A Statistical Similarity Measure for Aggregate Crowd Dynamics

Stephen J. Guy*
University of Minnesota

Jur van den Berg
University of Utah

Wenxi Liu, Rynson Lau
City University of Hong Kong

Ming C. Lin, Dinesh Manocha
UNC-Chapel Hill

(b) Entropy Metric: 4.7

(a) Real-world Data

(c) Entropy Metric: 3.8 (d) Entropy Metric: 2.7

Figure 1: A comparison between a rendering of real-world crowd data (a), and stills from three different simulation algorithms applied to
the same scenario (b-d). Our entropy metric is used to measure the similarity of simulation algorithm to real-world data. A small value of
the metric, as in (d), indicates a better match to the data. Differences between the simulations are highlighted with circles.

Abstract

‘We present an information-theoretic method to measure the similar-
ity between a given set of observed, real-world data and visual sim-
ulation technique for aggregate crowd motions of a complex system
consisting of many individual agents. This metric uses a two-step
process to quantify a simulator’s ability to reproduce the collective
behaviors of the whole system, as observed in the recorded real-
world data. First, Bayesian inference is used to estimate the sim-
ulation states which best correspond to the observed data, then a
maximum likelihood estimator is used to approximate the predic-
tion errors. This process is iterated using the EM-algorithm to pro-
duce a robust, statistical estimate of the magnitude of the prediction
error as measured by its entropy (smaller is better). This metric
serves as a simulator-to-data similarity measurement. We evalu-
ated the metric in terms of robustness to sensor noise, consistency
across different datasets and simulation methods, and correlation to
perceptual metrics.

CR Categories: 1.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation; 1.6.4 [Simulation and Mod-
eling]: Model Validation and Analysis; 1.2.10 [Artificial Intelli-
gence]: Vision and Scene Understanding—Perceptual Reasoning.

Keywords: crowd simulation, validation, data-driven simulations

Links: ©DL TIPDF @ WEB OVIDEO

*Email: {sjguy,lin,dm} @cs.unc.edu. The first author is currently an As-
sistant Professor at the University of Minnesota. This work was done while
the second and the third authors were at the University of North Carolina
(UNC-Chapel Hill).

1 Introduction

Visual simulation of aggregates systems, including human crowds,
animal herds, and insect swarms is a growing area of interest in
computer graphics, with applications in diverse areas such as social
sciences, swarm intelligence, and city planning. For applications
in entertainment, providing artists and animators with high-level
control while maintaining visual plausibility of motion is often suf-
ficient. However, for many other training and planning applica-
tions, such as virtual reality based training, fire-safety planning,
and crowd control and management, it is often critical to model
accurate motion, in addition to producing a compelling visual ren-
dering. In this context, we define a measure of a simulator’s accu-
racy based on the similarity of the motion from the simulator to the
motion captured in real-world observations. While some previous
work has studied the visual plausibility of simulation techniques,
we present a new metric for quantifying the similarity between a
set of real-world observations and any algorithm designed to simu-
late the aggregate crowd dynamics captured in the data.

Evaluating the correctness or predictability of the results from a
crowd simulation method presents several interesting challenges,
many of which arise from the inherent nature of a crowd as a com-
plex system. Complex systems are systems composed of several
components or elements that interact to exhibit emergent patterns
that cannot be easily predicted from the properties of the individual
components alone [Schadschneider et al. 2011; Gallagher and Ap-
penzeller 1999]. Because of issues inherent in these systems, such
as uncertainty and non-determinism, the study of complex systems
generally must draw on techniques from the fields of statistics, in-
formation theory, and non-linear dynamics. We likewise draw on
inspiration from these fields, in proposing a new method to compare
aggregate simulation methods with real-world data that accounts for
these challenges.

Real-world data of crowds is becoming increasingly common,
driven in part by recent improvement in sensor technology, such
as LiDAR and GPS; the proliferation of high-resolution cameras;
and advances in computer vision and motion tracking. However,
several aspects of a crowd and its aggregate motions make it dif-
ficult to directly compare such data against any simulation results.
For example, given two very similar initial states, a small crowd can
reach two very different configurations after just a few seconds, be-
cause the effects of small changes in states can quickly compound

http://doi.acm.org/10.1145/2366145.2366201
http://portal.acm.org/ft_gateway.cfm?id=2366201&type=pdf
http://gamma.cs.unc.edu/Entropy
http://gamma.cs.unc.edu/Entropy/entropy.mp4

into large differences in the resulting crowd behaviors and motion
patterns. This problem is exacerbated by the fact that any data on
the motion of aggregate phenomena always comes with noise and
uncertainty, making it impossible to know the true state of a crowd
with complete accuracy. Additionally, even when presented with
the same situation, different individuals can make different deci-
sions. An individual’s decisions can also vary under different emo-
tional states (e.g., happy vs. sad) and other subtle factors. Because
of the combined effect of all these uncertainties, it is necessary to
treat any real-world data on crowd movements as a noisy sample of
possible motions rather than an absolute ground truth, and perform
a statistical analysis on the motions and behaviors represented by
the observed, example motion of the crowd.

Main result: We introduce the Entropy Metric to evaluate the
predictability of crowd simulation techniques in terms of similarity
to real-world crowd data. Our metric is defined broadly and can
be applied to any time-series simulation of aggregate motions in
continuous space. In this paper, we focus our discussion on and
illustrate results for data of human crowds.

The Entropy Metric is an ensemble measurement of the prediction
errors of a given simulation technique relative to a given example
set of crowd motions. At a high level, it works based on a two-stage
process. First, we estimate a distribution of simulation states which
best represents the observed data. Second, the simulator being eval-
uated is used to predict each subsequent state from the proceeding
one. The smaller this prediction error, the better the simulator’s
ability to reproduce the motion of real-world crowd system repre-
sented by the example data. Because these two steps can depend on
each other, we use the Expectation Maximization algorithm (EM-
algorithm) to interleave these two steps and iterate until conver-
gence.

By only computing prediction error across small simulation
timesteps and by maintaining a distribution of likely simulation
states, our formulation fundamentally accounts for noise in the
measured data, as well as non-determinism in motion, and unmod-
eled effects of the given crowd simulation method. Moreover, we
show that the Entropy Metric is rankable, predictable, discrimi-
native, and robust with respect to sensor noise. Furthermore, we
demonstrate a correlation between the values of the Entropy Met-
ric and perceived motion similarity (as measured by a perceptual
study). The Entropy Metric can be used to automatically select
a set of appropriate simulation parameters for data-driven crowd
simulation to achieve the desired motion and behavior patterns.

The rest of this paper is organized as follows: Section 2 gives a
broad characterization of crowd simulation algorithms and intro-
duces our notation. Section 3 describes the theoretical basis of the
Entropy Metric and presents an efficient algorithm to compute it.
Section 4 demonstrates the application of the metric to several ex-
ample crowd simulation algorithms by evaluating them on different
sets of real-world data. Section 5 analyzes properties of the metric
such as its robustness to noise and correlation to user perceptions.

2 Background and Notation

In this section, we give a brief review of algorithms for crowds
simulation and data-capture. We also introduce the notation used in
the rest of the paper.

Notation We use the following notational conventions throughout
this paper: Variables a printed in italics denote scalars or func-
tions, variables a printed in boldface denote vectors, and variables
A printed in blackboard bold denote vector spaces. Variables A
printed in capitals denote (covariance) matrices, and variables A
printed in calligraphic typeface denote probability distributions.

2.1 Simulation State

In the context of this paper, we use the term “crowd” to refer to
an aggregate of entities (e.g. people or agents) whose behaviors
and dynamics evolve over time. We define a crowd simulation state
as follows: for a given simulator, and a given point in time k, the
state Xy, of a crowd contains all information about a crowd that is
needed to compute its evolution over time. We denote the space
of all crowd states by X. For instance, for a crowd consisting of
n agents, being simulated by a technique that is based on the po-
sition, velocity, and orientation of each agent on a 2D plane, the
crowd state space is x; € X = R5™. Other time-varying aspects,
such as the mental state of the agents or dynamic behavior parame-
ters may also be part of the state. We make no specific assumptions
about the representation of a crowd state. In addition to the crowd
state, simulators may also use constant information, such as con-
stant parameters shared across all agents, and obstacles that define
the environment.

