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[TO3OPABJIEHVE N3 IIPOCTPAHCTBEHHO-BPEMEHHOI'O ITAJIEEKA ...
M. Hlupman

NucTuTyT TeopeTuyeckoir GpusmkKy,
YuuBepcurer MuHHECOTLI,
Munneanonuc, Munnecora 55455, CIITA

B 1984 rony FOputo AnTonoBuuy mcnonuuiaoch 50 ser. Kaskercs, Obur 10-
ObuneliHbi ceMuHAp, B aKTOBOM 3aJje. Rak ceiuac Buky — FOpuit AuronoBuy
BBEPXY, HA MOAUYME, KaK OOLIYHO M3JIYYAIOMUil CIOKOWCTBUE U YBEPEHHOCTD,
1 9TOT IMaPCTBEHHLIN KECT, HEYJIOBUMOE IPUKOCHOBEHUE PYKU K UYThL COUTON
P POCKOIIHLIX YEPHDLIX BOJIOC, C €1Ba HAMEUYEHHLIM CePeOPAHHLIM Y30POM,
U BOT NPSAOL y:Ke HAa MeCcTe, TaM TJe efl U MOJIOKEHO OLIThL... [loMHIO Kak
menapo pa3nasaa HOpu#i AHTOHOBUU, HATPABO U HAJEBO, KAKIOMY HEMHOKKO
CUAHMA BLICIIUX COep.

B ToT menn B kabuneTe KOTOPLIA A geaua ¢ Annoi Muxaiinosuoii, ITonosniM
u IlepesnomMoBLIiM, 1 Kyma mocie cemuHapa npuines FOpuii AnToHoBuuy, coc-
TOsJICS OOJLIION Pa3roBOp O HAyKe. DTO OLIIO BpeMs OOJLIINX OKUIAHUI.
KBanTtoBas xpoMommuamMuka eme Ha moabeme. | pubOOBCKME KONUU, WHCTAH-
TOHHLIE MOJENIU BaKyyMa, DI000JLI U TUOPUALI — TPU 3BYKE DTUX Marud-
eCKUX 3aKJIVMHAHNY y MHOrMX (B HAIIEM MaJjeHLKOM MUPKe) 3aKUIAJa KPOBb.
Kazamocn, BoT emre mocientee ycuime, U KBAHTOBAs XPOMOAUMHAMUKA OyIeT
perena. DTo ObLUIO A0 CYIEePCUMMETPUYHON mapaaurMol, 10 CTpyH u D-Opam.

Ham cnenyromuii momoOHLI pa3roBOp MPOU3OIIE] BCETO Mapy JeT CIYCT,
B HavaJie mepecTpoiiku, B KypopTHOM moceake Cadsamnrpusa. Jlerom 3mecth co-
OupaJiach »IMTa MOCKOBCKOM 1 JIEHUHT paackoit uarenaurennuu. s mac — a
s npuexas ¢ FOue#t u Aueid na nonmus, no nopore u3 I[lapuy B Pury — rorma
5TO OLIT HEMLICIUMLIA 3aman. I moMHIO YmHHDIE OOMEHLI TPUBETCTBUAMU C
apy3bsimu FOpus AnronoBmua m Anant MuxasofiBHBI U HOJTYIO TPOTYJIKY
IO MOPO:KKE B COCHOBOM JIECY, BIOJL Oepera MOPs, TOMOH IITUI[ U HEKAPKOE
OaaTuiickoe coJHie... lIlepBas Tema, Kak Bcerma, MOJUTHKA. Bcepnes jm
OTKPLUIOCHL OKHO B NUBWJIM3AIUIO, He 3akpoercs ju! ['opGaues ... Jluraues

(raskercs, Erop Ky3muu, na KTo MOMHUT ero ceronss) ... Passe Morau
MBI TOTJa TaldaTh, YTO BCEr0 HECKOJLKO Jjer cmycTs CasanrpuBa CTaHeT
vyacThio He3aBucumoit JlarBum, a Coserckuii Coro3 — “ommor Bcero mpo-
IPECCUBHOIO YeJioBeuecTBa’ — pacceeTcs Kak AYyPHOHW COH, OCTABUB JIWIIL
HECYACTDLs, HUMETY U TOPLKUE BOCIIOMUHAHUS MUJJIMOHAM HUA B YeM HE ITOBUH-
HBIX JIIOIC?



Hy a morom — Toke He HOBOCTL — IJIABHO IEPETEKIU B (U3UKY. YiKe
HapacTaJ BaJ CTPYyHHO# temartuku. [lepBas cTpyHHas peBOJONUA O HEODXO-
AUMOCTU KOTODOWl BCe BpeMs TBEPIUIU ... CBepmmiaach. [lkoH Dianuc,
npuexapmuii B UTOP wa mapy Hemenb, KasKOLIli OeHL 3BOHUI B IHEPH'
Y3HATL HE 3aBEPIIUJIOCL JIU — He naii 60r B ero OTCYTCTBUE — HMOCTPOEHUE
“reopun Bcero”. CBEKYIO UIEI0, KAK 9TO BCerga OLIBAET — U KaK U JMOJIKHO
OLITL — HECJIM B MACCLI CaMble MOJIoabie u sipkue. Jla 31paBcTBYIOT nTUOHEPDI!
CymnepcTpyHbl (M CyIepCUMMETPUS B LEJIOM ) U3 3aTEPAHHLIX U DK30TUYECKUX
YIJIOB TEOPUM BPLIBAJUCL B Mmainstream, Heymaep:KUMO OTTECHSS B CTOPOHY
npenpiaymuii mainstream — KBAHTOBYIO xpomomamHaMuky. O, »TO mbsHsAIEe
YyBCTBO NMPOPLIBA ...

Bce s10 obGcyxmamu Mol torma ¢ FOpuem AnrtonoBuuem. Hamwm Ttourwm
3pEHUss OTYACTU COBMATAJNU, HO BO MHOIOM U PACXOMUIUCL. Y KAKIOTO
oot cBoit cuenapuii. Cefiuac, mouTH ABAANATL JET CIYCTs, BCIOMUHASI CBOU
nmpenacKa3aHus, s CMEIOCL... Y BLI, B HayKe KakK U B OOINECTBEHHOI yKU3HWU,
Oy myriee, KAk MPaBUJIO, OKA3LIBAETS 3HAUUTEIILHO 0OJiee HEOKUIAHHLIM, UeM
JTOObIE OXKUIAHUA.

Pa3roBop »TOT MBI Tak U HE OKOHUUIU — AOPOKKA B JIECY OKA3aJIaCh KO-
pouye pas3roBopa — Ma M MOKHO JIM €r0 3aKOHYUTL BOOOme? 3a ABAIIATHL JIET
MHOTO€ U3MEHUJOChL, U B Teopur u B Teoporaeie UTOP. Uunix y:x Her, a
Te gajsiede ... MuHUMaJIbHAA CyepCUMMETPUYHAS CTAHAAPTHAS MOIEJNDL BbI-
poauIach B IPOTOHKY HECATKA, €CJIU HE COTHU, TapaMeTpoB. KBaHTOBas Xpo-
MOJIUHAMUKA TAK U HE PEIIeHa, XOTs KOe-KaKUe AIMEeTUTHLIC KyCKU OTKYIIEHDI.
PeBomnronmonunlil 3a,10p TeOpUU CTPYH KAK-TO CHUK. “1'eopum BCero”’ KayKeTCA
HE TMOJYyYMJIOChL. A Benn OLLIM eme um BTOPAasi U TPETLsA CTPYHHLIE PEBOJIIO-
.2

XapakxTep (pU3UKA BLICOKUX DHEPIUl MEHSAETCSA HA IJ1a3aX — CBA3L C DMIINPU-
YEeCKUMU KOPHAMU ciiabeeTr, YKJIOH B CTOPOHY MATEMAaTUYECKOW (U3UKU pac-
TeT, ¥ C TUM yiKe HUYero He moneinaenb. lIpaBma, BhIpocsia m BO3MYyKajia
astroparticle physics (long live dark matter and dark energy, the basis of our uni-
versel — or ... is it multiverse?..), u Bo3poaunaachL B HOBOM OOJIMYMU CTapas
nnesi Kanynor n Knaina — B Bume OOJLIIMX NOTMOJHUTEILHLIX M3MEPEHUir —

!Ina momomanix mome#d cmemy m00aBUTL, YTO IMO3BOHUTL 3arPAHUILy U3
NTO®Pa Ttorma MOKHO OLLIO TOJNLKO ¢ omHoro teinedona — y IlomesoBa Ha
CTOJIE B ME;KIYyHAPOIHOM OTHeJe, U IPAMOro Habopa, KOHEUHO, He CYIIeCTBO-
Bajgo. Pasrosop Hamo OLLIO 3aka3niBaTL 3apaHee, yepes omeparopa. [IKoH
HaBEPHSIKA MATePUJ MPO cebs BCIO 9Ty TACOMOTHUHY, U TE€M HE MeHee MpOoIle-
Aypa MOBTOPSIACL M30 MHS B IEHD.

200LIUHO B CTPYHHO# JMTepaType HOApa3yMeBaeTCs, UTO B DTOM KOHTEK-
CTe CJIOBO “pEBOJIIONMA’ — CUHOHMM BBICOYANINIErO NOCTW/KEHWSA, HO B CUIY
MOHATHLIX MCTOPUYECKUX MPUYMH S BCE PABHO KaKILIA pa3 B3IparmBalo.



C KOTOPO# COCKYyUUTHLCTA HEBO3MOKHO. YUTO »TO: OTHOCUTEILHO HEDOJLIITON
3Ur3ar Ha UCTOPUYECKOM IIYTU (PU3UKU, WU TOBOPOT BCEPLE3 U HAIOJTO?

oo, moso# HOCTAJLIWIO TIO TpouIoMy. Jlydmee gekapcTBO — XOopoIias
myTka. BoT memaBHO HaOpea B MHTEpHETE HAa MUHUATIOPY TaK MCKYCHO Cpa-
OOTAHHYIO, YTO MOHAYAJY NPUHSI 33 YUCTYIO MOHETY, JUIIL MO3:Ke 00paTuB
BHUMAHUE Ha IEHL IyOJaukamuu — nepsBoe ampeisa. Wrak, April 1, 2004; posted
by Peter Woit (Department of Mathematics, Columbia University).

String Theorists Finally Admit Defeat ®

The news that next week’s “Science Times” will run an article by New York Times
reporter James Glanz in which several leading string theorists say that they are
giving up on the idea is rapidly spreading throughout the particle theory community.
Evidently Glanz recently went down to Princeton to interview Edward Witten, who
took the opportunity to announce that he has changed his mind about whether
string theory will ever be a “Theory of Everything”. When Glanz contacted other
string theorists and read to them what Witten had said, almost all of them told him
that they too had been having their doubts about the theory.

Glanz quotes Witten as follows:

“One night a few weeks ago I was sitting at my kitchen table trying to make sense
of Douglas’s latest work on the Kachru-Kallosh-Linde-Trivedi (KKLT) proposal and
all of a sudden it really hit me that this is a completely lost cause. If perturbative
string theory has any relation to Planck scale physics, then KKLT or something
like it should work and string theory is vacuous since it can never predict anything.
If perturbative string theory isn’t useful then we really don’t have anything since
we’ve never been able to come up with a non-perturbative version that makes sense.
Twenty years of this is enough. It’s time to give up.”

When Glanz asked him what he intends to do now, Witten responded:

“I don’t really know. There are still promising ideas about using string theory to
solve QCD, and I could keep working on those. Maybe I should take up something
completely different, like biology. I'm starting to worry that John Horgan was right
about the ‘End of Science’. Right now I just definitely need a long vacation.”

When Glanz read Witten’s statement over the phone to David Gross, Frederick
W. Gluck Professor of Physics at UCSB and Director of the Fred Kavli Institute for
Theoretical Physics, Gross thought for a moment and then told him “Yeah, despite
my quote last year from Churchill, I've also been thinking of giving up. Not sure
though how I'm going to break this to the two Freds.”

