
CSci 5980/8980
Manual and Automated Binary Reverse Engineering

Day 2: x86 Overview and Arithmetic
Stephen McCamant

University of Minnesota

Outline

x86-32 Overview

x86-32 Arithmetic Basics

x86-32 to x86-64

In Compiler Explorer

Brief x86 history (1)

4-bit Intel 4004 and 8-bit 8008 were mostly for
calculators

8-bit 8080 powered early hobbyist micro computers

16-bit 8086 was binary incompatible (but partially
assembly-level compatible) with the 8080

Cheaper-package 8088 edition of 8086 selected by
IBM for the original IBM PC

Brief x86 history (2)

80286 added memory protection not easily usable
by MS-DOS
80386 introduced 32-bit mode and paging

Supported modern OSes like Unix and Windows NT

80486 was almost the same ISA, but faster
Cache, pipelining

What would have been the 80586 was sold as the
“Pentium”

Brief x86 history (3)

Intel had a history of designing clean-sheet
processors that were undercut by cheaper x86es

Its first 32-bit, RISC, VLIW, and 64-bit processors were
never popular on the desktop

A backwards-compatible 64-bit extension was
designed by AMD undercutting Intel/HP Itanium
Later adopted by Intel making it a de-facto standard

Various called x86-64, AMD64, EMT64T, Intel 64, x64

The x86 ISA: CISC vs. RISC

Called CISC because it predates the 80s/90s RISC
revolution

Pre-RISC ISAs were for human assembly programmers
RISC CPUs had simpler instructions, moving complexity to
compilers
(Note, ISAs grew more complex over time anyway)

ISA is the only aspect of x86 that did not change
x86-64 compilers mostly use the RISC-like instructions
The internals of modern x86 CPUs are RISC-like

x86 ISA attributes

Variable-length byte-granularity instructions

Most instructions overwrite one operand
“Two-address” instead of “three-address” style

Most instructions allow one operand in memory
Versus load-store style of RISC

Rich addressing modes

Branching using condition codes

x86 instruction encoding

Variable length instructions are a “prefix code”:
Values of bytes tell how many more to read

Short encodings (some 1 byte) for simple/common
instructions

Long encodings for rare/newer instructions and
complex operands

Overall limit of 15 bytes for any instruction



x86 instruction format parts

Optional prefix bytes

One, two, or three-byte opcode

Extra bytes specifying operands
Many insns have a “mod/reg/RM” byte
Some addressing modes have an “SIB” byte
Some addressing modes have a constant displacement

Sometimes a immediate (constant) operand

x86 opcode map

Prefix bytes

0x26, 0x2e, 0x36, 0x3e, 0x64, 0x65: segment
overrides

A mostly-obsolete memory management feature
0x66 operand size override

In 32-bit mode, operand is 16-bit (and vice-versa)

0x67 address size override (rarely used)
0xf0 lock: block concurrent access
0xf2, 0xf3: repne and rep/repe, repeat string
operation

x86 condition codes

Six one-bit flags set based on math or comparison
results:

CF: (unsigned) carry out
OF: (signed) overflow
ZF: result is zero
SF: result is negative (“sign”)
PF: parity of result (mostly historical)
AF: adjustment needed for BCD (mostly historical)

More about these when we cover branches

x86-32 operand sizes

Many general-purpose/integer arithmetic insns can
operate on 8, 16, or 32-bit values

Sometimes the byte insn has an even opcode and
the 32-bit opcode is one higher
For a 16-bit version, use the 32-bit opcode with a
0x66 prefix byte

Pre-386, these opcodes were 16-bit

x86-32 general-purpose registers

8, 32-bit registers for integers or pointers

In encoding order: eax, ecx, edx, ebx, esp, ebp,
esi, edi

Without the “e”, refers to the low 16-bits of the
32-bit register

Every register is special

esp: used as stack pointer by stack accesses

ebp: used as frame pointer by enter/leave

eax: some instructions can only apply to eax

edx: more-significant half associated with eax

ecx: used a count in loops and shifts

esi, edi: source and destination for string ops

The Mod + Reg/Opcode + R/M byte

Most insns with variable operands have an extra
byte to specify them
3 fields: 2-bit Mod, 3-bit Reg/Opcode, 3-bit R/M
The Mod and R/M fields specify an operand that
could be in memory:

If Mod=11 (byte � 0xc0), R/M specifies a register
Else if R/M = 100, see next slide
Else, register addr maybe with 8 or 32-bit displacement

