 6D-level.
It is not difficult to infer a general structure of this central extension. Namely,

{Q̄αQβ} = 2
(
σA
)
αβ

∫
dx {θ0A

+ ε0ABCDE ∂
B

(
i

24
Ψ†σC σD σEΨ + AC∂D AE + ...

)}
, (40)

where the ellipces stand for the non-Abelian part of the gauge-boson term. Upon
reduction to four dimensions the fermion part in the second line in Eq. (40) cancels
that in Eq. (39) – at the classical level there are no fermion terms in the anti-
commutator of the supercharges, as is clearly seen in Eq. (22). The boson part
generates missing terms with the color-magnetic fields which complete the boson
part of Eq. (39) making it compatible with (22).

A question which immediately comes to my mind is whether one can use dimen-
sional reduction (from 4 + ε) to obtain the anomalous part of the central charge.
Since the second line in Eq. (40) contains ε, its continuation to 4 + ε is problematic,
to put it mildly. It is not clear to me at all how to treat it in 4+ε. On the other hand,
the fermion terms in Eq. (39) can be trivially extended to 4 + ε. If one subtracts
the part at D = 4 (which is presumably cancelled (?) by (40), the difference is, nat-
urally, proportional to ε. A properly defined gauge-field-background loop with the
fermion vertices from Eq. (39) (which will also require specification of γ5 in 4 + ε),

being divergent, provides 1/ε times, presumably, div
(
A5 ~E

)
or div

(
A4 ~B

)
. The

product is ε independent and finite at ε = 0 which certainly smells of anomaly. At
least operationally, this is what happens in the calculation of Ref. [22] which, as was
mentioned above, proves to be compatible with the exact Seiberg-Witten formula.
A task for the future is to work out a fully transparent operator interpretation of
the procedure, along the lines discussed above. The same mechanism which is re-
sponsible for the generation of the bosonic anomaly destroys, at one-loop level, the
cancellation of the bifermion terms which took place at the tree level. This gives
rise to the fermion part of the central charge anomaly. In fact, the occurrence of
such anomalous terms had been inferred previously [17, 24].
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2.7. Bifermion part of the anomaly. The story begins with the discovery [10] of
the gluino condensate term in the domain-wall central charge in N = 1 supersym-
metric gluodynamics. The fact that it should have N = 2 superpartners was first
mentioned in [17]. It is not difficult to see that in the general case, in the model
under consideration

Zfg ∼ N

16π2
λfαλ

g
β , (41)

where f and g are “subflavor” indices (i.e. two Weyl spinors, λ and ψ in Eq. (13)).
The same indices f and g label the supercharges, see Eq. (21). There are two options:
one can antisymmetrize with respect to α and β and symmetrize with respect to f
and g, and vice versa. In the first case we get the domain-wall central charges, while
in the latter case obviously arrive at an anomaly in the monopole central charge.
The origin is common. In Ref. [24] it was established that, for the SU(2) model,

{Qf
αQ

g
β} = εαβ ε

fg 2

∫
d3x ζ0(x) ,

ζ0 =
1

2
ε0νρσ 1

8
√

2π2
∂ν
(
λafα(σρ)

αα̇(σ̄σ)α̇βλ
afβ
)
. (42)

No direct contact with the consideration of Ref. [22] has been established so far.
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