The news of Glanz’s article has had dramatic effects at many universities and
research institutes. At MIT yesterday, Professor Barton Zwiebach shocked students
in his Physics 8.251 “String Theory for Undergraduates” class by announcing that

3Reproduction, with kind permission of the author.



he wasn’t going to collect the homework due that day and was canceling his lectures
for the rest of the semester. He also asked Cambridge University Press to halt
publication of his new undergraduate textbook called “A First Course in String
Theory”, the release of which had been planned for next month.

Search committees at several institutions that hadn’t finished their hiring yet this
season held new meetings to decide how to react to the news. A prominent theorist
at a University of California campus told me in an e-mail that “our chair had the
phone in his hand and had already dialed the number of a string theory graduate
student from Princeton we were going to offer a post-doc to. I ran into his office as
soon as [ heard the news and stopped him just in time. Last week we were sure that
string theorists were the smartest guys around and considered only them for jobs,
but now there’s no way we’re going to hire any more, ever!”

At the Institute in Princeton this year’s “Summer Program for Graduate Students
in String Theory” scheduled for July has been canceled, with one of its organizers
remarking “what graduate student would now be crazy enough to show up for a
program like this?” Next week’s conference on “The Status of M-theory” at the
Michigan Center for Theoretical Physics has also been canceled on very short notice.
The director there, Michael Duff, commented “We had to do this because the status
of M-theory is all too clear. It’s passed on! This theory is no more! It has ceased to
be! It’s expired and gone to meet its maker! ... This is an ex-theory!”

A BOT eme omHAa ITyTKa, KOTOPas, KAK MHE KaKeTcs, 3a0aBHa TeM, UYTO JaeT
npenacTaBiieHre 00 OTHOIEHUY COBPEMEHHLIX CTYIEHTOB K Pa3HBLIM 00JaCTsaM
¢U3UKM — M3 TeX, UTO HLIHYE BXOAAT B “mKeHTenbMeHckuil” wHadbop HEP-
TeopeTuka (Tak ke KaK U O CAMOW KOMIIO3UIMU 9TOrO FKEHTEJILMEHCKOrO

Habopa):

Physical Theories as Women
Simon Dedeo
Department of Astrophysical Sciences, Princeton University

0. Newtonian gravity is your high-school girlfriend. As your first encounter with
physics, she’s amazing. You will never forget Newtonian gravity, even if you’re not
in touch very much anymore.

1. Electrodynamics is your college girlfriend. Pretty complex, you probably won’t
date long enough to really understand her.

2. Special relativity is the girl you meet at the dorm party while you're dating
electrodynamics. You make out. It’s not really cheating because it’s not like you
call her back. But you have a sneaking suspicion she knows electrodynamics and
told her everything.

3. Quantum mechanics is the girl you meet at the poetry reading. Everyone
thinks she’s really interesting and people you don’t know are obsessed about her.



You go out. It turns out that she’s pretty complicated and has some issues. Later,
after you've broken up, you wonder if her aura of mystery is actually just confusion.

4. General relativity is your high-school girlfriend all grown up. Man, she is
amazing. You sort of regret not keeping in touch. She hates quantum mechanics for
obscure reasons.

5. Quantum field theory is from overseas, but she doesn’t really have an accent.
You fall deeply in love, but she treats you horribly. You are pretty sure she’s fooling
around with half of your friends, but you don’t care. You know it will end badly.

6. Cosmology is the girl that doesn’t really date, but has lots of hot friends. Some
people date cosmology just to hang out with her friends.

7. Analytical classical mechanics is a bit older, and knows stuff you don’t.

8. String theory is off in her own little world. She is either profound or insane. If
you start dating, you never see your friends anymore. It’s just string theory, 24/7.

Hy, a ecau Gonee cepbe3HO, Ha BCAKOE ABJEHUE MOKHO B3TJISTHYThH JBO-
AKO: “cTakaH JubOO HAMOJOBUHY IIYCT, AUOO HAMOJOBUHY MOJOH...” Jltogu He
ooru — 3aueMm HaMm Teopus Bcero? Tak mHrepecHee. BompocoB MHOrO, 1 Ha
MIOCJIEIHIOI0 CTPAHUILY 3a& OTBETOM He 3arjsgHellb. B obmem, ceromss, Kak u
BCeraa,

“... Ha TOM pybOexe,

KPYTOM BUpPaKe,

Ha y3KOW MeKe MeXK ele u y:ke ...”

Tak crour au Opro3:KaTL: “BOT B Hame BpeMms...”? (DTO s, KOHEUHO, CaM
cebe ToBopIO...)

Paccysxnaa smorudecku, s OOKEH ObLLI Obl HAIMCATL B DTOT COOPHUK O
KBAHTOBOW XPOMOIMHAMUKE, TeMe IeHTpajbHol mist FOpus AmroHOBMYa HA
IPOTAKEHNU TOCTeTHNUX ABaauaTu natu jer. CroxacTuyeckas MOIETIb BaKYy-
yMa U ee NPUJIOKEHUs B HU3KOPHEPreTUYeCKOo! aIpOHHONR (pu3mke — JIrobumoe
muts FOpus Autonosuua u ['torrepa Jloma. Pusmka agpoHOB — 1 MOS IEPBas
J1000BL, KOTOpAas, KOHEYHO ke, He 3abuiBaercsi. B mocaenuuit pas s BepHYJI-
cs K Hell Bcepbe3 m Hanouro, B cepenuue 90-X romoB mpOIIIOro Beka (pyka
HE MOBOPAYMBAETCS, HO MPUIETCS HANMCATL, — HPOILIOTO BeKa). B3sBmmch
apysx&HO ¢ Kose#r Y panbnesniM u Apkanuem BadumreiinoMm, yaasroch 3aKOH-
YNTL PAa3JIOKeHNEe MO TSyKeJILIM KBapKaM, OCHOBLI KOTOPOTO OBLIIU 3aJI0:KEHBI
Muwumeit BonomuaniM n MmO B 1980-x. IloTtom, B 1999-0oMm oroso moayronma
IBITAJICA XOTh KAK-TO IPOJBUHYTHLCA B KBAPK-aIpOHHON nyasnbrocTtu. C mpak-
TUYECKOW TOUKM 3PEHUs BOMPOC YPE3BLIUAWHO BAYKHLIM, Na KaK K HEMY IOJ-
crynmurhesi? B obieM, mpoaBUHYICS MAJEKO HE TaK HAJEKO KaK XOTEJIOCh.

C Tex mop OblIM BCTpeYw, HO Kakue-TO MumoJieTHole. VHTepecnr Mou B
3aMEeTHOI Mepe CMeCTHJIMCL. XOTA W HAJNEIChL BEPHYTHLCA B OJIMKaMIIEM



OymymeM K aIpPOHHBIM k-CTPYHAM U CJIeICTBUAM IJIAHAPHO 9KBUBAJIEHTHOCTH,
HO NMMCAThL HAJO O TOM, UTO MHTEpecyeT B HaHHLIE MoMeHT. [losTomy — ma
npoctut MeHs HOpuii AHTOHOBMY — HANUIY O CYIEPCUMMETPUU, TOUHEe, 00
OJIHOM €€ acCIleKTe — IEeHTPAJLHLIX 3apAnax. lema aTa uMeeT IpAMOoe OTHOIIEe-
e k U'TO®y. Cam Toro me momo3peBasi, y UCTOKOB ee cTosaa sReus Boro-
MOJILHLIZ, B TO Bpems acuupant UTOP. Xopomo nmoMmHIO, paboTa mucaaach
Ha rosy0sATHe, TOe U caM A Torga obOperascsa. 10 4ToO ceromgHs HA3LIBAETCA
Bogomolny limit, Bogomolny completion, Bogomol'nyi-Prasad-Sommerfield (BPS)
saturation? [2, 3] — Bce »TO GLITO BBemeno yKeme#t B MOCYTEpPCUMMETPUYHYTO
510Xy, B 1974 romy, B mpoiiecce pazdbmUpaTesbLCTBa C MOJSIKOBCKAMU MOHOIIO-
JAAMU, B KOTOPOM Ha PAHHUX dTalax ydJacTBoBasu takke Mwuma Mapunos [1]
u, ocobenno, Apkamuii Balinmreiin, KOTOpLIA, Kak BCErga, KOHEYHO, HUYETO
He Hammcaj. Pabora BoromosnHOro — ofHA M3 CaMBLIX HUTUPYEMBIX U3 Cle-
naaapix B UTOPe 3a BCio mcTropuio ero cymecTtBoBanus. sHReHs He ObLLI
MOCKBMYOM, WU Tpe6OBa.HI/ICb CllIeI1aJILHLIC YCWJINA, "ITO6BI OCTaBUTL €ro B
NTODPe, kakoBbie peaupuHATH He Obiu. [IpenpuHT Boimes B UepHOTrOJI0BKe.

Crenymomuii Hu:Ke MaTepuaJ — 4TO-TO CpenHee MEXIYy KPaTKUM 0030POM,
HaOPOCKOM He3aBEepPIIEHHON CTaTLU U TJaBoi HeHamucauHOW kEumru.” DBymer
gu oHa Hanucaua? Kro 3Haer...

4The above notions are among basic entries of modern internet-based encyclopedias. For
instance, ENCYCLOPEDIA 4U.com defines Bogomol’nyi- Prasad-Sommerfield bound as follows:
“The Bogomol'nyi-Prasad-Sommerfield bound refers to a series of inequalities for solutions of par-
tial differential equations depending on the homotopy class of the solution at infinity. This set
of inequalities is very useful for solving soliton equations. Often, by insisting that the bound is
satisfied (called ‘saturation’), one can come up with a simpler set of partial differential equations
to solve.”

°K coskaeHuio, IOMUMO UYLCTO JUTEPATYPHLIX OIPEXOB, HEe XBaTaeT Bpe-
MEHU BLIBEPUTDL BCE MUHYCLI U NBOWKM B Kod(punuentax. OO0mas cTpyKTypa
M 3aKJIIOYUTEJBbHLIE BBLIBOALI OT 5TOr'O KaKETCA HE CTPALAIOT.



Remarks on Central Charges in Superalgebras

1. CENTRAL CHARGES IN SUPERALGEBRAS — GENERALITIES

In this Section we will briefly review general issues related to central charges (CC)
in superalgebras.

1.1. History. The first superalgebra in four dimensional field theory was dertived
by Golfand and Likhtman [4] in the form

{QaQﬂ} =2F, (7“)045 ) {Qa@ﬂ} = {QaQﬂ} =0, (1)

i.e. with no central charges. Possible occurrence of CC (elements of superalgebra
commuting with all other operators) was first mentioned in an unpublished paper of
Lopuszanski and M. Sohnius [5] where the last two anticommutators were modified
as

{QuQ5} = 7.5 (2)
A more complete description of superalgebras with CC in quantum field theory was
worked out in [6]. The only central charges analyzed in this paper were Lorentz
scalars (in four dimensions). Thus, by construction, they could be relevant only to
extended supersymmetries. Then, a few years later, Witten and Olive [7] showed
that in supersymmtric theories with solitons, central extension of superalgebras is
typical; topological quantum numbers play the role of central charges. It was gen-
erally understood that superalgebras with (Lorentz-scalar) central charges can be
obtained from superalgebras without central charges in higher-dimensional space-
times by interpreting some of the extra components of the momentum as CC’s (see
e.g. [8]). That not all CC’s are of this type was known at this time at the algebraic
level (see e.g. [12]), but the dynamical role of these additional tensorial charges was
not fully appreciated until somewhat later. Central charges that are antisymmetric
tensors in various dimensions were introduced (in the supergravity context, in the
presence of p-branes) in Ref. [13] (see also [14]). These CC’s are relevant to extended
objects of the domain wall type. Their occurrence in four-dimensional super-Yang-
Mills theory (as a quantum anomaly) was first observed in [10]. A general theory
of central extensions of superalgebras in three and four dimensions was discussed
in Ref. [11]. It is worth noting that discussion in [11] of those central charges that
have the Lorentz structure of P, was not carried out in full.

1.2. Minimal SUSY. The minimal number of supercharges in various dimensions
is given in Table 1. Two-dimensional theories with a single supercharge, although
algebraically possible, require the loss of F' and (—1)¥. Therefore, if one wants to
keep the distinction between the “bosons” and ”fermions,” the minimal number of
supercharges in D = 2 is two.



