CSci 5980/8980
Manual and Automated Binary Reverse Engineering
Day 2: x86 Overview and Arithmetic

Stephen McCamant
University of Minnesota

Outline

Xx86-32 Overview

Brief x86 history (1)

©) 4-bit Intel 4004 and 8-bit 8008 were mostly for
calculators

) 8-bit 8080 powered early hobbyist micro computers

£) 16-bit 8086 was binary incompatible (but partially
assembly-level compatible) with the 8080

) Cheaper-package 8088 edition of 8086 selected by
IBM for the original IBM PC

Brief x86 history (2)

£) 80286 added memory protection not easily usable
by MS-DOS
£) 80386 introduced 32-bit mode and paging
® Supported modern OSes like Unix and Windows NT
£) 80486 was almost the same ISA, but faster
® Cache, pipelining
£) What would have been the 80586 was sold as the
“Pentium”

Brief x86 history (3)

o) Intel had a history of designing clean-sheet
processors that were undercut by cheaper x86es
® Its first 32-bit, RISC, VLIW, and 64-bit processors were
never popular on the desktop
©) A backwards-compatible 64-bit extension was
designed by AMD undercutting Intel/HP Itanium
©) Later adopted by Intel making it a de-facto standard
® Various called x86-64, AMD64, EMT64T, Intel 64, x64

The x86 ISA: CISC vs. RISC

£) Called CISC because it predates the 80s/90s RISC
revolution
® Pre-RISC ISAs were for human assembly programmers
® RISC CPUs had simpler instructions, moving complexity to
compilers
® (Note, ISAs grew more complex over time anyway)
£) ISA is the only aspect of x86 that did not change

® x86-64 compilers mostly use the RISC-like instructions
® The internals of modern x86 CPUs are RISC-like

X86 ISA attributes

©) Variable-length byte-granularity instructions

£) Most instructions overwrite one operand
® “Two-address” instead of “three-address” style

£) Most instructions allow one operand in memory
® Versus load-store style of RISC

©) Rich addressing modes

£) Branching using condition codes

x86 instruction encoding

£) Variable length instructions are a “prefix code™
® Values of bytes tell how many more to read

£) Short encodings (some 1 byte) for simple/common
instructions

£) Long encodings for rare/newer instructions and
complex operands

) Overall limit of 15 bytes for any instruction




x86 instruction format parts

) Optional prefix bytes
£) One, two, or three-byte opcode
©) Extra bytes specifying operands
® Many insns have a “mod/reg/RM" byte

® Some addressing modes have an “SIB” byte
® Some addressing modes have a constant displacement

£) Sometimes a immediate (constant) operand

x86 opcode map

XI0[1[2[3[415]6]7]8[9]A[BICIDIE[F XI0T1[2[3]415]6]7]8[9JA[BICDIELF
0 ADD el= o AR [0 ] o o] [l [o]
i T w02y J5] o

ADC
AND
XOR
INC DEC
PUSH PoP

E F MOV CRDR SEQL.2)

= I
G EESSSERaaNE

= XCHGEAX [owofoprjunr] ] - fwefune]
WMOVEAX [ vom | ow | ror [ e [ ws |

o= IW

Flm[S[[@[>olcl
=

MMX, SSEQ.23) I

Prefix bytes

£) Ox26, 0x2e, 0x36, 0x3e, Ox64, 0x65: segment

overrides
® A mostly-obsolete memory management feature

) Ox66 operand size override
® In 32-bit mode, operand is 16-bit (and vice-versa)

£) Ox67 address size override (rarely used)

£) OxfO lock: block concurrent access

©) Oxf2, Oxf3: repne and rep/repe, repeat string
operation

Xx86 condition codes

£) Six one-bit flags set based on math or comparison

results:
® CF: (unsigned) carry out
® OF: (signed) overflow
® ZF: result is zero
® SF: result is negative (“sign”)
® PF: parity of result (mostly historical)
® AF: adjustment needed for BCD (mostly historical)

) More about these when we cover branches

x86-32 operand sizes

©) Many general-purpose/integer arithmetic insns can
operate on 8, 16, or 32-bit values

£) Sometimes the byte insn has an even opcode and
the 32-bit opcode is one higher

) For a 16-bit version, use the 32-bit opcode with a

0x66 prefix byte
® Pre-386, these opcodes were 16-bit

x86-32 general-purpose registers

) 8, 32-bit reqisters for integers or pointers

©) In encoding order: eax, ecx, edx, ebx, esp, ebp,
esi, edi

£) Without the “e”, refers to the low 16-bits of the
32-bit register

Every register is special

esp: used as stack pointer by stack accesses

£) ebp: used as frame pointer by enter/leave
eax: some instructions can only apply to eax

£) edx: more-significant half associated with eax

£) ecx: used a count in loops and shifts

£) esi, edi: source and destination for string ops

The Mod + Reg/Opcode + R/M byte

£) Most insns with variable operands have an extra
byte to specify them

©) 3 fields: 2-bit Mod, 3-bit Reg/Opcode, 3-bit R/M

£) The Mod and R/M fields specify an operand that

could be in memory:
® If Mod=11 (byte > Oxc0), R/M specifies a register
® Else if R/M =100, see next slide
® Else, register addr maybe with 8 or 32-bit displacement