2.2 Crowd Simulation and Aggregate Dynamics

At a broad level, the field of crowd simulation can cover many
facets of generating human motions and behaviors (such as full-
body biomechanics, facial expressions and gestures, and motion
dynamics based on the laws of physics). This makes modeling
and analyzing all aspects of a crowd highly challenging and can
quickly lead to a combinatorial explosion of potential variations.
To increase the tractability of the problem, we focus primarily on
the aspect of crowd simulation that corresponds to motion data re-
lated to the aggregate dynamics of the crowd.

Aggregate Dynamics: Crowds typically are in constant motion,
with individual paths changing over time. Formally, we say that if
the state of the crowd at time k is xx € X, the crowd has evolved
into a state xx+1 € X one unit of time later. The rules defin-
ing crowd dynamics (that is, the actual rules governing the human
motion and behavior) are unknown and likely cannot be defined
by simple mathematical models nor derived from first principles.
However, we can characterize these unknown dynamics, using an
abstract function f : X — X, such that:

Xp+1 = f(xk).)]

It should be noted that f is abstract and unknown, and we only
use such a formulation to describe crowd evolution. We view a
simulator as an approximation to this function f; the more accurate
and predictive the simulator the better the approximation.

There has been extensive work on computing the pedestrian dynam-
ics or aggregate movement of human-like agents as part of a crowd
for more than three decades. These include force-based methods
[Helbing and Molnar 1995; Pelechano et al. 2007; Karamouzas
et al. 2009], boids and steering models [Reynolds 1987; Reynolds
1999], techniques based on velocity-based reasoning and geometric
optimization [van den Berg et al. 2009; Pettre et al. 2009; Ondrej
et al. 2010; Guy et al. 2010], field-based and flow-based models
[Sung et al. 2004; Treuille et al. 2006; Narain et al. 2009; Patil
et al. 2011], cognitive models and decision networks [Funge et al.
1999; Yu and Terzopoulos 2007], and example-driven crowd sim-
ulation [Lee et al. 2007; Lerner et al. 2007; Pettre et al. 2009].
These methods model different aspects of crowds, including col-
lision avoidance between agents, emergent phenomena, path nav-
igation, high-level cognition and behaviors. All of these methods
share a common formulation though, of computing continuous tra-
jectories for each agent to determine the collective dynamics of the
motion in the crowd. This commonality leads to the following ab-
straction of a crowd simulator:

We formulate a simulator as a function f : X — X that attempts to
approximate the function f:

fxx) & f(xk).)

That is, simulator f takes in a state xj of the crowd at time k£ and
produces an estimate of the state xx41 of the crowd at one unit
of time later (henceforth referred to as a timestep). We assume
that the underlying crowd simulator works in a continuous space
over time and our approach may not be applicable to approaches in
discretized space (e.g., techniques based on cellular automata). In
Section 4.1, we describe the detailed representation of function f
for some of the commonly used methods.

2.3 Real-World Crowd Data

Empirical datasets of human crowd motion from videos, LiDAR,
and GPS sensors are becoming increasingly available, aided by re-
search in computer vision, robotics and pedestrian dynamics on ex-
tracting crowd trajectories from sensors and cameras [Seyfried et al.
2010; Lee et al. 2007; Rodriguez et al. 2009; Kratz and Nishino
2011; Pettre et al. 2009]. A recent trend in research has been
the combination of crowd tracking algorithms with crowd dynam-
ics models to extract more accurate trajectories or detect abnormal
crowd behaviors [Pellegrini et al. 2009; Mehran et al. 2009].

Most of these tracking algorithms represent the position data or
the trajectory as time-stamped vectors zg, Zi+1, ... that provide
a partial (and potentially noisy) projection of the true crowd state
Xk, Xk+1, - - . at the corresponding moment in time. We assume that
the relation between the crowd state x;, and the data z;, available of
the crowd at time k is given by a known function h:

zi = h(xk) + qk, ar ~ 9, 3)
where gy, represents the noise or uncertainty in the real world data,
drawn from a constant distribution Q. We assume in this paper that
Q (the sensor uncertainty) is known.

Because our metric measures a simulator’s predictability with re-
spect to the set of observed examples, it is important to choose rep-
resentative data. As our method does not compare a simulator’s out-
put to a given set of trajectory data, but rather to the decisions and
behaviors captured by the data, it is important to use observed ex-
amples which are representative of the behaviors of the real-world
crowd. In Sections 4 and 5, we highlight the similarity results on a
variety of crowd datasets.

2.4 Validating Crowd Simulators

Crowd simulators have previously been evaluated in terms of per-
ceptual fidelity and other metrics. For example, the work of
[Pelechano et al. 2008] evaluates crowd simulations based on quan-
tifying presence in virtual environments. Similarly, [Ennis et al.
2011; Jarabo et al. 2012] measure the perceptual effects of factors
such as illumination, camera position and orientation on the per-
ceived fidelity of movement in crowds. In a similar spirit, we also
perform a pilot study to measure the correlation between our numer-
ical similarity metric and the perceptual similarity of crowd motion
to the validation data.

Other approaches, such as [Singh et al. 2009; Kapadia et al. 2011],
present a set of evaluation metrics directly based on the paths gen-
erated by a simulator, including path smoothness, number of colli-
sions, or total path length. These metrics are designed to compare
the results of different simulations in synthetic environments, but
they are not applicable to the evaluation of the similarity between a

given simulator and real-world crowd data. Because they provide a
different type of motion analysis, these methods should be viewed
as complementary to our similarity metric.

2.4.1 Data-driven Crowd Evaluation

Many researchers have proposed methods to measure how closely
a simulator matches experimental data. For example, [Pettre et al.
2009] creates a simulation with the same initial conditions as the
data and measures the error as a function of the deviation from
the recorded trajectories. This approach works well in practice for
small numbers of agents, but may not scale to medium or large
scenes because of the accumulated, chaotic effect of errors over
time.

Other approaches, such as the density measure of [Lerner et al.
2009] and fundamental diagram based comparisons such as in
[Seyfried et al. 2010], suggest comparing measures based on crowd
densities in the output of a simulator with the observed densities in
the experimental data. While density-based metrics are applicable
to many simulations, densities are not well defined for sparse sce-
narios, and metrics based on density will be sensitive to noise for
these sparse scenarios and those with a small numbers of agents.

In contrast to previous approaches, our metric is applicable to data
with both small and large numbers of agents, and to sparse and
dense scenarios. Additionally, because our method is based on a
robust, statistical interpretation of the validation data as samples of
crowd behavior, the entropy metric can account for sensor noise,
handle differences in states between simulators, and account for
uncertainty in human motion.

3 Entropy Metric

In this section, we present our Entropy Metric and an efficient al-
gorithm to compute the metric. Fundamentally, we seek to measure
the size of the prediction error for a given simulator. That is, given

the state of a real crowd x, how close does any given simulator f
comes to predicting the subsequent crowd state X1 one timestep
later. We denote the error in prediction of the state as the vector
my, (see Figure 2a). We refer to the distribution of all these error
vectors across the entire validation dataset as M (see Figure 2b).
To summarize:

Xp1 = f(xx) = f(xz) + my, my ~ M. 4)

The intuition behind our metric lies in the fact that the distribution
M depends on the underlying simulator f and encompasses all er-
ror and unmodeled effects in the simulator f , along with potential
non-determinism in the function f. A larger value of this distribu-
tion M implies a larger deviation of the simulator from the states
represented in the real world data. This implies a higher dissimilar-
ity between the simulator and real world data. Our proposed simi-
larity metric is therefore the size of M, with a smaller M implying
a more accurate simulation with respect to the data.