D 2 |3(4]5|/6|7|8 ]9 10

vo | (1) 2]2[4[8[8[8[16]16]16
Dim(¢)c | 2 |2|4|4]8[8[16]16]32

# cond. 2 |1|(1j0o|1|{1|1 |12
TABLE 1. The minimal number of supercharges, dimension of the
spinorial representation and the number of additional conditions (i.e.
the Majorana and/or Weyl conditions).

The minimal number of supercharges in Table 1 is given for a real representation.
Then, it is clear that, generally speaking, the maximal possible number of CC’s is
determined by the dimension of the symmetric matrix {Q;Q;} of the size vg X v,
namely,

vo(vg +1)

[ Zelo T . (3)

In fact, D anticommutators have the Lorentz structure of the energy-momentum
operator P,. Therefore, up to D central charges could be absrorbed in P,, gener-
ally speaking. In particular situations this number can be smaller, since although
algebraically the corresponding CC’s have the same structure as P,, they are dynam-
ically distinguishable. the point is that P, is uniquely defined through the conserved
and symmetric energy-momentum tensor of the theory.

The total set of CC’s can be arranged by classifying CC’s with respect to their
Lorentz structure. Below we will present this classification for D = 2,3 and 4.

1.3. D = 2. Consider two-dimensional theories with two supercharges. From the
discussion above, on purely algebraic grounds, three CC’s are possible: one Lorentz-
scalar and a two-component vector,

{Qa, Qﬁ} = 2(7#70)046(1[)# + Zu) + i(75)agZ, (4)

The latter case would require existence of a vector order parameter taking distinct
values in different vacua. This will break Lorentz invariance and supersymmetry
of the vacuum state. Limiting ourselves to supersymmetric vacua we conclude that
only one (real) Lorentz-scalar central charge Z is possible. This central charge is
relevant to kinks in AN = 1 theories.

1.4. D = 3. The central charge allowed in this case is a Lorentz-vector Z,, i.e.

{Qm QB} = Q(VMVO)aﬁ(PM + Zu)7 (5)

which we should arrange Z, to be orthogonal to P,. By an appropriate choice of
reference frame it can always be cast in the form (0,0, 1). In fact, this is the central
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charge of the previous section elevated by one dimension. It is associated with a
domain wall (or string) oriented along the second axis.

1.5. D = 4. Maximally one can have 10 CC’s which are decomposed into Lorentz
representations as (0,1) + (1,0) + (1/2, 1/2):

{Qa, Qa} = 2(7“)0@(]3# + Zu>7

{Qa, @} = (E")asZyu, (6)

{Qda Qﬂ} - (iuy)aﬁ'z[/w} ) (7)
where (X)ap = (6/")aa(")§ is a chiral version of o (see e.g. [19]). The anti-
symmetric tensors Zj,,) and Z[W] are associated with domain walls, and reduce to
a complex number and a spatial vector orthogonal to the domain wall. The (1/2,
1/2) CC Z, is a Lorentz vector orthogonal to P,. It is associated with strings (flux

tubes), and reduces to one real number and a three-dimensional unit spatial vector
parallel to the string.

1.6. Extended SUSY. We will limit our attention here to exploring the reduction
of the minimal SUSY algebra in D = 4 to D = 2 and 3, namely the N/ = 2 SUSY
algebra in those dimensions. As should be clear from the discussion above, the
maximal number of CC’s is of course the same, and the only distinction we must
make is to provide a decomposition into both Lorentz and R-symmetry irreps.

e N =2inD=3

The superalgebra can be decomposed into Lorentz and R-symmetry tensorial
structures as follows:

{in %3} = Q(VMVO)aﬁ[(PM + Zu)‘sij + Z;(fj)] + QVgBZ[ij]: (8)

where 7° is the charge conjugation matrix. The maximal set of 10 CC’s enter as a
triplet of spacetime vectors Z% and a singlet Z1!. The singlet CC is associated with
vortices (or lumps), and corresponds to the reduction of the (1/2,1/2) charge or the
4" component of the momentum vector in D = 4. The triplet Z/ is decomposed into

an R-symmetry singlet Z,,, algebraically indistinguishable from the momentum, and

). The former is equivalent to the vectorial

a traceless symmetric combination foj
charge in the NV = 1 algebra, while Z,(fj ) can be reduced to a complex number and
vectors specifying the orientation. We see that these are the direct reduction of the

(0,1) and (1,0) wall charges in D = 4.

e N =2inD=2



Lorentz invariance now provides a much weaker constraint, and one can in prin-
ciple consider different (p, q) superalgebras comprising p + g = 4 supercharges. We
will mention here only the nonchiral NV = (2,2) case correpsonding to dimensional
reduction of the N' =1 D = 4 algebra. The tensorial decomposition is as in (8),
but with the decomposition of D = 3 spacetime vectors into D = 2 vectors and a
singlet,

{Q4, Q%Y = 27" 7)asl(Bu + Z,)87 + Zi7] + 2i(v°)ap(67 Z + Z1D) + 243,21, (9)
We discard all vectorial charges ZZJ in this case for the reasons described above, and

are left with two singlets Z(), which are the reduction of the domain wall charges
in D = 4 and correpond to topological kink charges, and two further singlets Z and
73] arising via reduction from P, and the vortex charge in D = 3.

1.7. A few words on extended supersymmetry (eight supercharges) in
D=4. Complete algebraic analysis of all tensorial central charges possible in this
is analogous to the previous cases and is rather straightforward. With eight super-
charges the maximal number of CC’s is 36. Dynamical aspect is less developed —
only a modest fraction of the above 36 CC’s are known to be nontrivially realized
in models studied in the literature. I will limit myself to a few remarks regarding
the well-established CC’s. I will use a complex (holomorphic) representation of the
supercharges. Then the supercharges are labeled as follows

QL, Qsy, a,a=12, fg=12. (10)

On general grounds one can write

{Qf, Qag} = 26! Pac+2(Z))aa .
{Qf QL) = glfat o f9 7
o 3 {af} EapBt )

(Qar Qpgt = (Zuny),, +eeo™ 2. (11)

Here (Z])as are four vectorial central charges (1/2, 1/2), (16 components altogether)

while Zfi Z]]i and the complex conjugate are (1,0) and (0,1) central charges. Since the

matrix Zf{{i % is symmetric with respect to f, g, there are three flavor components,

while the total number of components residing in (1,0) and (0,1) central charges is
18. Finally, there are two scalar central charges, Z and Z.

Dynamically the above central charges can be described as follows. The scalar
CC’s Z and Z are saturated by monopoles/dyons. One vectorial central charge Z,
(with the additional condition P*Z, = 0) is saturated [16] by Abrikosov-Nielsen-
Olesen string (ANO for short) [15]. A (1,0) central charge with f = g is saturated
by domain walls [17].
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1.8. D =3: Why BPS vortices cannot appear in theories with two super-
charges. BPS vortices in 241 dimensions were previously considered in [18] (see
also references therein). To simplify the discussion, we assume that we can choose
a real representation for the superalgebra within which

{Qa, Qs} = 0P+ -+ (12)

where p is a spacetime index. It then follows that, since the number of broken
translational generators is d, there are at least d broken supercharges. In practice
the number may be larger once we account for Lorentz invariance.

This simple argument tells us that, provided we are dealing with a 1/2-BPS soliton
in a supersymmetric theory (i.e. an object localized only in space not time), the
minimal matching between bosonic and fermionic zero modes in the translational
sector is one-to-one.

Consider now a putative BPS vortex in a theory with minimal N' = 1 SUSY
in 24+1D. Such a configuration would require a worldvolume description with two
bosonic zero modes, but only one fermionic mode. This is not permitted by the
argument above, and indeed no configurations of this type are known. Vortices
always exhibit at least two fermionic zero modes and are thus BPS only in N = 2
theories.

2. “MONOPOLE” CENTRAL CHARGES: ANOMALIES AND ALL THAT

In this section we will discuss the Lorentz-scalar central charges in Eq. (11) that
are saturated by monopoles/dyons. They will be referred to as monopole central
charges. A rather dramatic story is asssociated with them, a story which is not
yet finished. Historically they were the first to be introduced within the framework
of an extended 4D superalgebra [5, 6]. On the dynamical side, they appeared as
the first example of the “topological charge <+ central charge” relation revealed by
Witten and Olive in their pioneering paper [7]. Twenty years later, the N' = 2
model where these central charges first appeared, was solved by Seiberg and Witten
20, 21], and the exact masses of the BPS-saturated monopoles/dyons found. No
direct comparison with the operator expression for the central charges was carried
out, however. In Ref. [22] it was noted that for the Seiberg-Witten formula to be
valid, a boson-term anomaly should exist in the monopole central charges. Even
before [22] a fermion-term anomaly was identified [23], which plays a crucial role
[24] for the monopoles in the Higgs regime (confined monopoles). What is still
lacking is a direct operator derivation of the above anomalies.

11



2.1. The model. The simplest N' = 2 model we will deal with was found [25] as
early as in 1974, see also [26] where the matter multiplets — the so called hypermul-
tiplets — first appeared.® The A/ = 2 model in four dimensions can be obtained from
N =1 super-Yang-Mills theory in six dimensions.

It is instructive to consider both, the Majorana and Weyl representations. The
gauge group is SU(2). In the Weyl representation one deals with two Weyl fermions,
A2 (gluino) and 92 (gluino’s N' = 2 superpartner). Then

1 1 —. 1
E - __Fa Ful/a /\a ,a .Daéz )\a ,a _DaDa
9(2) { 4 W + (2 ) + 9

+ Y0 (i Dag)™ " + D" Dy
- Ve (XU he) - D" B} (13

where where gq is the bare coupling constant, and D® is an auxiliary field which can
be eliminated by virtue of the equation of motion,

7 _
D* = E Eabe ¢b¢c ; (14)

while there are no F' terms (i.e. they are set to zero) since we introduce no super-
potential.
The flat direction of the model can be parametrized as follows:

¢’=v, ¢'=¢"=0. (15)

Moreover, using the (anomalous) U(1) symmetry one can always make the vacuum
expectation value v real and positive. Generally speaking, such a rotation introduces
a vacuum angle 6, even if it was fine-tuned to zero in the beginning. The question of
f-induced effects is interesting by itself, but I will not consider it here, deferring the
corresponding discussion till better times. Thus, I will assume 6 = 0 after setting ¢
real. For real and positive v the W-boson mass m is

m=v2v. (16)

6There is a funny story about the emergence of the word “hypermultiplet” in this context. M.
Sohnius recollects [27]: When a French super-marché carries not only food and drink but also car
spares, garden furniture and ladies’ underwear, it becomes an hyper-marché. Correspondingly,
P. Fayet called N/ = 2 supersymmetry “hyper-symmetry.” Whereas that name has not stuck in
general, the matter multiplet of A/ = 2 supersymmetry is still called “hypermultiplet.”

12



At the same time, in the Majorana representation

1 1 1 1 1
L = —S<S—=F F""+ _xtiDx{+-D'A"D, A"+ -D"B*D,B*"
gg{ 4MV +2X'LZDX7,+2 H +2 I
1
— gD BIA B+ g T (01 + (2 0°01) (17)
where x; (i = 1,2) are two Majorana fermions, A is a scalar field and B is a

pseudoscalar field, all in the adjoint representation.

At the classical level the description of monopoles does not depend on fermions at
all. Let us consider static field configurations. Then, neglecting all time derivatives
and setting Ay = 0, one can write the Bogomolny completion of the energy functional
as follows:

£ = /d3x { . F*“+1D¢“r+[ . F*a+1D¢“
V240 1 V299 i

2

1 1o ve
b | o] 45, (6" Fy1) (18)
{\/_ 290 9%
where the last term is the surface term, written as an integral over a large sphere,
and
L 1
Fm = égmnank'
The Bogomolny equations for the monopole are
E%4+2D; ¢ =0. (19)
The solution to this equation is given by the famous hedgehog ansatz [28]
$(T) = 5 LR(r),  ANE) = ZW(r), (20)
r r

where rv/72? while A% = 0. Equations (20) must be supplemented by boundary
conditions at the origin (where the solution must be regular), and at the spatial
infinity where F'(r) — v and W (r) — 1. The profile functions F' and W can be
found analytically, see e.g. [29].