The Reg field is the other operand, or a sub-opcode



Example ModR/M addressing modes

Opcode 0xff/000 means 32-bit increment

ff 00 (00 000 000) : incl (%eax)

ff 01 (00 000 001) : incl (%ecx)

ff 40 (01 000 000) 05: incl 5(%eax)

ff c0 (11 000 000) : incl %eax

ff c1 (11 000 001) : incl %ecx

The SIB byte

More complex addressing modes use another byte

“SIB”: 2-bit scale, 3-bit index register, 3-bit base
register
Base and index are added together, with the index
multiplied by 1, 2, 4, or 8

Think: array indexing

Base or index can also be omitted

Outline

x86-32 Overview

x86-32 Arithmetic Basics

x86-32 to x86-64

In Compiler Explorer

LEA for arithmetic

The computations used for addressing modes are
also available as a separate instruction lea

No memory access, just stores computed value in
another register
Why?

Addition of registers with constants and small multiples
Three-address, unlike regular arithmetic
Does not set condition codes

8 core binary operators

Opcodes 0x[0123][01234589abcd] and
0x8[0123]

In encoding order: add, or, adc (“add with carry”),
sbb (“subtract with borrow”), and, sub, xor, cmp

cmp is like sub, but the result is discarded, useful
only for flags

Shift-family operations

Opcodes 0xc0, 0xc1, 0xd0, 0xd1, 0xd2, 0xd3

In encoding order: rol, ror, rcl, rcr, shl/sal,
shr, (sal), sar
The amount operand can be:

An 8-bit immediate (0xc0 and 0xc1)
One position (0xd0 and 0xd1)
The low bits of ecx (0xd2 and 0xd3)

Shift-family operations (cont’d)

rol, ror are circular bit rotation

rcl, rcr are (n+ 1)-bit rotations that also
incorporate CF

shr is logical (unsigned) right shift, while sar is
arithmetic (signed) right shift
There is no logical/arithmetic distinction for left shift,
and only the 100 position is documented

110, which would be sal, is an undoc. synonym of 100

Unary-family operations

Opcodes 0xf6, 0xf7, 0xfe, and 0xff encode several
arithmetic operators with only a ModR/M operand

inc and dec are increment and decrement

not is bitwise not and neg is unary negation



Multiplication

Widening multiply has unsigned (mul) and signed
(imul) versions, and a unary encoding:

One factor is always in eax

The other factor is a register or memory location
The product is in edx:eax

Same-size imul also has more flexible binary
encodings

Division and remainder

Division and remainder are always computed
together
There are unsigned (div) and signed (idiv)
versions, with a unary encoding:

The dividend is in edx:eax

The divisor is a register or memory location
The quotient is in eax

The remainder is in edx

x87-style floating point

In the 8086-80386 era, hardware floating point
required a separate chip

The 8087 was more transistors and more expensive
than the 8086

Pioneering but now-unusual design
80-bit extended register size
Stack-structured register file

Opcodes 0xd8-0xdf, mnemonics starting with “f”

SIMD extensions

Since the Pentium era, repeated extensions have
added SIMD support

Single Instruction Multiple Data: wide registers treated like
small arrays
MMX, SSE, AVX

Mostly separate register file and instructions

Two and three-byte opcodes with 0x66, 0xf2, and
0xf3 reused to specify operand size

Outline

x86-32 Overview

x86-32 Arithmetic Basics

x86-32 to x86-64

In Compiler Explorer

x86-64 extension overview

Extended registers to 64 bits

64-bit versions of most operations

Main use case was 64 bit pointers, but still 32-bit
ints
Doubled number of GPRs from 8 to 16

Most RISC ISAs have 32

Mostly backwards-compatible

REX encoding

How to signal 64-bit ops, and name new registers?

Switch opcodes 0x40-0x4f into a new kind of prefix
byte with four extra bits

Bit 3 is set to 1 (e.g. 0x48) to indicate a 64-bit
operation

Other bits become the 4th bit of register numbers,
i.e. set means new registers

x86-64 registers

All the new register names start with “r”

x86-32 “e” registers extend to 64-bit by changing
“e” to “r”

The new registers are r8 through r15

Low 32-, 16-, and 8-bit parts are available with more
systematic names

d, w, or l suffix



Implicit zero extension

Operations on 8- and 16-bit subregisters leave the
rest unchanged

Convenient for storing other data in high half

32-bit operations in x86-64 are different: they
always set the high half to zero

Convenient for mixing 32-bit and 64-bit computations

Exception: 0x90 (“xchg eax, eax”) is still a no-op

Outline

x86-32 Overview

x86-32 Arithmetic Basics

x86-32 to x86-64

In Compiler Explorer