In order to quantify the size of the error distribution M, we use
the notion of entropy from information theory as a measure of the
unpredictability of a vector m from the distribution. The entropy
of the distribution M measures the amount of information that is
missing from the simulator f that would be needed to completely
model the function f and capture true crowd motion. As a result,
given two simulators, fl and fz, the algorithm for which the en-
tropy of M is lower for some given data is regarded as a better
match for that dataset. This leads to the following definition.

f(x1)

(a) Computing the prediction error each timestep

- -
el = - -

(b) Distribution of all errors over all timesteps

Figure 2: (a) For each timestep, there is some error m (green ar-

row) between the predicted crowd state from the simulator f (xk)
(red dots) and the actual crowd state X1 (black dots). (b) The col-
lection off all errors (green arrows) over all timesteps is denoted as
M (green ellipse). The size of this error distribution, as measured
by its entropy, forms our metric (smaller is better).

Entropy Metric: The entropy of the distribution M of errors be-
tween the evolution of a crowd predicted by a simulator f and by
the function f (lower is better).

A lower value of this entropy implies a smaller error distribution
and better similarity with respect to that dataset.

Given this definition of the entropy metric, the underlying challenge
is to determine the series of true crowd states (x7 . ..X:). Because
the true states are unknown, we need to estimate them from noisy,
real-world crowd data (zo, . . . , z+). We note that for any given data
there are multiple possible crowd simulation states. Instead of in-
ferring one true state X, we infer a distribution of likely states Xj,.
This procedure naturally accounts for data noise and simulator un-
certainty. The remainder of this section describes our procedure for
estimating the simulations states X" and the error distribution M.

3.1 Computing the Entropy Metric

We compute the Entropy Metric using a two phase process. Firstly,
we estimate the crowd states X from the given validation data.
Secondly, for each transition between inferred crowd states, from
X, to X1, we then compute the distribution of prediction errors

my = X1 — f(AX%) using a maximum likelihood estimator.

To reiterate, the true crowd states and transitions are unknown and
must be inferred from the real-world validation data zo, . . . , z;. We
estimate the simulator states using Bayesian Inference [McLachian
and Krishnan 1996]. This is a process which takes observed data
(z), a model of how states evolve over time (f), and an estimate
of this model’s accuracy (M) to produce an estimate of the likely
distribution of true simulation states (X'), as in Figure 3.

Unfortunately, this process creates a circular dependency: to esti-
mate the prediction error M we must know the true crowd states
X, and to estimate the true crowd states X’ from the data we must
know the prediction error M. We solve this problem by taking an
iterative approach, first using our best (most recent) guess of M to
infer X', then using this guess of X to infer M, and continuing to
alternate between these two steps until convergence (Figure 3).

This iterative approach to estimation is known as the EM-algorithm,

and is guaranteed to converge in a coordinate-ascent manner to a
locally optimal estimate of the distributions X and M (in terms of
their likelihood) given the observed data zo, . .., z:. This process
is summarized in Figure 3 and discussed in detail bellow. This will
directly estimate the error distribution M whose entropy serves as
the evaluation metric for the crowd simulator f . Further discussion
of the theoretical foundations of EM and convergence conditions
can be found in [McLachian and Krishnan 1996].

Data: z

Max. Likelihood
Estimation (Alg. 2)

— M

Bayesian Inference
(Alg. 1)

Figure 3: We estimate the error distribution M for a crowd simu-
latior via an iterative process based on the EM-algorithm. We use
Bayesian Inference to estimate the true crowd states X given data z,

simulator f, and error distribution M. We then compute the max-
imum likelihood estimate of M given the simulator and estimated
state distributions X. This process is repeated until convergence.

3.2 Simplifying Assumptions

There are many difficulties in computing the Entropy Metric ex-
actly, arising from both theoretical and practical issues related to
the underlying complexity and non-linear aspects of crowd dynam-
ics, combined with the general non-parametric nature of the distri-
bution M. This makes it necessary to find appropriate approxima-
tions and simplifying assumptions which allow us to compute an
approximated value of the Entropy metric.

Our most important assumption is that all relevant distributions for
computing the metric can be modeled as Gaussians. We must rep-
resent the distributions M and X} in some parametric form, and
it is natural to choose the first two moments (mean and variance)
of the distribution as the relevant parameters. Given only the mean
and variance this distribution, the maximum entropy principle sug-
gests a Gaussian distribution as it imposes the least additional con-
straints on the distribution. Additionally, the Central Limit The-
orem suggests that if these error distributions are the results of the
combination of many independent sources of error, they can be well
modeled as a Gaussian.

We therefore represent the distribution X of the state at time k& and
the error distribution M as Gaussian. Furthermore, we assume that
a crowd state xj, is composed of the states of each of the n individ-
ual agents within the crowd. Hence, if the state of a single agent
has dimension d, then the dimension of the composite crowd state
is nd. We make three further assumptions regarding M: (1) The
crowd simulator has no systemic bias in the error of its predictions;
(2) The crowd simulator is not systemically more accurate for some
agents within a crowd than for others; (3) There is no systemic co-
variance between the prediction errors of different agents within the
crowd. Hence, we can assume that the distribution M has a zero
mean, and that its covariance matrix is block-diagonal;

M 0 0

M:N(O> 0 M)7)
0
0 0 M

where M is a d x d covariance matrix which appears n times along
the diagonal. In this case, M models the per-agent error variance of
the crowd simulator, and the distribution M is fully defined by the
covariance matrix M. This representation also allows for the use of
datasets of crowds of different sizes to evaluate a crowd simulator.

3.3 Computing Crowd State Distributions

Computing the Entropy metric involves estimating the prediction
error distribution M. As discussed in Section 3.1, given real-world
data zo, . . ., z¢, and a simulator f , we simultaneously estimate the
crowd’s simulation state X" and error distribution M using the EM-
algorithm. We first describe the mathematical details of estimating
the true simulation states from the data.

To estimate the true crowd states X from the data Z, we use a
Bayesian estimation technique based on a variant of the well-known
Kalman filter. A Kalman filter provides an optimal estimate of the
true state of a model given noisy data, assuming that the model is
linear and the noise is Gaussian. While we make a Gaussian noise
assumption, we know that crowd models are highly non-linear. Ad-
ditionally, a Kalman filter estimates the true state at any timestep
based only on past data. However, we typically have data both be-
fore and after each timestep and can use both to improve the esti-
mate of the true state at any timestep.

Given the above considerations, we use a method know as Ensem-
ble Kalman Smoothing (EnKS) [Evensen 2003]. The EnKS infer-
ence algorithm represents the simulation state using a collection of
several samples of possible simulator states (called an ensemble).
Each sample is updated based on the non-linear motion model of
the crowd simulator, and iteratively modified to correspond to the
past and future observed data in a manner consistent with the model
error M and data uncertainty Q. The result is a robust estimate of
the true simulation state of each agent for each timestep, based on
the global data over all agents over all past and future timesteps.

The EnKS algorithm is known to work particularly well for high-
dimensional state spaces and non-linear dynamics [Evensen 2003].
In our case, each distribution X} is represented by an ensemble
of m samples: X = {f{,&l), . ,)256"” }, and we assume an initial
ensemble &) is given. The method then proceeds as shown in Al-
gorithm 1. This computes a representation for Xp, ..., X, given a
current estimate of M and the trajectory data zo, . . . , z;.

3.4 Computing the Variance M

The second step of the EM-algorithm consists of computing the
maximum-likelihood estimate of the distribution M, given the cur-
rent estimates of the distributions Xy, . . . , X} of the crowd states as
estimated in the first step.

Recall that we do not estimate a single crowd state, but rather a
distribution of likely states. Therefore, rather than compute M
directly, we must instead find the most likely value for M given
the inferred distributions of X}. Since M is fully defined by the
variance M, this is equivalent to maximizing the expected likeli-
hood of M (see Eqn. 5). Further, it is mathematically convenient
to maximize the expected log-likelihood ¢¢(M) (as the logarithm
cancels against the exponent in the probability density function of
a Gaussian distribution), which is equivalent since the logarithm is
a monotonic function.