2.2. Dimension of the BPS representations. As was first noted by Montonen
and Olive [34], all states in N/ = 2 model — W bosons and monopoles alike — are
BPS saturated. This results in the fact that supermultiplets of this model are short.
Regular (long) supermultiplet would contain 2%V = 16 helicity states, while the
short ones contain 2V = 4 helicity states — two bosonic and two fermionic. This is
in full accord with the fact that the number of the fermion zero mode on the given
monopole solution is four, resulting in dim-4 representation of the supersymmetry
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algebra. If we combine particles and antiparticles together, as is customary in field
theory, we will have one Dirac spinor on the fermion side of the supermultiplet in
both cases, W-bosons/monopoles.

2.3. Supercurrents. The model, being N' = 2, possesses two conserved supercur-
rents,

1 - _ _
I c1a ya aya a a
Jogs = 2 {20535 — 620 D"X; + 2V2 (Do) 5 |
1 _ _ _
11 ca ja a,ja a a
Jaﬂﬁ - g_g {22F5a¢3 - 6650(-D ¢@ - 2\/5 (Dagﬁb ) /\,3} . (21)

The commutator of the corresponding supercharges is

@y = 22 [ (5 (5 - i5)

90

2\/§Z Ja a_ ; RA
" /dSn (¢* (EX—iBY)) . (22)

Everything is perfectly okay at the classical level. A crucial feature that [ must stress
is the chiral structure of the classical central charge in Eq. (22). The classical U(1)
current argument tells us that the anticommutator {Q7, @4} must be proportional

to ¢ rather than ¢; then, the particular structure of the supercurrents (22) implies
that the color-electric and color-magnetic fields enter in the combination E? — 1 B2.

2.4. Coupling constant renormalization. A straightforward analysis seems to
show 7 that the impact of renormalization reduces to the replacement of the bare
coupling gy 2 in Eq. (22) by the (renormalized) effective coupling g2 normalized at
the lowest relevant mass scale in the theory, i.e. at the scale v. Then we arrive at

2V 21
{Q({w fo)’l = - \g/Q_Z

/ dS, (¢* (EX —iBY)) . (23)

If one substitutes the color-electric and color-magnetic fields generated by the electric
and magnetic charge, respectively, one arrives at the following expression for the
central charge (and, correspondingly, the mass of the BPS state):

M:’\@v<1—4ij)

P (24)

"Quantum corrections in the mass of the BPS saturated monopoles were first discussed in
Refs. [30, 31, 32] two decades ago.
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Let me parenthetically note that the general formula is

i
M:‘ﬁv (ne—i;nm) , (25)
g

where n.,, are integer electric and magnetic numbers, but we will consider here
only the particular case when either n, =,1 or n,, = 0,1. It must be noted, with
satisfaction, that for n,, = 0 and n. = 1 we get the correct W-boson mass.

So far, everything seems perfectly cloudless. An indication that a problem exists
came from comparison of the result quoted in Eq. (24) with the exact solution found
in Ref. [20] in the limit of large v when all nonperturbative effects are neglected.
Such a comparison could have been made immediately after publication of Ref. [20],
but for reasons beyond my comprehension (and I must admit my own guilt too) it
was not carried out until recently, see [22].

2.5. Detecting an anomaly. The masses of the BPS-saturated states (I bosons
and monopoles) in the Seiberg-Witten exact solution can be presented by the formula

M:\/§a<ne—a—Dnm> ) (26)
a
where
4 2 . M
ap =ia (—Z——ln—o), (27)
9 7 a

while the renormalized coupling constant is defined in terms of the ultraviolet pa-
rameters as follows:

—E—‘. (28)

Because of the alna dependence, dap/da differs from ap/a by a constant (nonlog-

arithmic) term, namely,

ap . 47’[‘ 2

i ===, 29
L i(%-2) (29
Combining Eq. (26) and (29) we get

= afo (i (- 2) )

This does not match Eq. (25) in the nonlogarithmic part (i.e. the part of the n,,
term with no ¢* factor). Since the relative weight of the electric and magnetic parts
in Eq. (23) is fixed to be ~ g2, the presence of the above nonlogarithmic term implies
that, in fact, the chiral structure £ —i B2 obtained at the canonic commutator level
cannot be maintained once quantum corrections are switched on. This is a quantum
anomaly.
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2.6. Getting the anomaly. First, [ will present my argument and then try to
summarize that of Rebhan et al. [22], although I must admit that so far I failed to
make myself comfortable with the latter paper. (I am afraid, there is something not
quite kosher there; in any case, further analysis seems to be needed).
Our starting point will be the (superconformal) anomaly [33] in the supercurrent
(21), namely,
(aaﬂJ’ ) _ N po jea (31)
ofp anom 871'2 &
for SU(N). Please, note the occurrence of the opposite-chirality field strength tensor
F’g 5 At the classical level the current J i 85 contains F; (which eventually leads to

E¢—i B in the anticommutator (23)) rather than FSﬁ The fact that at the quantum

level FSB pops up means that the anticommutator (23) does have an anomaly — an
N = 2 relative of the superconformal anomaly — which gives rise to E%+1i B, a term

of the opposite chiral structure. A rather straightforward calculation then gives

(Qh @} = —2VEi 5 [ 45, (5" (B2 +1BD) (32

anom

to be compared with Eq. (22). (In the SU(N) we would have N/(87?) instead of
1/(47%) in Eq. (32).) Adding the canonic and the anomalous terms in {Q, QY
together we see that the fluxes generated by color-electric and color-magnetic terms
are now shifted, untied from each other, by a nonlogarithmic term in the magnetic
part. Normalizing to the electric term, My = v/2v, we get for the magnetic term

My = V2v (4—7; - E) , (33)
g T
as it is necessary for the consistency with the exact Seiberg-Witten solution.

A few words about the analysis of of Rebhan et al. [22]. These authors did not
aim at establishing the operator form of the anomaly. Instead, they started from the
assumption that central charges relevant to the monopole problem in four dimensions
can be viewed as a dimensional reduction of the Golfand-Likhtman superalgebra
(1). Then they calculated the matrix element of the energy-momentum tensor (more
exactly, its fermion part) in 44¢ dimensions in the monopole background field. Upon
analytic continuation to e — 0 they find a finite nonlogarithmic term consistent with
(33) which is interpreted as an anomaly.

That the Golfand-Likhtman superalgebra (1) generates central charges upon dimes-
nional reduction is known for a long time (see e.g. the book [8]). A crucial question
is whether all relevant supercharges can be obtained through this procedure. In the
problem at hand the answer is negative.

To illustrate this assertion let us consider N' = 1 Yang-Mills theory in D = 6.
As well-known, dimensional reduction of this theory to D = 4 gives rise to four-
dimensional N' = 2 model we deal with here. Assume that the six-dimensional
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superalgebra has the form (1) with

P, = / 6,0(z) dx (34)

(here 6, is the six-dimensional energy-momentum tensor), dimensionally reduced
to D = 4. Then ask whether the result for 1 = 4,5 can reduce to Eq. (22). The
answer seems to be negative. Let me explain why.

First note that the Weyl spinor in six dimensions has four (complex) components,
U = {WU; 934} while o# matrices can be chosen as follows:

o ={1, 7%, " %P A0 %), (35)
so that all spatial matrices are Hermitean and anticommuting. (Here v*® are the
Dirac matrices.) Then, suppressing the color indices, one can write

1
Lp_g = —ZF’“’FW + Uit (iD,) ¥, (36)

where I have also set g?> = 1 to ease the notation. The gauge coupling constant can
be easily restored at the very end. In the six-dimensional language this Lagrangean
in V' =1, i.e. it has eight supercharges (see Table 1). In four dimensions this theory
is N/ = 2. The dimensional reduction is carried out in a standard way, namely, x45
are compactified, and only zero modes in x4 5 are retained. In practical terms this
means that we just drop the x5 dependence. Given our choice of the o* matrices,
from the 4D perspective, A4 is a scalar field while Aj is pseudoscalar. These two
fields can be combined into a complex field

Ay +iAs

We will also need the expression for the energy-momentum tensor, which has the
following canonic form:

¢ = (37)

1
O = PR — g P

+ i {qﬁaw”qf Ul DAY — Wigh DY W — whe DE \p} . (38)

Upon dimensional reduction to D = 4, combining this expression with equations of
motion, one readily gets

0" = —div(4'E) - %div (vi7w),
. =\ 1 .
6% = —div <A5 E) + Zdlv (TT57°0) . (39)
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Here we omitted terms vanishing by virtue of equations of motion. Quick inspection
shows that [ d®z0°*®) cannot represent the central charge in full, as it is obvious
from Eq. (22) that at the classical level the color-electric and color-magnetic fields
enter in a unified chiral combination E? — i By, while the dimensional reduction of
the energy-momentum tensor gives rise only to the color-electric field. How does
the color-magnetic field emerge?

This is only possible if the algebra (1) gets a central extension already at 6D-level.
It is not difficult to infer a general structure of this central extension. Namely,

{QuQs} = 2(JA)aﬁ/dx{6’0A

)
“+  €0ABCDE 83 (ﬂ \I’TO'C O'D O'E\I/—I—ACaD AE+ ) } s (40)

where the ellipces stand for the non-Abelian part of the gauge-boson term. Upon
reduction to four dimensions the fermion part in the second line in Eq. (40) cancels
that in Eq. (39) — at the classical level there are no fermion terms in the anti-
commutator of the supercharges, as is clearly seen in Eq. (22). The boson part
generates missing terms with the color-magnetic fields which complete the boson
part of Eq. (39) making it compatible with (22).

A question which immediately comes to my mind is whether one can use dimen-
sional reduction (from 4 + €) to obtain the anomalous part of the central charge.
Since the second line in Eq. (40) contains €, its continuation to 4 + € is problematic,
to put it mildly. It is not clear to me at all how to treat it in 4+¢. On the other hand,
the fermion terms in Eq. (39) can be trivially extended to 4 + €. If one subtracts
the part at D = 4 (which is presumably cancelled (7) by (40), the difference is, nat-
urally, proportional to e. A properly defined gauge-field-background loop with the
fermion vertices from Eq. (39) (which will also require specification of 7° in 4 + ¢),
being divergent, provides 1/e times, presumably, div <A5 E) or div <A4 é) The
product is € independent and finite at € = 0 which certainly smells of anomaly. At
least operationally, this is what happens in the calculation of Ref. [22] which, as was
mentioned above, proves to be compatible with the exact Seiberg-Witten formula.
A task for the future is to work out a fully transparent operator interpretation of
the procedure, along the lines discussed above. The same mechanism which is re-
sponsible for the generation of the bosonic anomaly destroys, at one-loop level, the
cancellation of the bifermion terms which took place at the tree level. This gives
rise to the fermion part of the central charge anomaly. In fact, the occurrence of
such anomalous terms had been inferred previously [17, 24].
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2.7. Bifermion part of the anomaly. The story begins with the discovery [10] of
the gluino condensate term in the domain-wall central charge in N' = 1 supersym-
metric gluodynamics. The fact that it should have AN/ = 2 superpartners was first
mentioned in [17]. It is not difficult to see that in the general case, in the model
under consideration

N

1672
where f and g are “subflavor” indices (i.e. two Weyl spinors, A and ¢ in Eq. (13)).
The same indices f and g label the supercharges, see Eq. (21). There are two options:
one can antisymmetrize with respect to a and  and symmetrize with respect to f
and g, and vice versa. In the first case we get the domain-wall central charges, while
in the latter case obviously arrive at an anomaly in the monopole central charge.
The origin is common. In Ref. [24] it was established that, for the SU(2) model,

(QLQ7) = capcl®2 / i CO(x)

zfa o

M (41)

1 1 .
CO — 550upz7 8\/§7T2 ay ( (;fa(o-p)aa(5-a)dﬁ)\afﬁ) ‘ (42)

No direct contact with the consideration of Ref. [22] has been established so far.
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[TO3OPABJIEHVE N3 IIPOCTPAHCTBEHHO-BPEMEHHOI'O ITAJIEKA ...
M. HIupman

NucTuTyT TeopeTuyeckoir Gpusmky,
YuuBepcurer MuHHECOTLI,
Muwunneanosnuc, Munnecora 55455, CIITA

B 1984 rony FOputo ArTonoBuuy mcnonauuiaoch 50 ser. Kaskercs, ObuT 10-
ObuneliHbii ceMuHAD, B aKTOBOM 3aJje. Rak ceiuac Buky — FOpuit AuronoBuy
BBEPXY, HA MOAUYME, KAK OOLIYHO U3JIYYaIOmMUil CIOKOWCTBUE U YBEPEHHOCTD,
U 9TOT [MaPCTBEHHLIN KECT, HEYJIOBUMOE IPUKOCHOBEHUE PYKU K UYThL COUTON
P POCKOIIHLIX YEPHDLIX BOJIOC, C €1Ba HAMEUYEHHLIM CePEeOPAHHLIM y30POM,
U BOT NPSAOL yKe HAa MeCcTe, TaM TJe efl U MOJOKEHO OLIThL... [loMHIO Kak
menapo pazmxasaa HOpu#i AHTOHOBUU, HATPABO U HAJEBO, KAKIOMY HEMHOKKO
CUAHMA BLICIIUX COep.