£) The Req field is the other operand, or a sub-opcode




Example ModR/M addressing modes

£) Opcode Oxff/000 means 32-bit increment
o ff 00 (00 000 000) :incl (Y%eax)
o ff 01 (00 000 001) :incl (%ecx)
o ff 40 (01 000 000) 05: incl 5(%eax)
o ff cO0 (11 000 000) :incl Yeax
o ff c1 (11 000 001) :incl Yecx

The SIB byte

£) More complex addressing modes use another byte
£) "SIB": 2-bit scale, 3-bit index register, 3-bit base
register
£) Base and index are added together, with the index
multiplied by 1, 2, 4, or 8
® Think: array indexing

) Base or index can also be omitted

Outline

x86-32 Arithmetic Basics

LEA for arithmetic

£) The computations used for addressing modes are
also available as a separate instruction lea
£) No memory access, just stores computed value in
another register
) Why?
® Addition of registers with constants and small multiples

® Three-address, unlike regular arithmetic
® Does not set condition codes

8 core binary operators

©) Opcodes 0x[0123] [01234589abcd] and
0x8[0123]

©) In encoding order: add, or, adc (“add with carry”),
sbb ("subtract with borrow”), and, sub, xor, cmp

©) cmp is like sub, but the result is discarded, useful
only for flags

Shift-family operations

£) Opcodes 0xcO, Oxcl, 0xdO, Oxdl, Oxd2, Oxd3

£ In encoding order: rol, ror, rcl, rcr, shl/sal,
shr, (sal), sar
£) The amount operand can be:

® An 8-bit immediate (OxcO and Oxcl)
® One position (0xdO and Oxdi)
® The low bits of ecx (0xd2 and Oxd3)

Shift-family operations (contd)

) rol, ror are circular bit rotation

©) rcl, rcr are (n + 1)-bit rotations that also
incorporate CF

©) shr is logical (unsigned) right shift, while sar is
arithmetic (signed) right shift

£) There is no logical/arithmetic distinction for left shift,

and only the 100 position is documented
® 110, which would be sal, is an undoc. synonym of 100

Unary-family operations

£) Opcodes 0xf6, Oxf7, Oxfe, and Oxff encode several
arithmetic operators with only a ModR/M operand

£) inc and dec are increment and decrement

©) not is bitwise not and neg is unary negation




Multiplication

£) Widening multiply has unsigned (mul) and signed
(imul) versions, and a unary encoding:
® One factor is always in eax
® The other factor is a register or memory location
® The product is in edx:eax
£) Same-size imul also has more flexible binary
encodings

Division and remainder

£) Division and remainder are always computed
together
©) There are unsigned (div) and signed (idiv)
versions, with a unary encoding:
® The dividend is in edx:eax
® The divisor is a register or memory location
® The quotient is in eax
® The remainder is in edx

x87-style floating point

©) In the 8086-80386 era, hardware floating point
required a separate chip

® The 8087 was more transistors and more expensive
than the 8086
) Pioneering but now-unusual design
® 80-bit extended register size
® Stack-structured register file

£) Opcodes 0xd8-0xdf, mnemonics starting with “f*

SIMD extensions

£) Since the Pentium era, repeated extensions have
added SIMD support
® Single Instruction Multiple Data: wide registers treated like

small arrays
8 MMX, SSE, AVX

£) Mostly separate register file and instructions

£) Two and three-byte opcodes with 0x66, Oxf2, and
Oxf3 reused to specify operand size

Outline

x86-32 to x86-64

X86-64 extension overview

©) Extended reqisters to 64 bits
£) 64-bit versions of most operations

£) Main use case was 64 bit pointers, but still 32-bit
ints
£) Doubled number of GPRs from 8 to 16
® Most RISC ISAs have 32

£) Mostly backwards-compatible

REX encoding

£) How to signal 64-bit ops, and name new registers?

£) Switch opcodes 0x40-0x4f into a new kind of prefix
byte with four extra bits

£) Bit 3 is set to 1 (e.g. 0x48) to indicate a 64-bit
operation

©) Other bits become the 4th bit of register numbers,
i.e. set means new registers

x86-64 registers

£) All the new register names start with “r"
£) x86-32 “e" registers extend to 64-bit by changing

“e” to r"
£) The new registers are r8 through ri5
£ Low 32-, 16-, and 8-bit parts are available with more
systematic names
® d, w, or 1 suffix




Implicit zero extension

) Operations on 8- and 16-bit subregisters leave the
rest unchanged
® Convenient for storing other data in high half
©) 32-bit operations in x86-64 are different: they
always set the high half to zero
® Convenient for mixing 32-bit and 64-bit computations

©) Exception: 0x90 (“xchg eax, eax”) is still a no-op

In Compiler Explorer

Outline