We denote the part of the nd-dimensional crowd state x;, that con-
tains the state of agent j € 1...n as xx[j]. The expected log-

Algorithm 1: EnKS for estimating crowd states

Input: Measured crowd data z;...z;, Crowd Simulator f s
Estimated error variance M
Output: Estimated crowd state distributions Xj... X
foreachk € 1...tdo
// Predict
foreachi € 1...m do
Draw mi’ll from M
%) =)+,
Draw q,(:> from Q
2 = h(x) + qp

N | m (i)
Zi = 5 D iy 2y,

Zr= 20, (3 —2) (@) —2)"

// Correct

foreachj € 1...kdo
%= 5 X _
D=2 & — %) (3 —2)T

foreachiel_...mdo A
| & =5+ 52, (e - 5))

J

likelihood of variance matrix M is given by:

t—1 n

E((M)) = = > B((xwarli] = Foe)g) " M

k=0 j=1
(xi1[] = FGer) [4).
Combining Eqn. 6 with the ensemble representations of the distri-

butions X%, we can compute the maximum likelihood variance M
using Algorithm 2.

X ~ Xk. (6)

Algorithm 2: Maximum Likelihood Estimation

Input: Estimated crowd state distributions X;...X), Crowd

simulator f
Output: Estimated error variance M
M = 0;
foreachk €0...t —1do
foreach: € 1...mdo
L foreachj € 1...ndo

| M= %,] F &) &L - F &)T

M /= tmn

The EM-algorithm is initialized with an initial guess for M and Aj,
and both steps are repeatedly performed until convergence. The
resulting M is a (local-)maximum-likelihood estimate of the error

variance of crowd simulator f.

3.5 Computing the Entropy of M

Given the per-agent variance M as computed above, it remains to
compute the entropy of the Gaussian distribution M of Eqn. (5).
This entropy is given by:

e(M) = %nlog((Qﬂe)ddet(M)),)

where n is the number of agents in the crowd, and d is the dimen-
sion of the state of a single agent. In order to make our metric
independent of the number of agents in the crowd, we normalize
the above equation by dividing by n. This gives the entropy of the
normal distribution A/(0, M) that models the per-agent error of the

crowd simulator f. We note that this value is proportional to the
log of the determinant of the per-agent variance M, meaning the
Entropy Metric follows a log-scale.

4 Implementation and Evaluation

In this section, we demonstrate the application of the Entropy Met-
ric to several crowd simulation algorithms. For each simulation
method we evaluate the Entropy Metric on several different sets of
simulation parameters, across several different scenarios, each with
data gathered from different participants in the scenario. The simu-
lation methods, validation scenarios, and data gathering techniques
are described below. The entropy scores for all combinations of pa-
rameters, scenarios, and simulators are summarized in Table 1. Be-
cause the entropy metric is logarithmic, linear difference in scores
corresponds to an exponential difference in performance.

4.1 Simulation Models

We chose three popular simulation methods to test the metric with:
a rules-based steering approach, a social-forces model, and a pre-
dictive planning approach. Many variants and extensions of all
these models have been proposed and widely used in different ap-
plications.

Steering Simulator: Steering based simulation approaches use a
discrete set of rules to choose agent velocities. We chose a simula-
tion technique based on the classical steering method proposed by
Reynolds [1999]. Each agent follows three simple behavior-based
rules: steer towards the goal, steer away from the nearest obstacle,
and steer away from the nearest person. When obstacles are very
close by or when collision are imminent, the avoidance rules are
given precedence over the goal-following behavior.

Social Forces Simulator: Social force simulation models use po-
tential fields defined by neighboring agents to impart an acceler-
ation to each agent. We chose a simulation technique based on
Helbing’s Social Force Model (SFM) [Helbing et al. 2000]. SFM
computes the trajectory of each agent by applying a series of forces
to each agent that depend on the relative positions and velocities
of nearby agents. An agent A receives a repulsive force pushing
it away from each neighbor B, denoted as fap. Moreover, each
agent experiences a force pushing it perpendicularly away from the
walls or obstacles, denoted as fy. The magnitude of these forces
decreases exponentially with the distance. Each agent also has a

goal velocity v&*/, which is used to compute the desired speed

and direction. The simulation function f can be summarized as:

pref _

free =Y "V NS fap Y fw ®)

A
«
A#B w
where « controls the rate of acceleration.

Predictive Planning Simulator: Predictive, planning based simu-
lators attempt to anticipate collisions based on neighboring agents’
positions and velocities and determine new paths which avoid these
collisions. We chose a velocity-based formulation called Recipro-
cal Velocity Obstacle as implemented in the RVO?2 library [van den
Berg et al. 2009]. Each agent navigates by constraining its veloc-
ity to those which will avoid collisions with nearby neighbors and

obstacles for at least 7 seconds. The set of velocity constraints im-
posed by all the neighbors of an agent A is denoted as RV O7,. An

agent is also assumed to have a desired velocity v¥ /. The result-

ing simulation function f can be expressed as:
Vi = argmin ||v — v&/|.)
vERVOT

The avoidance computation is performed using linear program-
ming, and all agents are assumed to reciprocate (share the respon-
sibility) in avoiding collisions.

For each simulation method, three different sets of parameters were
chosen which varying collision radii, preferred speeds, and other
internal simulation constants. The resulting simulations that use
these parameters are referred to as Steer-1, Steer-2, and Steer-3 for
the steering-based approach, SFM-1, SFM-2, and SFM-3 for the
social-forces based approach, and RVO-1, RVO-2, and RVO-3 for
the predictive planning based approach, respectively.

Further information regarding the implementation of each algo-
rithm are given in Appendix B in the supplementary materials,
which details the specific parameters used in each simulation. Ad-
ditional, this appendix B further describes other implementation de-
tails including the specific form of the state vectors, validation data
and observation function used to obtain the results in this section.

4.2 Real-World Crowd Data

In order to evaluate the Entropy Metric, we use several sources of
data. They correspond to different real-world scenarios (both in-
door or outdoor) and have varying number of agents. Each dataset
was captured using different sensing hardware (see Table 2).

Lab Setting: This data comes from a study performed in a con-
trolled setting in a motion capture lab. In this scene, two people
were placed about 6m apart and were asked to swap their positions
[Moussaid et al. 2011] (see Fig. 4a). We label this benchmark with
two agents as Lab.

Street Crossing: This data comes from a video of pedestrians
walking on a street, which was captured using an overhead cam-
era. The trajectories of each agent were extracted using multi-object
tracking [Pellegrini et al. 2009] (see Fig. 4b).

Importantly, we use data from two different capture sessions involv-
ing different groups of people crossing the same street. This allows
us to test for correlation in the results of metric between different
groups of people for the same scenario. The datasets from the two
groups are labeled as Street-1 and Street-2.

Narrow Passageway: This data comes from a large indoor experi-
ment designed to capture human exiting behavior through passages
of varying sizes [Seyfried et al. 2010]. The experiment involved use
of markers and optical tracking equipment to gather high-quality
data corresponding to subjects’ positions near the entrance of the
passageway. The experiment was performed with different exit
widths, with each run consisting of hundreds of participants, about
50 of whom were in the tracked area at any given time (see Fig. 4c).

Again, we use data from two different runs of this experiment, the
first with a passage of very narrow width of 1m and the second with
a wider passage of width 2.5m, denoted as Passage-1 and Passage-
2, respectively. This is used to analyze correlation between similar
scenarios.

For all five scenarios, we assume that the goal position for each
agent is the last tracked position in the dataset and compute vP"¢f
accordingly. However, in some scenarios (such as people moving

Scenario RVO-1 RVO-2 RVO-3 SFM-1 SFM-2 SFM-3 Steer-1 Steer-2 Steer-3
Passage-1 3.048 2.329 3.400 6.576 6.581 6.579 6.403 6.490 6.435
Passage-2 1.991 0.690 1.990 5.430 5.458 5.451 4713 4.748 4.764
Street-1 2.744 3.156 2.800 4.500 4,707 4.665 2.979 3.569 3.838
Street-2 2.709 2.564 2.520 3.793 3.885 3.780 2.660 2.744 3.060
Lab 1.920 1.610 1.230 2.538 2.523 2.509 1.871 1.847 2.305

Table 1: Entropy Metric for different simulation algorithms on various real-world datasets (lower is better).

(a) Lab (small)

Figure 4: Our rendering of real-world crowd trajectories used for evaluation.

in a maze) this assumption may not hold. In such cases vP"¢f can
be considered as part of the state and inferred along with other pa-
rameters using Bayesian inference.