B ToT menn B kabuneTe KOTOPLIA A neaua ¢ Annoii Muxaiinosnoii, ITonosniM
u IlepenomMoBLIM, 1 Kyma mocie cemuHapa npuines FOpuii AnToHoBudy, coc-
TOsJICS OOJILIION Pa3roBOp O HAyKe. DTO OLIIO BpeMs OOJLIINX OKUIAHUL.
KBanTtoBas xpoMommuamMuka eme Ha moabeme. | pubOOBCKME KOMWU, WHCTAH-
TOHHLIE MOJENIU BaKyyMa, DI000JLI U TUOPUALI — TPU 3BYyKE DTUX Marud-
€CKUX 3aKJIVMHAHUY y MHOIUX (B HAIIEM MaJjeHLKOM MUPKe) 3aKUIAJa KPOBb.
Kazamsocn, BoT emre mocienuee ycuiame, M KBAHTOBAs XPOMOAUMHAMUKA OyeT
perena. DTo ObLUIO A0 CYIEePCUMMETPUYHON mapaaurMol, 10 CTpyH u D-Opam.

Ham cnenyromuii momoOHLI pa3roBOp MPOU3OIIE] BCETO Mapy JeT CIYCTH,
B HavaJie mepecTpoiiku, B KypopTHOM moceake Cadsanrpusa. JleTom 3mecth co-
OupaJiach »IMTa MOCKOBCKOM 1 JIEHUHT paackoit uarenaurennuu. s mac — a
s npuexaJ ¢ FOue#t u Aueid na nonmus, no popore u3 I[lapuy B Pury — rorma
5TO OLIT HEMLICAUMLIA 3aman. I mOMHIO YmHHDIE OOMEHDLI TPUBETCTBUAMU C
apy3bsamu FOpus AnrtonoBmua m Anant MuxasoiBHBI U HOJTYIO TPOTYJIIKY
IO MOPOKKE B COCHOBOM JIECY, BIOJL Oepera MOPs, TOMOH IITUI[ U HEKAPKOE
OanTuiickoe coJHie... lIlepBas Tema, Kak Bcerma, MOJUTHKA. Bcepnes jm
OTKPLIIOCHL OKHO B NUBWJIM3AIMUIO, He 3akpoercsa ju?! ['opGaues ... Jluraues

(raskercs, Erop Ky3muu, na KTo MOMHUT ero ceronss) ... Passe Morau
MBI TOTJa TaldaTh, YTO BCEr0 HECKOJLKO Jjer cmycts CasanrpuBa CTaHeT
vyacTbio He3aBucumoit JlarBum, a Coserckuin Coro3 — “ommor Bcero mpo-
I'PECCUBHOIO YeJioBeuecTBa’ — pacceeTcs Kak AYyPHOW COH, OCTABUB JIWIIL
HECYACTDLS, HUIMETY U TOPLKUE BOCIIOMUHAHUS MUJJIMOHAM HUA B UYeM HE TTOBUH-
HBIX JIIOICR?



Hy a morom — TOoke He HOBOCTL — IJIABHO IE€PETEKIU B (U3UKY. YiKe
HapacTaJ BaJ CTPYyHHO# temartuku. [lepBas cTpyHHas peBOIIONUA O HEODXO-
AUMOCTU KOTODO#l BCe BpeMs TBEPIUIU ... CBepmmiaach. [koH Dmanuc,
npuexapmuii B UTOP wa mapy Hemenb, Ka:KOLIli AeHL 3BOHUI B IHEPH'
Y3HATH HE 3aBEPIINJIOCL JU — He naii 60r B ero OTCYTCTBUE — HMOCTPOEHUE
“reopun Bcero”. CBeKYIO UIEI0, KAK 9TO BCerma OLIBAET — U KaK U JMOJIKHO
OLITL — HECJIM B MACCLI CaMble MOJIoanie u sipkue. Jla 31paBcTBYIOT nTUOHEPDI!
CymnepcTpyHbl (M CyIepCUMMETPUS B LIEJIOM ) U3 3ATEPAHHLIX U DK30TUYECKUX
YIJIOB TEOPUM BPLIBAJUCL B Mmainstream, Heymaep:KUMO OTTECHSS B CTOPOHY
IpeaLIaymui mainstream — KBaHTOBYIO XxpomomuHaMuky. O, 9TO HnaHAIEe
YyBCTBO NMPOPLIBA ...

Bce s10 obGcysxmamu Mol torma ¢ FOpuem AnrtonoBuuem. Hamwm tourwm
3peHUss OTYACTU COBIANAJIMU, HO BO MHOIOM U PACXOMUIUCL. Y KAKIOTO
oot cBoit cuenapuii. Cefiuac, mouTU ABAANATL JET CIYCTs, BCIOMUHASI CBOU
npenacKa3aHus, s CMEIOCL... Y BLI, B HayKe KaK M B OOINECTBEHHO! yKU3HWU,
Oy myIiee, KAk MPAaBUJIIO, OKA3LIBAETS 3HAUUTEINILHO 0OJiee HEOKUIAHHLIM, UeM
JIOObIE OYKUIAHUA.

Pa3roBop »TOT MBI Tak U HE OKOHUUIU — AOPOKKA B JIECY OKA3aJIaCh KO-
pouye pasroBopa — Ja M MOKHO JIM €r0 3aKOHYUTL BOOOme? 3a ABAMIATHL JIET
MHOTO€ M3MEHUJOCL, U B Teopum u B Teoporaeise UTOP. Unnix y:x Her, a
Te pgajsiede ... MuHUMaJIbHAA CyNepCUMMETPUYHAsS CTAHAAPTHAS MOIEJNDL BbI-
poauIach B IPOTOHKY HNECATKA, €CJIU HE COTHU, TapaMeTpoB. KBaHTOBas Xpo-
MOJIUHAMUKA TAK U HE PEIIeHa, XOTsA KOe-KaKUe AIMEeTUTHLIC KyCKU OTKYIIEHDI.
PeBomaronmonunIil 3a10p TeOpUU CTPYH KAK-TO CHUK. “1'eopum BCero”’ KayKeTCA
HE TMOJYyYMJIOChL. A Benn OLLIM eme W BTOPAasi U TPETLsA CTPYHHLIE PEBOJIIO-
.2

XapakxTrep (pU3UKA BLICOKUX DHEPIUl MEHSAETCSA HA TJ1a3aX — CBA3L C DMIINPU-
YEeCKUMU KOPHAMU ciiabeeTr, YKJIOH B CTOPOHY MATEMATUYECKOW (U3UKU pac-
TeT, ¥ C TUM yiKe HUYero He moneinaenb. lIpaBma, BhIpocsia m BO3MYy:Kajia
astroparticle physics (long live dark matter and dark energy, the basis of our uni-
versel — or ... is it multiverse?..), u Bo3poaunaachL B HOBOM OOJIMYMU CTapas
nnesi Kanynor n Knaina — B Bume OOJLIIMX NOTMOJHUTEILHLIX M3MEPEHUir —

!Ina momoanix mrome#d cmemy n00aBUTL, YTO IMO3BOHUTL 3arPDAHUILy U3
NTOPa Ttorma MOKHO OLIIO TOJNLKO ¢ omHoro teinedpona — y IlomesoBa Ha
CTOJIE B MEKIYyHAPOIHOM OTHeJe, U IPAMOro Habopa, KOHEYHO, He CYIIeCTBO-
Bajo. Pasrosop Hamo ObLLIO 3aka3niBaThL 3apaHee, dyepes omeparopa. [IKoH
HaBEPHSIKA MATePUJ MPO cebs BCIO 9Ty TACOMOTUHY, U TE€M HE MeHee MpOoIe-
Aypa MOBTOPSIACh M30 MHS B IEHD.

200LIUHO B CTPYHHO# JmMTepaType HOApa3yMeBaeTCs, UTO B DTOM KOHTEK-
CTe CJIOBO “pEBOJIIONMA~ — CUHOHMM BBLICOYANIIErO NOCTW/KEHWS, HO B CUIY
MOHATHLIX MCTOPUYECKUX MMPUYMH i BCE PABHO KaKILIA pa3 B3IparmBalo.



C KOTOPO# COCKYyUYUTLCTA HEBO3MOKHO. YUTO »TO: OTHOCUTEILHO HEDOOJLIITON
3Ur3ar Ha UCTOPUUYECKOM MIYTU (PU3UKU, WU TOBOPOT BCEPLE3 U HAIOJITO?

oo, moso# HOCTAJLIUIO TIO mpouIoMy. Jlydmee gekapcTBO — XOopoIias
myTka. BoT memaBHO HaOpesa B MHTEpHETE HAa MUHUATIOPY TaK MCKYCHO Cpa-
OOTAHHYIO, YTO MOHAYAJY NPUHSI 33 YUCTYIO MOHETY, JUIIL MMO3:Ke 00paTuB
BHUMAHUE Ha IeHL IMyOJaukamuu — nepsBoe ampeisa. Mrak, April 1, 2004; posted
by Peter Woit (Department of Mathematics, Columbia University).

String Theorists Finally Admit Defeat ®

The news that next week’s “Science Times” will run an article by New York Times
reporter James Glanz in which several leading string theorists say that they are
giving up on the idea is rapidly spreading throughout the particle theory community.
Evidently Glanz recently went down to Princeton to interview Edward Witten, who
took the opportunity to announce that he has changed his mind about whether
string theory will ever be a “Theory of Everything”. When Glanz contacted other
string theorists and read to them what Witten had said, almost all of them told him
that they too had been having their doubts about the theory.

Glanz quotes Witten as follows:

“One night a few weeks ago I was sitting at my kitchen table trying to make sense
of Douglas’s latest work on the Kachru-Kallosh-Linde-Trivedi (KKLT) proposal and
all of a sudden it really hit me that this is a completely lost cause. If perturbative
string theory has any relation to Planck scale physics, then KKLT or something
like it should work and string theory is vacuous since it can never predict anything.
If perturbative string theory isn’t useful then we really don’t have anything since
we’ve never been able to come up with a non-perturbative version that makes sense.
Twenty years of this is enough. It’s time to give up.”

When Glanz asked him what he intends to do now, Witten responded:

“I don’t really know. There are still promising ideas about using string theory to
solve QCD, and I could keep working on those. Maybe I should take up something
completely different, like biology. I'm starting to worry that John Horgan was right
about the ‘End of Science’. Right now I just definitely need a long vacation.”

When Glanz read Witten’s statement over the phone to David Gross, Frederick
W. Gluck Professor of Physics at UCSB and Director of the Fred Kavli Institute for
Theoretical Physics, Gross thought for a moment and then told him “Yeah, despite
my quote last year from Churchill, I've also been thinking of giving up. Not sure
though how I'm going to break this to the two Freds.”