Scenario Agents Density Capturing technique
Passage-1 40 2.76 optical tracking+camera
Passage-2 59 2.38 optical tracking+camera
Street-1 18 0.42 overhead camera
Street-2 11 0.37 overhead camera
Lab 2 - motion capture

Table 2: Real-world crowd datasets used by our evaluation algo-
rithm. We report the average number of agents per frame and the
density of the agents over the tracked area.

4.3 Results

As can be seen in Table 1, different simulators vary in their abil-
ity to capture the motion characteristics of different datasets. Fur-
thermore, for a given simulation method, different parameter sets
also score better or worse. This suggests that maximizing the sim-
ilarity to the data involves choosing not only the right simulator,
but the right parameters. Some scenarios resulted in a relatively
high Entropy Metric value across all simulators. For example, the
best score for Passage-1 (the narrower passage) was worse than the
worst score for the Lab scenario. This suggests that all the tested
simulators performed poorly in terms of capturing the complex be-
haviors pedestrians exhibited in the narrow passage scenario.

5 Analysis

While Section 4 provides the results of the Entropy Metric on dif-
ferent simulators and validation datasets, this section analyzes the
metric itself. Specifically, we analyze the metric in terms of pre-
dictiveness, consistency, robustness to noise, correlation with per-
ceptual similarity, and other important properties. To begin with,
we highlight several useful properties of the metric which follow
directly from its mathematical definition.

Rankable results: For a given validation dataset, the Entropy Met-
ric provides unique, global rankable results because it computes a

single number in R. The result can be ranked uniquely when there
are no ties. If the Entropy Metric for f1 is lower than the Entropy
Metric for fg, this implies that simulator fl better captures the ag-
gregate dynamics in that dataset than f.

Discriminative: The data presented in Table 1 highlights the dis-
criminative nature of the Entropy Metric. In contrast to approaches
which test a simulator against a discrete set of benchmarks, the En-
tropy Metric returns a real number, eliminating the risk of ties. This
allows us to generate a clear quantitative ranking of different simu-
lators.

Generality: The Entropy Metric makes very few assumptions
about the underlying simulator and the real-world data. This is be-
cause the Bayesian inference framework is capable of estimating
the complete simulation state (position, velocity, orientation, etc.)
based on only partial validation data (e.g., only positions). This
allows to us to compare simulators that use only position and ve-
locities to others that also account for orientation and accelerations,
or other simulation specific parameters.

Because the entropy measure directly compares a simulation to ref-
erence data, it directly reflects optimizations made to increase the
accuracy of simulations. Appendix A in the supplemental material
provides a case study showing a correlation between improvements
to RVO, and a decrease in the Entropy scores of the resulting simu-
lations. These results can also be seen in the supplemental video.

5.1 Consistency

It is important that the Entropy Metric provides consistency in terms
of results across similar datasets. Based on the empirical results
presented in Table 1, we can determine that the Entropy Metric has
this property. Specifically, the results on similar benchmarks are
well correlated with each other. For example, the ordering from
best to worst simulators for the benchmarks Passage-1 and Passage-
2 does not differ significantly even though the data changes. This
suggests the metric can reliably capture some inherent aspect of a
simulator’s ability to reproduce the movement through a passage.

We can numerically measure the correlation between scenarios us-
ing Pearson’s correlation coefficient r, which measures correlation

Scenario Correlation
Passage-1 & Passage-2 975
Street-1 & Street-2 917
Street-1 & Passage-2 .585
Passage-1 & Street-2 414

Table 3: The Entropy Metric results on similar datasets such as
(Passage-1,Passage-2) or (Street-1,Street-2) are highly correlated.
The metric shows lower correlation for different dataset pairs.

on a scale from O (uncorrelated) to 1 (exactly correlated). The re-
sults from computing the Entropy Metric on two different datasets
from the same scenario are highly correlated (r > .9), implying
a consistency in the metric across similar datasets. The results
from different datasets (e.g. Street vs Passage) are much less corre-
lated. This is because different simulators have different abilities to
capture different types of motion, which is reflected in the metric.
These correlation results are summarized in Table 3.

5.2 Robustness to Noise

Any data-driven analysis of a simulator needs to consider the ef-
fects of noise present in the data. Even in controlled lab settings,
there are small amounts of sensor noise, the effects of which can be
magnified over time. These effects are even more pronounced when
working with data captured from outdoor natural scenes. This data
is normally produced by video processing techniques, which can
have large amounts of errors compared to data gathered in a con-
trolled lab setting.

We can analyze the effect of noise on the Entropy Metric by ar-
tificially adding noise to the validation datasets. In particular, we
highlight the results on the data from outdoor street crossing sce-
nario. We add uniformly distributed noise to the data of up to a
half meter in size (while keeping Q constant). We then compute
the Entropy Metric for three different simulators (RVO-1, SFM-2,
and Steer-3) by varying the noise. The results are shown in Fig 5.

5.0 |
45
4.0
3.5
3.0
25
2.0
15
1.0

Entropy Metric

0 0.1 0.2 0.3 0.4 0.5
Sensor Noise (m)

Figure 5: We evaluate the impact of adding artificial error (uni-
formly distributed) to the Street-1 benchmark for different simula-
tors. The Entropy Metric is relatively stable to this error and the
relative ranking of different simulators does not change.

As expected, the Entropy score gets worse for all simulators as more
noise is added because the error from the noise is being attributed
to the simulation. However, the metric handles the noise robustly,
with the value of the metric changing in a slow, continuous fashion
as large amounts of noise are added. Even with an extreme value
of .5m of noise being added randomly every timestep, the metric
maintains the same relative ranking between the simulators.

5.3 Similarity between Two Simulators

While the Entropy Metric is designed to compare a simulator to a
validation dataset, we can also use it to compare two simulators.
This comparison is performed by running a simulator to generate
paths and using these paths as the validation dataset for the sec-

Simulator RVO-1 SFM-2 Steer-3
RVO-1 0.19 3.17 3.16
SFM-2 434 138 1.58
Steer-3 2.26 1.66 0.90

Table 4: Results from using the Entropy Metric to compare two
simulators As expected, the Entropy Metric is the smallest when a
simulator is compared to itself.

ond simulator. In this way we can compute a score measuring the
similarity of two simulators, with a lower score implying a better
match between the aggregate dynamics of two simulators. Table 4
shows the results of this comparison on three different simulators.
The results are asymmetric mainly due to differences in how sensi-
tive each simulator is to the noise. A symmetric comparison can be
achieved by averaging the pairwise differences.

As expected, the similarity matrix is minimized along the diago-
nal, indicating that each simulation is most closely related to itself.
Additionally, the match between RVO and the other two models is
much worse than the match between SFM and Steer (i.e., ~3 vs
~1.5). We speculate that this is due to the fact that RVO uses a
predictive approach to collision avoidance, while the other two ap-
proaches both use a model based on reactive, distance-based forces.

5.4 Data-driven Crowds and Behavior Modeling

Data-driven approaches are becoming more common in crowd sim-
ulation. In part, this is because of their ability to capture com-
plex or subtle behaviors that to not directly map to simulation pa-
rameters. Here, we explore the Entropy Metric as it applies to a
data-driven crowd simulation designed to capture high-level per-
sonality differences. Specifically, we look at simulators based on
high-level personality models such as the Five-factor Trait Theory
or OCEAN model. This model classifies a personality based on
its level of Openness, Conscientiousness, Extraversion, Agreeable-
ness and Neuroticism [Costa and McCrae 1992]. Recent crowd
work such as [Durupinar et al. 2008] and [Guy et al. 2011] have
proposed data-driven models for each of these personality traits.

In order to evaluate our metric, we analyze one trait (Extraversion),
similar results also hold for other data-driven models of high level
behaviors. We use a validation dataset consisting of five agents
walking past each other with a high degree of Extraversion (as re-
ported by [Guy et al. 2011]), and vary the simulator to have differ-
ing amounts of Extraversion. The Entropy results match well when
we choose a simulator trained to match a high Extraversion dataset,
and the Entropy metric was worse when using a simulator trained
for low amounts of perceived Extraversion. As we interpolate be-
tween the two simulators using the perceptually linear personality
space defined in [Guy et al. 2011], we see a linear improvement
in the Entropy metric scores as the simulator moves from less Ex-
traversion to more, see Figure 6. The linearity of the match suggests
the Entropy Metric may also be well correlated with a perceptual
notion of similarity, this is further explored in Section 5.5.

5.5 Comparison to Perceptual Evaluation

We conducted a user study to analyze how well the numerical sim-
ilarity of the Entropy metric corresponds to perceptual similarity.
This study involved 36 participants (22 males) and had two sec-
tions; the first was designed to directly investigate the correlation
between the Entropy metric and perceived similarity, and the sec-
ond section was designed to analyze how well the metric can pre-
dict a user’s perceived similarity. When studying perceptual evalu-
ation in crowd videos it is important to note the effect that rendering
choices, such as cloned appearance and motion of individuals, can

2 14
S S
»n
0.8
Qo
£06
i
204
E \
¢ 0.2 d
0
0 0.2 0.4 0.6 0.8 1

Percieved Extraversion (0 = low, 1 = high)

Figure 6: Comparison of varying levels of the Extraversion per-
sonality trait to the Entropy score given an dataset of Extraverted
motion. As the data-driven simulation is modified from a less Ex-
traverted model, towards a more extraverted one the Entropy metric
with respect to a highly Extraverted dataset decreases.

affect a user’s perception of simulated crowds [McDonnell et al.
2008]. To mitigate this effect, we rendered all motion users saw
with the same visual crowd models and rendering parameters.

In the first section of the study, users were shown two videos. The
first was a rendering of the simulation and the second was a render-
ing of the real-world data. The real-world motion was re-rendered
with the crowd rendering system used for the simulated motion.
Users were asked to rate the pairs of videos in terms of their simi-
larity to each other on a Likert Scale of 0 (not at all similar) to 10
(very similar); this was done across four different simulators, each
with a different entropy score compared to the real-world data. The
results are shown in Fig 7.

10

8 -
6 |
4
o -
6.07 2.09 1.36 0.75

Entropy Score

Perceived Similarity

Figure 7: Comparison of Entropy score (lower is better) to per-
ceived similarity (higher is better) across four different simulators,
error bars represent mean absolute deviation in user scores. Simu-
lators with a lower Entropy Metric were consistently given a higher
score in terms of perceived similarity to the source video by users.

As can be seen in Fig 7, when the entropy score is very large (6.07),
users gave the simulation a low score for similarity, generally rang-
ing from O to 4. When the entropy score was very small (0.75),
users gave the simulation a high score for similarity, generally rang-
ing from 8 to 10. For entropy scores in-between, the users gave cor-
respondingly intermediate similarity scores. Numerically, the En-
tropy Metric and user reported perceived similarity have a Pearson’s
correlation coefficient of .91, which indicates the Entropy Metric is
strongly correlated with perceived similarity.

The second section of the user study was structured using the two-
alternative forced choice (2AFC) procedure. For each question,
a user was shown videos from two different simulations along

with reference video from real-humans walking in the same envi-
ronment. The users were asked two questions: which simulator
matched the real-world data better and whether the two simulators
had similar or different behaviors.

A priori, we would expect users to choose the simulator with a
lower Entropy score as the one which matched the data better, as
this is what the Entropy score seeks to measure. Figure 8 shows
the accuracy of this prediction versus the relative differences in En-
tropy score between the two videos. When the Entropy score was
greater than 0.1, the metric correctly predicted the user response
with a high accuracy rate, and at statistically significant level (p <
.01).

When the relative difference in Entropy scores between two simu-
lations were very small (less than 0.1), the metric failed to correctly
predict user preferences at a statistically significant level. However,
for these scenarios the metric correctly classifies the simulators as
“very similar”, with users classifying these simulations as similar
94.3% of the time.

§o08
8 -/’
To6
o
=
904
° v
(8]
x02

0

0 1 2 3 4 5

Relative Difference in Entropy Score

Figure 8: Relative entropy differences versus user preferences.
When the entropy score difference between two simulators was
more than 0.1, users agreed with the score’s prediction at a sta-
tistically significant rate.

To summarize, the Entropy Metric correlates well with perceived
similarity. When the metric indicated a large difference between
two simulators, the users agreed with the metric at a statically sig-
nificant rate (i.e. a rate much greater than chance). When the metric
indicated very small differences, users also agreed that the differ-
ence was small at a statistically significant rate. This result is sig-
nificant for those using this metric to design data-driven simulators
and for those who want to evaluate simulators used in applications
such as games and special effects. By finding simulation param-
eters that minimize the Entropy Metric, the resulting simulations
will visually appear progressively closer to the target data without
the need for a human in the loop to evaluate the intermediate results.

These results also provide a meaningful scale for the metric. The
sharp inflection in Fig 8 around 0.1 suggests that this value may be
a good estimate of the just-noticeable-difference level in the metric.
Likewise, Figure 7 suggests that simulations with an Entropy score
less than 1 should be considered very visually similar to the source
data and those with a score greater than 6 visually very different.

5.6 Motion Uncertainty

As discussed in Section 2.4, many approaches have been suggested
for evaluating a simulators ability to match data. The main novelty
of the Entropy Metric comes from its ability to effectively handle
sensor noise, its correlation with perceptual similarity, and its robust
treatment of the uncertainty in human motion. The first two of these
features have been discussed above; here, we analyze the effect of
motion uncertainty.

When two people interact, their paths can vary for a variety of rea-
sons. However, small variations early in a path can lead to large
deviations later on. These deviations make it hard to compare two
trajectories directly. This is what makes comparing trajectories an
inappropriate similarity metric. To illustrate this, we used data cor-
responding to two people swapping their positions in the Lab sce-
nario and mirrored the paths so the participants pass on the right
rather than on the left. Both of these paths are equally valid ways of
getting between the given start and end positions, and ideally would
result in similar validation scores for a simulation.

Since the Entropy Metric does not a compare a simulator to the tra-
jectory data directly, but rather to the decisions latent in that data,
it computes nearly identical scores for the two datasets. For exam-
ple, the RVO-3 simulator scores 1.91 for the original and 1.92 for
the mirrored data. However, if average trajectory differences were
used as the metric, the score would change significantly. This is
because one simulator can predict passing either on the left or the
right, but not both. In contrast, because the Entropy Metric is com-
puted over a distribution of likely simulator states, this results in

similar scores for two datasets.
'ﬂé«“:‘:«______qm M_’__,____:_‘_‘::‘:ﬂ-—

(a) Pass on Left (Entropy for RVO-3: 1.91)

e —————

g
i
I

L — =

—————

e

(b) Pass on Right (Entropy for RVO-3: 1.92)

Figure 9: Two agents (red and blue) switch positions. Regardless
of whether the agents pass each other on their left sides (a) or their
right sides (b), the Entropy Metric for a given simulator remains
almost unchanged.

6 Assumptions and Limitations

When deriving our approach, we have made some basic assump-
tions that can help inform the appropriate use of the Entropy Metric
for simulation evaluation. Most importantly, we assume that there
exists some corpus of representative crowd data for a simulator to
be compared to. Because the metric evaluates at the level of in-
dividual motion decisions it is important that the validation dataset
contains motion which is representative of the types of motions con-
sidered realistic. Additionally, the basic formulation of the entropy
metric does not directly measure characteristics arising from emer-
gent phenomena, such as density, lane formation, and overall flow
rate, though such quantities may be indirectly inferred through the
motion of individuals in the crowd and would be of interesting top-
ics for future investigation.

The formulation of the entroy metric assumes that all uncertainties
are known and can be modeled with zero-meaned gaussian distribu-
tions. Such uncertainties include uncertainty in the validation data,
errors in the estimation of the environment, senor noises, etc. This
assumption extends to the error of a given simulation technique,
which is what the Entropy metric seeks the measure. If any of these
errors do not fit this model (for example, a simulation technique
which has a systematic bias), our method will naturally account for
these by estimating a larger variance for the error distribution. Like-
wise, any errors in modeling the environment or sensor uncertainty
will also increase the estimated error of a simulation (see Section
5.2). By explicitly estimating model uncertainty, the Entropy met-
ric seeks to account for the aggregate effect of the non-determinism
in human motion, errors in sensors, and unmodeled sources of er-
ror. In this way, our metric can gracefully handle a breakdown of

the mathematical assumptions underlying its derivation.