The news of Glanz’s article has had dramatic effects at many universities and
research institutes. At MIT yesterday, Professor Barton Zwiebach shocked students
in his Physics 8.251 “String Theory for Undergraduates” class by announcing that

3Reproduction, with kind permission of the author.



he wasn’t going to collect the homework due that day and was canceling his lectures
for the rest of the semester. He also asked Cambridge University Press to halt
publication of his new undergraduate textbook called “A First Course in String
Theory”, the release of which had been planned for next month.

Search committees at several institutions that hadn’t finished their hiring yet this
season held new meetings to decide how to react to the news. A prominent theorist
at a University of California campus told me in an e-mail that “our chair had the
phone in his hand and had already dialed the number of a string theory graduate
student from Princeton we were going to offer a post-doc to. I ran into his office as
soon as [ heard the news and stopped him just in time. Last week we were sure that
string theorists were the smartest guys around and considered only them for jobs,
but now there’s no way we’re going to hire any more, ever!”

At the Institute in Princeton this year’s “Summer Program for Graduate Students
in String Theory” scheduled for July has been canceled, with one of its organizers
remarking “what graduate student would now be crazy enough to show up for a
program like this?” Next week’s conference on “The Status of M-theory” at the
Michigan Center for Theoretical Physics has also been canceled on very short notice.
The director there, Michael Duff, commented “We had to do this because the status
of M-theory is all too clear. It’s passed on! This theory is no more! It has ceased to
be! It’s expired and gone to meet its maker! ... This is an ex-theory!”

A BOT eme omHA IIyTKa, KOTOPas, KAK MHE KaKeTcs, 3a0aBHa TeM, UYTO JaeT
npenacTaBiieHre 00 OTHOIIEHUY COBPEMEHHLIX CTYIEHTOB K Pa3HBLIM 00JaCcTsaIM
¢M3UKM — M3 TeX, UTO HLIHYE BXOAAT B “mKeHTenbMeHckuil” wHadbop HEP-
TeopeTuka (Tak ke KaK M O CAMOV KOMIIO3UIMU 9TOrO FKEHTEJILMEHCKOrO

Habopa):

Physical Theories as Women
Simon Dedeo
Department of Astrophysical Sciences, Princeton University

0. Newtonian gravity is your high-school girlfriend. As your first encounter with
physics, she’s amazing. You will never forget Newtonian gravity, even if you’re not
in touch very much anymore.

1. Electrodynamics is your college girlfriend. Pretty complex, you probably won’t
date long enough to really understand her.

2. Special relativity is the girl you meet at the dorm party while you're dating
electrodynamics. You make out. It’s not really cheating because it’s not like you
call her back. But you have a sneaking suspicion she knows electrodynamics and
told her everything.

3. Quantum mechanics is the girl you meet at the poetry reading. Everyone
thinks she’s really interesting and people you don’t know are obsessed about her.



You go out. It turns out that she’s pretty complicated and has some issues. Later,
after you've broken up, you wonder if her aura of mystery is actually just confusion.

4. General relativity is your high-school girlfriend all grown up. Man, she is
amazing. You sort of regret not keeping in touch. She hates quantum mechanics for
obscure reasons.

5. Quantum field theory is from overseas, but she doesn’t really have an accent.
You fall deeply in love, but she treats you horribly. You are pretty sure she’s fooling
around with half of your friends, but you don’t care. You know it will end badly.

6. Cosmology is the girl that doesn’t really date, but has lots of hot friends. Some
people date cosmology just to hang out with her friends.

7. Analytical classical mechanics is a bit older, and knows stuff you don’t.

8. String theory is off in her own little world. She is either profound or insane. If
you start dating, you never see your friends anymore. It’s just string theory, 24/7.

Hy, a ecnu Gonee cepbe3HO, Ha BCSAKOE ABJIEHUE MOKHO B3TJISIHYThH JBO-
AKO: “cTakaH JubOO HAMOJOBUHY IIYCT, JUOO HAMOJOBUHY MOJOH...” Jltogu He
ooru — 3aueMm HaMm Teopus Bcero? Tak mHrepecHee. BompocoB MHOTO, 1 Ha
MIOCJIEIHIOI0 CTPAHUILY 3a& OTBETOM He 3arjsdHellb. B obmem, ceromss, Kak u
BCeraa,

“... Ha TOM pyOexe,

KPYyTOM BUpPaKe,

Ha y3KOW MeKe MeXK eme u y:ke ...”

Tak crour au O6PrO3KATL: “BOT B Hame BpeMs...”? (DTO s, KOHEYHO, caM
cebe ToBoOpIO...)

Paccysxnaa smorudecku, s MOKEH ObLI Obl HAKMCATL B TOT COOPHUK O
KBAHTOBOW XPOMOIMHAMUKE, TeMe IeHTpajbHoll mis FOpus AmroHOBMYa HA
IPOTAKEHNU TOCTeTHNUX ABaauaTu natu jer. CroxacTuyeckas MOJETIb BaKY-
yMa U ee NPUJIOKEHUA B HU3KOPHEPreTUUIeCKOo! aIpOHHONR (pu3mke — Jirobmumoe
muts FOpuss Autonosuua u ['torrepa Jloma. ®Pusumka agpoHOB — U MOS IEPBas
J1000BL, KOTOpas, KOHEYHO Ke, He 3abuiBaercsi. B mocaenuuit pas s BepHYJI-
cs K Hell Bcepbe3 m Hanouro, B cepenuue 90-X romoB mpoOIIIOro Beka (pyka
HE MOBOPAYMBAETCS, HO MPUIETCS HANMCATL, — HPOILIOTO BeKa). B3sBmmch
apys&HO ¢ Kose#r Y panbnesniM u Apkanuem BadumreiitnoMm, yaanroch 3aKOH-
YUTL PAa3JIOKeHNEe MO TSyKeJILIM KBapKaM, OCHOBLI KOTOPOTO OBLIIU 3aJI0:KEHDI
Muwumeit BonomuaniM n MmO B 1980-x. IloTtom, B 1999-0Mm oros0o momyronma
IBITAJICA XOTh KAK-TO IPOJBUHYTHLCA B KBAPK-aIpOoHHON nyanbrocTtu. C mpak-
TUYECKOW TOUKM 3PEHUs BONPOC YPE3BLIUAWHO BAYKHLIZ, Na KaK K HEMY IOJ-
crynmuthesi? B obmeM, npoaBUHYICS MAJEKO HE TaK HAJEKO KaK XOTEJIOCh.

C Tex mop OblIu BCTpeuw, HO Kakue-TO MumoJieTHole. VHTepecnr Mou B
3aMEeTHOI Mepe CMeCTWJIMCL. XOTA M HAJNEICh BEPHYTHLCA B OJMKaMIeMm



OyaymeM K aapOHHLIM k-CTPYHaM U CJIEACTBUAM IJIaHAPHONW SKBUBAJEHTHOCTH,
HO THCAaTh HAJMO O TOM, YTO MHTEPECyeT B MaHHLI MoMeHT. [losTomy — ma
npoctut MeHs HOpuii AHTOHOBMY — HANUINY O CYHEPCUMMETPUU, TOUYHEe, 00
OJIHOM €€ acCIleKTe — IeHTPAJILHLIX 3apAnax. lema aTa uMeeT nIpaMoe OTHOIIEe-
e k U'TO®y. Cam Toro e momo3peBasi, y UCTOKOB ee cTosaa sReus Boro-
MOJILHLIZ, B TO Bpems acuupadnr UTO®P. Xopomo moMmHIO, paboTa mucaaach
Ha rosy0ATHe, rOe U caM A Torga obOperascsa. 10 4To ceromgHsa HA3LIBAETCA
Bogomolny limit, Bogomolny completion, Bogomol'nyi-Prasad-Sommerfield (BPS)
saturation? [2, 3] — Bce »TO GLITO BBemeno JKeme# B MOCYHEpPCUMMETPUYHYTO
10Xy, B 1974 romy, B mpoliecce pazdbmpaTesbLCTBa C MOJSIKOBCKAMU MOHOIIO-
JAAMU, B KOTOPOM Ha PAHHUX dTamax ydJacTBoBasu takke Mwuma Mapunos [1]
u, ocobenno, Apkamuii Balinmreiin, KOTOpLIA, Kak BCerga, KOHEYHO, HUYETO
He Hammcaj. Pabora BoromosnHOro — ofHA M3 CaAMBLIX HUTUPYEMBIX U3 Cle-
naaabix B UTOPe 3a BCio mcropuio ero cymecrtBoBanus. sHReHs He ObLLI
MOCKBUYOM, WU Tpe6OB&JII/ICb CllIe1aJILHLIC YCWMJINA, "ITO6BI OCTaBUTL €0 B
NTODdPe, kakoBbie peupuHATH He Obtn. [IpenpuHT Boimes B YepHOTrOJI0BKeE.

Crenymomuii HU:Ke MaTepuaJ — 4TO-TO CPenHee MEXIY KPaTKUM 0030POoM,
HaOPOCKOM HE3aBEePIIeHHON CTaTLU U TJaBoi HeHamucauHOW kEumru.” DBynmer
au oHa Hanucaua? Kro 3Haer...

4The above notions are among basic entries of modern internet-based encyclopedias. For
instance, ENCYCLOPEDIA 4U.com defines Bogomol’nyi- Prasad-Sommerfield bound as follows:
“The Bogomol'nyi-Prasad-Sommerfield bound refers to a series of inequalities for solutions of par-
tial differential equations depending on the homotopy class of the solution at infinity. This set
of inequalities is very useful for solving soliton equations. Often, by insisting that the bound is
satisfied (called ‘saturation’), one can come up with a simpler set of partial differential equations
to solve.”

°K coskaeHuo, IOMUMO UYUCTO JUTEPATYPHLIX OIPEXOB, HE XBaTaeT Bpe-
MEHU BLIBEPUTDL BCE MUHYCLI U ABO¥KM B KOs unmentax. OOmas cTpyKkTypa
M 3aKJIIOYUTEJbHLIE BBLIBOALI OT 9TOr'O KaKETCA HE CTPALAIOT.



Remarks on Central Charges in Superalgebras

1. CENTRAL CHARGES IN SUPERALGEBRAS — GENERALITIES

In this Section we will briefly review general issues related to central charges (CC)
in superalgebras.

1.1. History. The first superalgebra in four dimensional field theory was dertived
by Golfand and Likhtman [4] in the form

{QaQﬂ} =2F, (P)/M)aﬁ ) {Qa@ﬂ} = {QaQﬂ} =0, (1)

i.e. with no central charges. Possible occurrence of CC (elements of superalgebra
commuting with all other operators) was first mentioned in an unpublished paper of
Lopuszanski and M. Sohnius [5] where the last two anticommutators were modified
as

{QuQ5} = 7.5 (2)
A more complete description of superalgebras with CC in quantum field theory was
worked out in [6]. The only central charges analyzed in this paper were Lorentz
scalars (in four dimensions). Thus, by construction, they could be relevant only to
extended supersymmetries. Then, a few years later, Witten and Olive [7] showed
that in supersymmtric theories with solitons, central extension of superalgebras is
typical; topological quantum numbers play the role of central charges. It was gen-
erally understood that superalgebras with (Lorentz-scalar) central charges can be
obtained from superalgebras without central charges in higher-dimensional space-
times by interpreting some of the extra components of the momentum as CC’s (see
e.g. [8]). That not all CC’s are of this type was known at this time at the algebraic
level (see e.g. [12]), but the dynamical role of these additional tensorial charges was
not fully appreciated until somewhat later. Central charges that are antisymmetric
tensors in various dimensions were introduced (in the supergravity context, in the
presence of p-branes) in Ref. [13] (see also [14]). These CC’s are relevant to extended
objects of the domain wall type. Their occurrence in four-dimensional super-Yang-
Mills theory (as a quantum anomaly) was first observed in [10]. A general theory
of central extensions of superalgebras in three and four dimensions was discussed
in Ref. [11]. It is worth noting that discussion in [11] of those central charges that
have the Lorentz structure of P, was not carried out in full.

1.2. Minimal SUSY. The minimal number of supercharges in various dimensions
is given in Table 1. Two-dimensional theories with a single supercharge, although
algebraically possible, require the loss of F' and (—1)¥. Therefore, if one wants to
keep the distinction between the “bosons” and ”fermions,” the minimal number of
supercharges in D = 2 is two.