While our metric is simple and provides a consistent, rankable mea-
sure of similarity to source data as a single real number, the metric
is not invariant to changes in timestep and measurement units. We
also assume that the sensing accuracy Q is known, though it may
be possible to extend our approach to unknown distributions.

In contrast to other methods that measuring density, collision
counts, and other quantities, this approach instead estimates the er-
ror between the motion computations performed by a given simu-
lator and with those captured in the validation dataset. Fundamen-
tally, this type of analysis is applicable to where there is known
ground truth motion data, along with knowledge about the environ-
ment. Therefore, the Entropy Metric is only defined for a given
set of real-world crowd data and cannot directly compare different
simulators in the absence of such data. It cannot measure the plau-
sibility of a simulator in the absence of real-world ’ground truth’,
nor can it be directly applied to scenarios without data to validate
against.

7 Conclusion and Future Work

We have introduced an Entropy Metric for evaluating crowd simula-
tors against real-world crowd data. Our metric provides a meaning-
ful quantification that can be used to rank various crowd simulators
in a predictive and consistent manner. To the best of our knowl-
edge, this is the first attempt at designing an objective, quantitative
evaluation metric that measures the similarity of crowd simulation
results with respect to real-world data and explicitly accounts for
sensor noise, motion uncertainty, and non-determinism. We have
used it to evaluate the performance of steering behaviors, force-
based models, and predictive crowd simulation algorithms on dif-
ferent real-world datasets.

In the future, we hope to extend this work to analyze other widely
used crowd simulation techniques, such as continuum techniques,
vision-based steering, data-driven approaches, foot-step planners,
and cognitive models — all of them can be described using continu-
ous formulations introduced in this paper. Furthermore, we would
like to apply our metric to a wider variety of real-world crowd data
sets that measure many different aspects of motion, including lo-
cal density, individual behaviors, and apparent personalities. We
are also interested in exploring applications of this metric, such as
automatic optimization of crowd simulations to data.

Acknowledgements We are grateful comments from the reviewers,
and thankful for help from Sujeong Kim and Sean Curtis. This re-
search is supported in part by ARO Contract W911NF-04-1-0088,
NSF awards 0917040, 0904990, 100057 and 1117127, and Intel.

References

COSTA, P., AND MCCRAE, R. 1992. Revised NEO Personality In-
ventory (NEO PI-R) and Neo Five-Factor Inventory (NEO-FFI).
Psychological Assessment Resources.

DURUPINAR, F., ALLBECK, J., PELECHANO, N., AND BADLER,
N. 2008. Creating crowd variation with the OCEAN personality
model. In Autonomous agents and multiagent systems.

ENNIs, C., PETERS, C., AND O’SULLIVAN, C. 2011. Percep-
tual effects of scene context and viewpoint for virtual pedestrian
crowds. ACM Trans. Appl. Percept. 8, 10:1-10:22.

EVENSEN, G. 2003. The ensemble kalman filter: theoretical for-
mulation. Ocean Dynamics 55, 343-367.

FUNGE, J., TU, X., AND TERZOPOULOS, D. 1999. Cognitive
modeling: Knowledge, reasoning and planning for intelligent
characters. Proc. of ACM SIGGRAPH, 29-38.

GALLAGHER, R., AND APPENZELLER, T., Eds. 1999. Science
Magazine, vol. 284. AAAS.

GUY, S., CHUGGANI, J., CURTIS, S., DUBEY, P., LIN, M., AND
MANOCHA, D. 2010. Pledestrians: A least-effort approach
to crowd simulation. Proc. of Eurographics/ACM SIGGRAPH
Symposium on Computer Animation, 119—-128.

Guy, S.J., KM, S., LIN, M., AND MANOCHA, D. 2011. Sim-
ulating heterogeneous crowd behaviors using personality trait
theory. In Eurographics/ACM SIGGRAPH Symposium on Com-
puter Animation, The Eurographics Association, 43-52.

HELBING, D., AND MOLNAR, P. 1995. Social force model for
pedestrian dynamics. Physical Review E 51, 4282.

HELBING, D., FARKAS, 1., AND VICSEK, T. 2000. Simulating
dynamical features of escape panic. Nature 407, 487-490.

JARABO, A., EYCK, T. V., SUNDSTEDT, V., BALA, K., GUTIER-
REZ, D., AND O’SULLIVAN, C. 2012. Crowd light: Evaluating
the perceived fidelity of illuminated dynamic scenes. Proc. of
Eurographics. to appear.

KAPADIA, M., WANG, M., SINGH, S., REINMAN, G., AND
FALOUTSOS, P. 2011. Scenario space: characterizing coverage,
quality, and failure of steering algorithms. In Proceedings of the
2011 ACM SIGGRAPH/Eurographics Symposium on Computer
Animation, 53-62.

KARAMOUZAS, 1., HEIL, P., BEEK, P., AND OVERMARS, M.
2009. A predictive collision avoidance model for pedestrian sim-
ulation. Proc. of Motion in Games, 41-52.

KRrATZ, L., AND NISHINO, K. 2011. Tracking pedestrians us-
ing local spatio-temporal motion patterns in extremely crowded
scenes. IEEE Trans. on Pattern Analysis and Machine Intelli-
gence, 99, 1-1.

LEE, H., CHOI, M., HONG, Q., AND LEE, J. 2007. Group be-
havior from video: a data-driven approach to crowd simulation.
In Proc. of Symposium on Computer Animation, Eurographics
Association, 109-118.

LERNER, A., CHRYSANTHOU, Y., AND LISCHINSKI, D. 2007.
Crowds by example. Computer Graphics Forum (Proceedings
of Eurographics) 26, 3.

LERNER, A., CHRYSANTHOU, Y., SHAMIR, A., AND COHEN-
OR, D. 2009. Data driven evaluation of crowds. In Proceedings
of the 2nd International Workshop on Motion in Games, 75-83.

MCDONNELL, R., LARKIN, M., DOBBYN, S., COLLINS, S.,
AND O’SULLIVAN, C. 2008. Clone attack! perception of crowd
variety. In ACM Transactions on Graphics (TOG), vol. 27, ACM,
26.

MCLACHIAN, G., AND KRISHNAN, T. 1996. The EM Algorithm
and Extensions. John Wiley and Sons.

MEHRAN, R., OYAMA, A., AND SHAH, M. 2009. Abnormal
crowd behavior detection using social force model. In Proc. of
Computer Vision and Pattern Recognition, 935-942.

MOUSSAID, M., HELBING, D., AND THERAULAZ, G. 2011. How
simple rules determine pedestrian behavior and crowd disasters.
Proceedings of the National Academy of Sciences 108, 17, 6884.

NARAIN, R., GOLAS, A., CURTIS, S., AND LIN, M. C. 2009.
Aggregate dynamics for dense crowd simulation. ACM Transac-
tions on Graphics (Proc. of ACM SIGGRAPH Asia) 28, 5, 122.

ONDREJ, J., PETTRE, J., OLIVIER, A., AND DONIKAN, S. 2010.
A synthetic-vision based steering approach for crowd simula-
tion. ACM Trans. on Graphics 29, 4, 123:1-123:9.

PATIL, S., VAN DEN BERG, J., CURTIS, S., LIN, M. C., AND
MANOCHA, D. 2011. Directing crowd simulations using nav-
igation fields. IEEE Trans. on Vis. and Comp. Graphics 17, 2,
244-254.

PELECHANO, N., ALLBECK, J. M., AND BADLER, N. I. 2007.
Controlling individual agents in high-density crowd simulation.
Proc. of Symposium on Computer Animation, 99-108.

PELECHANO, N., STOCKER, C., ALLBECK, J., AND BADLER, N.
2008. Being a part of the crowd: towards validating vr crowds
using presence. In Proc. of 7th Int. Joint Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS), 136-142.