D 2 |3(4]5|/6[7|8 ]9 10

vo | (1) 2]2[4[8[8[8[16]16]16
Dim(¢)c | 2 |2|4|4]8[8[16]16]32

# cond. 2 |1|(1j0o|1|{1|1 |12
TABLE 1. The minimal number of supercharges, dimension of the
spinorial representation and the number of additional conditions (i.e.
the Majorana and/or Weyl conditions).

The minimal number of supercharges in Table 1 is given for a real representation.
Then, it is clear that, generally speaking, the maximal possible number of CC’s is
determined by the dimension of the symmetric matrix {Q;Q;} of the size vy X v,
namely,

vo(vg +1)

[ Zelo T . (3)

In fact, D anticommutators have the Lorentz structure of the energy-momentum
operator P,. Therefore, up to D central charges could be absrorbed in P,, gener-
ally speaking. In particular situations this number can be smaller, since although
algebraically the corresponding CC’s have the same structure as P,, they are dynam-
ically distinguishable. the point is that P, is uniquely defined through the conserved
and symmetric energy-momentum tensor of the theory.

The total set of CC’s can be arranged by classifying CC’s with respect to their
Lorentz structure. Below we will present this classification for D = 2,3 and 4.

1.3. D = 2. Consider two-dimensional theories with two supercharges. From the
discussion above, on purely algebraic grounds, three CC’s are possible: one Lorentz-
scalar and a two-component vector,

{Qa, Qﬁ} = 2(7#70)046(1[)# + Zu) + i(75)ozﬂZ’ (4)

The latter case would require existence of a vector order parameter taking distinct
values in different vacua. This will break Lorentz invariance and supersymmetry
of the vacuum state. Limiting ourselves to supersymmetric vacua we conclude that
only one (real) Lorentz-scalar central charge Z is possible. This central charge is
relevant to kinks in AN = 1 theories.

1.4. D = 3. The central charge allowed in this case is a Lorentz-vector Z,, i.e.

{Qm QB} = Q(VMVO)aﬁ(PM + Zu)v (5)

which we should arrange Z, to be orthogonal to FP,. By an appropriate choice of
reference frame it can always be cast in the form (0,0, 1). In fact, this is the central
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charge of the previous section elevated by one dimension. It is associated with a
domain wall (or string) oriented along the second axis.

1.5. D = 4. Maximally one can have 10 CC’s which are decomposed into Lorentz
representations as (0,1) + (1,0) + (1/2, 1/2):

{Qa, Qa} = 2(7“)0@(]3# + Zu>7

{Qa, @} = (E")asZyu, (6)

{Qda Qﬂ} - (iuy)aﬁ'z[/w} ) (7)
where (X")ap = (6/")aa(")§ is a chiral version of o (see e.g. [19]). The anti-
symmetric tensors Zj,, and Z[W] are associated with domain walls, and reduce to
a complex number and a spatial vector orthogonal to the domain wall. The (1/2,
1/2) CC Z, is a Lorentz vector orthogonal to P,. It is associated with strings (flux

tubes), and reduces to one real number and a three-dimensional unit spatial vector
parallel to the string.

1.6. Extended SUSY. We will limit our attention here to exploring the reduction
of the minimal SUSY algebra in D = 4 to D = 2 and 3, namely the N/ = 2 SUSY
algebra in those dimensions. As should be clear from the discussion above, the
maximal number of CC’s is of course the same, and the only distinction we must
make is to provide a decomposition into both Lorentz and R-symmetry irreps.

e N =2inD=3

The superalgebra can be decomposed into Lorentz and R-symmetry tensorial
structures as follows:

{in %3} = Q(VMVO)aﬁ[(PM + Zu)‘sij + Z;(fj)] + QVgBZ[ij]: (8)

where 7° is the charge conjugation matrix. The maximal set of 10 CC’s enter as a
triplet of spacetime vectors Z%7 and a singlet Z1!. The singlet CC is associated with
vortices (or lumps), and corresponds to the reduction of the (1/2,1/2) charge or the
4" component of the momentum vector in D = 4. The triplet Z/ is decomposed into

an R-symmetry singlet Z,,, algebraically indistinguishable from the momentum, and

). The former is equivalent to the vectorial

a traceless symmetric combination foj
charge in the NV = 1 algebra, while Z,(fj ) can be reduced to a complex number and
vectors specifying the orientation. We see that these are the direct reduction of the

(0,1) and (1,0) wall charges in D = 4.

e N =2inD=2



Lorentz invariance now provides a much weaker constraint, and one can in prin-
ciple consider different (p,q) superalgebras comprising p + ¢ = 4 supercharges. We
will mention here only the nonchiral N' = (2,2) case correpsonding to dimensional
reduction of the N' =1 D = 4 algebra. The tensorial decomposition is as in (8),
but with the decomposition of D = 3 spacetime vectors into D = 2 vectors and a
singlet,

{Q4, QB} = 20v"7")asl(Pu + Z,)07 + Z{D) 4 2i(7)ap (67 Z + 2] + 290,529, (9)
We discard all vectorial charges Z;j in this case for the reasons described above, and

are left with two singlets Z(), which are the reduction of the domain wall charges
in D = 4 and correpond to topological kink charges, and two further singlets Z and
7] arising via reduction from P, and the vortex charge in D = 3.

1.7. A few words on extended supersymmetry (eight supercharges) in
D=4. Complete algebraic analysis of all tensorial central charges possible in this
is analogous to the previous cases and is rather straightforward. With eight super-
charges the maximal number of CC’s is 36. Dynamical aspect is less developed —
only a modest fraction of the above 36 CC’s are known to be nontrivially realized
in models studied in the literature. I will limit myself to a few remarks regarding
the well-established CC’s. I will use a complex (holomorphic) representation of the
supercharges. Then the supercharges are labeled as follows

QL, Qsy, a,a=12, fg=12. (10)

On general grounds one can write

{QL, Qag} = 26! Pac+2(Z))aa .
{Qf QL) = glfat | f9 7
o 3 {af} EapBt )

(Qar Qpgt = (Zuny) , +eeo™ 2. (11)

Here (Z])as are four vectorial central charges (1/2, 1/2), (16 components altogether)

while Zg: Z]]i and the complex conjugate are (1,0) and (0,1) central charges. Since the

matrix Zf{{i % is symmetric with respect to f, g, there are three flavor components,

while the total number of components residing in (1,0) and (0,1) central charges is
18. Finally, there are two scalar central charges, Z and Z.

Dynamically the above central charges can be described as follows. The scalar
CC’s Z and Z are saturated by monopoles/dyons. One vectorial central charge Z,
(with the additional condition P*Z, = 0) is saturated [16] by Abrikosov-Nielsen-
Olesen string (ANO for short) [15]. A (1,0) central charge with f = g is saturated
by domain walls [17].
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1.8. D =3: Why BPS vortices cannot appear in theories with two super-
charges. BPS vortices in 241 dimensions were previously considered in [18] (see
also references therein). To simplify the discussion, we assume that we can choose
a real representation for the superalgebra within which

{Qa, Qs} = 0P+ -+ (12)

where p is a spacetime index. It then follows that, since the number of broken
translational generators is d, there are at least d broken supercharges. In practice
the number may be larger once we account for Lorentz invariance.

This simple argument tells us that, provided we are dealing with a 1/2-BPS soliton
in a supersymmetric theory (i.e. an object localized only in space not time), the
minimal matching between bosonic and fermionic zero modes in the translational
sector is one-to-one.

Consider now a putative BPS vortex in a theory with minimal N' = 1 SUSY
in 24+1D. Such a configuration would require a worldvolume description with two
bosonic zero modes, but only one fermionic mode. This is not permitted by the
argument above, and indeed no configurations of this type are known. Vortices
always exhibit at least two fermionic zero modes and are thus BPS only in N = 2
theories.

2. “MONOPOLE” CENTRAL CHARGES: ANOMALIES AND ALL THAT

In this section we will discuss the Lorentz-scalar central charges in Eq. (11) that
are saturated by monopoles/dyons. They will be referred to as monopole central
charges. A rather dramatic story is asssociated with them, a story which is not
yet finished. Historically they were the first to be introduced within the framework
of an extended 4D superalgebra [5, 6]. On the dynamical side, they appeared as
the first example of the “topological charge <+ central charge” relation revealed by
Witten and Olive in their pioneering paper [7]. Twenty years later, the N' = 2
model where these central charges first appeared, was solved by Seiberg and Witten
20, 21], and the exact masses of the BPS-saturated monopoles/dyons found. No
direct comparison with the operator expression for the central charges was carried
out, however. In Ref. [22] it was noted that for the Seiberg-Witten formula to be
valid, a boson-term anomaly should exist in the monopole central charges. Even
before [22] a fermion-term anomaly was identified [23], which plays a crucial role
[24] for the monopoles in the Higgs regime (confined monopoles). What is still
lacking is a direct operator derivation of the above anomalies.
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2.1. The model. The simplest N' = 2 model we will deal with was found [25] as
early as in 1974, see also [26] where the matter multiplets — the so called hypermul-
tiplets — first appeared.® The A/ = 2 model in four dimensions can be obtained from
N =1 super-Yang-Mills theory in six dimensions.

It is instructive to consider both, the Majorana and Weyl representations. The
gauge group is SU(2). In the Weyl representation one deals with two Weyl fermions,
A2 (gluino) and 92 (gluino’s N' = 2 superpartner). Then

1 1 —. 1
E - __Fa Ful/a /\a ,a .Daéz )\a ,a _DaDa
9(2) { 4 W + (Z ) + 9

+ Y (i Do) + D" Dy
- Ve (XU he) - 3" B} (13

where where gq is the bare coupling constant, and D® is an auxiliary field which can
be eliminated by virtue of the equation of motion,

7 _
D* = E Eabe ¢b¢c ; (14)

while there are no F' terms (i.e. they are set to zero) since we introduce no super-
potential.
The flat direction of the model can be parametrized as follows:

¢’=v, ¢'=¢"=0. (15)

Moreover, using the (anomalous) U(1) symmetry one can always make the vacuum
expectation value v real and positive. Generally speaking, such a rotation introduces
a vacuum angle 6, even if it was fine-tuned to zero in the beginning. The question of
f-induced effects is interesting by itself, but I will not consider it here, deferring the
corresponding discussion till better times. Thus, I will assume 6 = 0 after setting ¢
real. For real and positive v the W-boson mass m is

m=v2v. (16)

6There is a funny story about the emergence of the word “hypermultiplet” in this context. M.
Sohnius recollects [27]: When a French super-marché carries not only food and drink but also car
spares, garden furniture and ladies’ underwear, it becomes an hyper-marché. Correspondingly,
P. Fayet called N/ = 2 supersymmetry “hyper-symmetry.” Whereas that name has not stuck in
general, the matter multiplet of AV = 2 supersymmetry is still called “hypermultiplet.”
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At the same time, in the Majorana representation

1 1 1 1 1
L = —S<S—=F F""+ _xtiDx{+-D'A"D, A"+ -D"B*D,B"
gg{ 4MV +2X'LZDX7,+2 H +2 I
1
— gD BIA B+ e T ([ 01+ (8 0°01) (17)
where x; (i = 1,2) are two Majorana fermions, A is a scalar field and B is a

pseudoscalar field, all in the adjoint representation.

At the classical level the description of monopoles does not depend on fermions at
all. Let us consider static field configurations. Then, neglecting all time derivatives
and setting Ay = 0, one can write the Bogomolny completion of the energy functional
as follows:

£ = /d3x { . F*“+1D¢“r+[ . F*a+1D¢“
V240 1 V299 i

2

2
+ L/Ego F3% + - Dggb ] } \g/o_ dS, (¢ F*) | (18)
where the last term is the surface term, written as an integral over a large sphere,
and .
Fr = 5 Emnk E .
The Bogomolny equations for the monopole are
F*+V2D;¢* = 0. (19)
The solution to this equation is given by the famous hedgehog ansatz [28]
OUE) =" LR, AN@) =T W), (20)

where rv/72? while A% = 0. Equations (20) must be supplemented by boundary
conditions at the origin (where the solution must be regular), and at the spatial
infinity where F'(r) — v and W(r) — 1. The profile functions F' and W can be
found analytically, see e.g. [29].

2.2. Dimension of the BPS representations. As was first noted by Montonen
and Olive [34], all states in N' = 2 model — W bosons and monopoles alike — are
BPS saturated. This results in the fact that supermultiplets of this model are short.
Regular (long) supermultiplet would contain 2%V = 16 helicity states, while the
short ones contain 2V = 4 helicity states — two bosonic and two fermionic. This is
in full accord with the fact that the number of the fermion zero mode on the given
monopole solution is four, resulting in dim-4 representation of the supersymmetry
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algebra. If we combine particles and antiparticles together, as is customary in field
theory, we will have one Dirac spinor on the fermion side of the supermultiplet in
both cases, W-bosons/monopoles.

2.3. Supercurrents. The model, being N' = 2, possesses two conserved supercur-
rents,

1 - _ _
I s 10 Ya aya a a
Jogs = 2 {20535 — 623 D"X) + 2V3 (Do) 5 |
1 _ _ _
11 ca ja a,ja a a
Jaﬂﬁ - g_g {22F5a¢3 - 66,6'CXD 1% - 2\/5 (Dagﬁb ) /\,3} . (21)

The commutator of the corresponding supercharges is

@y = 22 [dvaw (5 (5 - i8)

90

2\/§Z Ja a_ ; RY
" /dSn (" (EX—iBY)) . (22)

Everything is perfectly okay at the classical level. A crucial feature that [ must stress
is the chiral structure of the classical central charge in Eq. (22). The classical U(1)
current argument tells us that the anticommutator {Q7, Qf'} must be proportional

to ¢ rather than ¢; then, the particular structure of the supercurrents (22) implies
that the color-electric and color-magnetic fields enter in the combination E? — 1 B2.

2.4. Coupling constant renormalization. A straightforward analysis seems to
show 7 that the impact of renormalization reduces to the replacement of the bare
coupling gy 2 in Eq. (22) by the (renormalized) effective coupling g2 normalized at
the lowest relevant mass scale in the theory, i.e. at the scale v. Then we arrive at

2V 21
{Q({w fo)’l = - \g/Q_Z

/ dS, (¢* (EX —iBY)) . (23)

If one substitutes the color-electric and color-magnetic fields generated by the electric
and magnetic charge, respectively, one arrives at the following expression for the
central charge (and, correspondingly, the mass of the BPS state):

M:’\@v<1—4ij)

P (24)

"Quantum corrections in the mass of the BPS saturated monopoles were first discussed in
Refs. [30, 31, 32] two decades ago.
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Let me parenthetically note that the general formula is

i
M:‘ﬁv (ne—i;nm) , (25)
g

where n.,, are integer electric and magnetic numbers, but we will consider here
only the particular case when either n, =,1 or n,, = 0,1. It must be noted, with
satisfaction, that for n,, = 0 and n. = 1 we get the correct W-boson mass.

So far, everything seems perfectly cloudless. An indication that a problem exists
came from comparison of the result quoted in Eq. (24) with the exact solution found
in Ref. [20] in the limit of large v when all nonperturbative effects are neglected.
Such a comparison could have been made immediately after publication of Ref. [20],
but for reasons beyond my comprehension (and I must admit my own guilt too) it
was not carried out until recently, see [22].

2.5. Detecting an anomaly. The masses of the BPS-saturated states (I bosons
and monopoles) in the Seiberg-Witten exact solution can be presented by the formula

M:\/§a<ne—a—Dnm> ) (26)
a
where
4 2 . M
ap =ia (—Z——ln—o), (27)
9 7 a

while the renormalized coupling constant is defined in terms of the ultraviolet pa-
rameters as follows:

—E—‘. (28)

Because of the alna dependence, dap/da differs from ap/a by a constant (nonlog-

arithmic) term, namely,

ap . 47’[‘ 2

i ===, 29
L i(%-2) (29
Combining Eq. (26) and (29) we get

= afo (i (- 2) )

This does not match Eq. (25) in the nonlogarithmic part (i.e. the part of the n,,
term with no ¢g* factor). Since the relative weight of the electric and magnetic parts
in Eq. (23) is fixed to be ~ g2, the presence of the above nonlogarithmic term implies
that, in fact, the chiral structure £ —i B2 obtained at the canonic commutator level
cannot be maintained once quantum corrections are switched on. This is a quantum
anomaly.

15



2.6. Getting the anomaly. First, [ will present my argument and then try to
summarize that of Rebhan et al. [22], although I must admit that so far I failed to
make myself comfortable with the latter paper. (I am afraid, there is something not
quite kosher there; in any case, further analysis seems to be needed).
Our starting point will be the (superconformal) anomaly [33] in the supercurrent
(21), namely,
(aaﬂJ’ ) _ N po jea (31)
ofp anom 871'2 &
for SU(N). Please, note the occurrence of the opposite-chirality field strength tensor
F’g 5 At the classical level the current J i 85 contains Fg; (which eventually leads to

E¢—i B in the anticommutator (23)) rather than FSﬁ The fact that at the quantum

level FSB pops up means that the anticommutator (23) does have an anomaly — an
N = 2 relative of the superconformal anomaly — which gives rise to E%+1i B, a term

of the opposite chiral structure. A rather straightforward calculation then gives

(Qh @4} = —2VEi 5 [ 45, (5" (B2 +1BD) (32

anom

to be compared with Eq. (22). (In the SU(N) we would have N/(87?) instead of
1/(47%) in Eq. (32).) Adding the canonic and the anomalous terms in {Qf, QY
together we see that the fluxes generated by color-electric and color-magnetic terms
are now shifted, untied from each other, by a nonlogarithmic term in the magnetic
part. Normalizing to the electric term, My = v/2v, we get for the magnetic term

My = V2v (4—7; - E) , (33)
g T
as it is necessary for the consistency with the exact Seiberg-Witten solution.

A few words about the analysis of of Rebhan et al. [22]. These authors did not
aim at establishing the operator form of the anomaly. Instead, they started from the
assumption that central charges relevant to the monopole problem in four dimensions
can be viewed as a dimensional reduction of the Golfand-Likhtman superalgebra
(1). Then they calculated the matrix element of the energy-momentum tensor (more
exactly, its fermion part) in 44¢ dimensions in the monopole background field. Upon
analytic continuation to € — 0 they find a finite nonlogarithmic term consistent with
(33) which is interpreted as an anomaly.

That the Golfand-Likhtman superalgebra (1) generates central charges upon dimes-
nional reduction is known for a long time (see e.g. the book [8]). A crucial question
is whether all relevant supercharges can be obtained through this procedure. In the
problem at hand the answer is negative.

To illustrate this assertion let us consider N' = 1 Yang-Mills theory in D = 6.
As well-known, dimensional reduction of this theory to D = 4 gives rise to four-
dimensional N' = 2 model we deal with here. Assume that the six-dimensional
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superalgebra has the form (1) with

P, = / 6,0(z) dx (34)

(here 6,0 is the six-dimensional energy-momentum tensor), dimensionally reduced
to D = 4. Then ask whether the result for 1 = 4,5 can reduce to Eq. (22). The
answer seems to be negative. Let me explain why.

First note that the Weyl spinor in six dimensions has four (complex) components,
U = {VU; 934} while o# matrices can be chosen as follows:

o ={1, 7%, " %P A0 %), (35)
so that all spatial matrices are Hermitean and anticommuting. (Here v*® are the
Dirac matrices.) Then, suppressing the color indices, one can write

1
Lp_g = —ZF’“’FW + Uit (iD,) ¥, (36)

where I have also set g? = 1 to ease the notation. The gauge coupling constant can
be easily restored at the very end. In the six-dimensional language this Lagrangean
in V' =1, i.e. it has eight supercharges (see Table 1). In four dimensions this theory
is N/ = 2. The dimensional reduction is carried out in a standard way, namely, x45
are compactified, and only zero modes in x4 5 are retained. In practical terms this
means that we just drop the x5 dependence. Given our choice of the o* matrices,
from the 4D perspective, A4 is a scalar field while Aj is pseudoscalar. These two
fields can be combined into a complex field

Ay +iAs

We will also need the expression for the energy-momentum tensor, which has the
following canonic form:

¢ = (37)

1
O = PR — g FF

+ i {qﬁaw”qf Ul DAY — Wigh DY W — whe” DH \p} . (38)

Upon dimensional reduction to D = 4, combining this expression with equations of
motion, one readily gets

0" = —div(4'E) - %div (vi7w),
. =\ 1 .
6% = —div <A5 E) + Zdlv (TT7°0) . (39)
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Here we omitted terms vanishing by virtue of equations of motion. Quick inspection
shows that [ d®z0°*®) cannot represent the central charge in full, as it is obvious
from Eq. (22) that at the classical level the color-electric and color-magnetic fields
enter in a unified chiral combination E? — i By, while the dimensional reduction of
the energy-momentum tensor gives rise only to the color-electric field. How does
the color-magnetic field emerge?

This is only possible if the algebra (1) gets a central extension already at 6D-level.
It is not difficult to infer a general structure of this central extension. Namely,

{QuQs} = 2(JA)a5/dx{6’0A

1
+ E0ABCDE 83 (ﬂ \I’TO'C O'D O'E\I/—I—ACaD AE+ ) } s (40)

where the ellipces stand for the non-Abelian part of the gauge-boson term. Upon
reduction to four dimensions the fermion part in the second line in Eq. (40) cancels
that in Eq. (39) — at the classical level there are no fermion terms in the anti-
commutator of the supercharges, as is clearly seen in Eq. (22). The boson part
generates missing terms with the color-magnetic fields which complete the boson
part of Eq. (39) making it compatible with (22).

A question which immediately comes to my mind is whether one can use dimen-
sional reduction (from 4 + €) to obtain the anomalous part of the central charge.
Since the second line in Eq. (40) contains €, its continuation to 4 + € is problematic,
to put it mildly. It is not clear to me at all how to treat it in 4+¢. On the other hand,
the fermion terms in Eq. (39) can be trivially extended to 4 + €. If one subtracts
the part at D = 4 (which is presumably cancelled (7) by (40), the difference is, nat-
urally, proportional to e. A properly defined gauge-field-background loop with the
fermion vertices from Eq. (39) (which will also require specification of 7° in 4 + ¢),
being divergent, provides 1/e times, presumably, div <A5 E) or div <A4 é) The
product is € independent and finite at € = 0 which certainly smells of anomaly. At
least operationally, this is what happens in the calculation of Ref. [22] which, as was
mentioned above, proves to be compatible with the exact Seiberg-Witten formula.
A task for the future is to work out a fully transparent operator interpretation of
the procedure, along the lines discussed above. The same mechanism which is re-
sponsible for the generation of the bosonic anomaly destroys, at one-loop level, the
cancellation of the bifermion terms which took place at the tree level. This gives
rise to the fermion part of the central charge anomaly. In fact, the occurrence of
such anomalous terms had been inferred previously [17, 24].
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2.7. Bifermion part of the anomaly. The story begins with the discovery [10] of
the gluino condensate term in the domain-wall central charge in N/ = 1 supersym-
metric gluodynamics. The fact that it should have AN/ = 2 superpartners was first
mentioned in [17]. It is not difficult to see that in the general case, in the model
under consideration

N

1672
where f and g are “subflavor” indices (i.e. two Weyl spinors, A and v in Eq. (13)).
The same indices f and g label the supercharges, see Eq. (21). There are two options:
one can antisymmetrize with respect to a and § and symmetrize with respect to f
and g, and vice versa. In the first case we get the domain-wall central charges, while
in the latter case obviously arrive at an anomaly in the monopole central charge.
The origin is common. In Ref. [24] it was established that, for the SU(2) model,

(QLQ7) = capel®2 / P CO(x)

zfa o

M (41)

1 1 .
CO — 550upz7 8\/§7T2 ay ( (;fa(o-p)aa(5-a)dﬁ)\afﬁ) ‘ (42)

No direct contact with the consideration of Ref. [22] has been established so far.
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