PELLEGRINI, S., ESS, A., SCHINDLER, K., AND VAN EOOL, L.
2009. You’ll never walk alone: Modeling social behavior for
multi-target tracking. In Proc. of Int. Conf. on Computer Vision,
261-268.

PETTRE, J., ONDREJ, J., OLIVIER, A., CRETUAL, A., AND
DONIKIAN, S. 2009. Experiment-based modeling, simulation
and validation of interactions between virtual walkers. In Proc.
of Symposium on Computer Animation, ACM, 189-198.

REYNOLDS, C. W. 1987. Flocks, herds and schools: A distributed
behavioral model. Proc. of ACM SIGGRAPH 21, 25-34.

REYNOLDS, C. W. 1999. Steering behaviors for autonomous char-
acters. Game Developers Conference.

RODRIGUEZ, M., ALI, S., AND KANADE, T. 2009. Tracking in
unstructured crowded scenes. In Computer Vision, 2009 IEEE
12th International Conference on, 1389-1396.

SCHADSCHNEIDER, A., CHOWDHURY, D., AND NISHINARI,
K. 2011. Stochastic Transport in Complex Systems: From
Molecules to Vehicles. Elsevier.

SEYFRIED, A., BOLTES, M., KAHLER, J., KLINGSCH, W.,
PORTZ, A., RUPPRECHT, T., SCHADSCHNEIDER, A., STEF-
FEN, B., AND WINKENS, A. 2010. Enhanced empirical data
for the fundamental diagram and the flow through bottlenecks.
Pedestrian and Evacuation Dynamics 2008, 145-156.

SINGH, S., KAPADIA, M., REINMANN, G., AND FALOUTSOS,
P. 2009. Steerbench: A benchmark suite for evaluating steering
behaviors. Computer Animation and Virtual Worlds 20, 533—
548.

SUNG, M., GLEICHER, M., AND CHENNEY, S. 2004. Scalable
behaviors for crowd simulation. Computer Graphics Forum 23,
3 (Sept), 519-528.

TREUILLE, A., COOPER, S., AND PopPovic, Z. 2006. Continuum
crowds. Proc. of ACM SIGGRAPH, 1160 — 1168.

VAN DEN BERG, J., GUY, S. J., LIN, M. C., AND MANOCHA, D.
2009. Reciprocal n-body collision avoidance. Proc. of Interna-
tional Symposium on Robotics Research (ISRR), 3—19.

YU, Q., AND TERZOPOULOS, D. 2007. A decision network frame-
work for the behavioral animation of virtual humans. In Proc. of
Symposium on Computer animation, 119-128.

Appendices
A Case Study: Optimizing RVO

The Entropy metric seeks to capture how well a simulator captures
the aggregate dynamics of the motion observed in real-world data.
For simple scenarios it maybe possible to perform other, simple
data analysis, such as measuring average speed or minimum dis-
tance between the agents to reliably indicate a failure to capture
the recorded motion. Examples include measuring average speed
or minimum distance between the agents. This type of analysis
is commonly used to improve the simulator and lower the entropy
score.

As an example, we chose the Lab scenario of two people passing
each other. First we evaluated the Entropy metric with an inten-
tionally poor set of parameters, labeled RVO-A, which resulted in
a large Entropy score of 6.07. Next, we improve the simulator by
measuring the closest distance between the two participants and us-
ing that parameter to set the radius (RVO-B). The simulator’s sim-
ilarity can be further improved by setting the preferred agent speed
to be the average speed of the two participants (RVO-C). Finally,
we increase the time horizon over which agents plan their colli-
sion avoidance to improve the anticipation in motion (RVO-D). As
shown in Table 5, each change in the parameters lowers the Entropy
score.

The simulations generated from each step of changing the parame-
ters can be seen in the accompanying video. We note that because
of the logarithmic scale of the Entropy metric, a reduction in score
from 6.07 to 0.75 indicates more than an order of magnitude in re-
duction of error. The correlation between hand-tuned results and
the Entropy metric provide an indication of the metric’s ability to
capture meaningful errors in terms of aggregate dynamics.

Pref Time Improvement
RVO Metric Rad. Speed Horiz Method

A 6.07 1.0m 0.9 m/sec 0.1 sec -
B 2.09 .25m 09 m/sec 0.1 sec Match radius from data
C 1.36 25m 1.2 m/sec 0.1 sec Match speed from data
D 0.75 .25m 1.2m/sec 1.0sec Increase planning horizon

Table 5: As we improve the similarity of the RVO benchmark based
on the data from Lab benchmark, the entropy metric decreases.
RVO-A is the worst algorithm for this benchmark and RVO-D is
the best algorithm (as shown in video). We see a direct correlation
between the entropy metric and similarity of the simulation algo-
rithm.

This result also indicate that the Entropy metric can be used to de-
sign data-driven crowd simulation algorithms. Given a motion data
from a target set of behaviors, changing the simulator parameters to
optimize the Entropy metric will result in a simulator that closely
matches the desired behavior.

B Implementation Details

For the results presented in Section 4 we used the same crowd state
vector format (X%), the same observed validation data (zo, . . . , Z¢),
and the same observation function (h) for all simulators tested. We
varied only the simulator (f). We briefly give details of each below.

State Vector (X}) The state of each agent was defined as a four
dimensional vector of 2D position and 2D velocity.

Validation Data (zo, . . ., z;) The validation data used was a series
of 2D positions for each person being tracked, the data was gener-
ally between 10-15Hz.

Observation Function (h) The observation function must be
defined to convert an instance of the state vector to the for-
mat found in the validation data. In our case, the function
h simply returns the position component of the state vector

h((pos.z,pos.y,vel.xz,vel.y)) = (pos.x, pos.y).

Simulation Function (f) The details of this function varies be-
tween different simulators and each are discussed in more detail
below. All simulators share some common features: all agents were
restricted to a maximum velocity of 2.5m/s and all simulators con-
sidered only the 10 closest neighbors in velocity computations.

B.1 Social Force Simulation Details

Our implementation of a social force model (SFM) approach
to simulation is based on the approach detailed by Helbing et
al. [2000]. Each agent experiences an avoidance force from all
neighboring agents with decreases exponential with distance from
the agent, along with frictional and pushing forces that effect agents
in contact with each other. All of the SFM simulators shared the
same force balancing constants: a social scaling force of 2000N, an
agent reaction time of 0.5s, a repulsive pushing spring constant of
120, 000 kg/s?, and a sliding friction constant of 240, 000 kg/s>.

Simulator Pref Speed (m/s) Radius (m) Mass (kg)
SEM-1 1.40 0.16 80
SFM-2 1.10 0.31 80
SFM-3 1.20 0.20 80

Table 6: Parameters used in various social force simulators.

B.2 RVO Simulation Details

Our implementation of a predictive planning approach to simulation
is based on the Reciprocal Velocity Obstacle (RVO) based approach
detailed by Van den Berg et al. [2009]. Each agent chooses a veloc-
ity towards its goal which will minimize it’s expected collision with
all neighboring agents. The RVO simulators vary in the radius and
preferred speed of the simulated agents as well as the time horizon
agents plan over and the maximum distance at which a neighbor
can effect planning. The various simulators are detailed below:

Pref Radius Tim Neighbor
Simulator Speed (m/s) (m) Horiz. (s) Dist. (m)
RVO-1 1.44 0.20 1.7 41
RVO-2 1.10 0.20 1000 41
RVO-3 1.20 0.25 1000 200

Table 7: Parameters used in various RVO simulators.

B.3 Steering Simulation Details

Our implementation of a steering approach to simulation is based
on the approach in OpenSteer by Reynolds [1999]. The final action
of each agent is decided by a combination of a force towards the
goal, and a force away from the nearest obstacle and pedestrian.
All of the Steer simulators shared the same blending factor between
goal-directed and avoidance forces, they differed in the preferred
speed and radius of the agents.

Simulator Pref Speed (m/s) Radius (m)
Steer-1 1.44 0.20
Steer-2 1.00 0.30
Steer-3 0.85 0.20

Table 8: Parameters used in various steering simulatiors.

