
CSci 5980/8980
Manual and Automated Binary Reverse Engineering

Day 3: x86 Conditions and Control
Stephen McCamant

University of Minnesota

Outline

x86 conditions

Machine code branching

Machine code loops

Conditional branches

Basic control-flow instruction: go to another address
if a condition is true

Implements if, while, and more, structuring code
as a graph

x86 supports several conditions that are part of the
“jCC” instruction, or a few other families of
instructions

x86 opcode map

Conditions used with comparison

Signed comparison: l <, le �, g >, ge �

Unsigned comparison: b <, be �, a >, ae �
(“below” and “above”)

Equalty e

Every condition can be negated with n

Conditions from single flags

z, s, c, o, and p for ZF, SF, CF OF, and PF

s means negative, ns non-negative

p and np are also pe “parity even” and po “parity
odd”

Condition synonyms

Some conditions are synonyms, only 16 in total

8 pairs of opposites, negated by the low encoding bit

Remember comparison is like subtraction, so
ordering is related to sign of difference

Unsigned below b is the same as unsigned carry c

Signed less is (s XOR o)
e = z

nl = ge, etc.

Test conditions

and, or, and xor clear OF and CF, and set ZF, SF,
and PF based on the result

test is like and but only sets the flags discarding
the result

Checking nz after test is like if (x & mask) in C

test a register against itself is the fastest way to
check for zero or negative

Classifying jumps

Direct jump: target(s) specified in code

Indirect jump: target selected from runtime data like
register or memory contents

Conditional jump: target differs based on a condition

The plain words “jump” and “branch” are similar, but
usage differs as to which they cover

Short jumps

0xeb plus a 1-byte offset is an unconditional jump

0x7[0-f] plus a 1-byte offset is a conditional jump

Offset is signed, and interpreted relative to the
location of the next instruction

eb fe is an infinite loop

Commonly used for if (usually positive offsets) and
loops (usually negative offsets)

32-bit jumps

0xe9 plus a 4-byte offset is an unconditional jump

0x0f 0x8[0-f] plus a 4-byte offset is a conditional
jump
Offset is interpreted relative to the location of the
next instruction

e9 fb ff ff ff is an infinite loop

Offset is still 4 bytes in 64-bit mode, sign extended
Code bigger than 2GB would need other tricks

Conditional moves

cmovCC (0x0f 0x4[0-f]) is a 32/16/64-bit move
from register or memory into a register

But, the move only happens if the condition is true;
otherwise nothing happens

Useful for making decisions without changing
control-flow

setCC

setCC (0x0f 0x9[0-f]) sets a byte to 1 if a
condition is true, 0 otherwise

Like the behavior of C comparisons in the rare case
of storing them to a variable

But, the lack of zero-extension is somewhat
inconvenient

Indirect jumps

0xff/4 is a jump instruction where the target
comes from a register or memory

In AT&T syntax, operand prefixed with *, like
jmp *%eax

Most commonly used for jump tables (q.v.)

Calls and returns

A call is like a jump, but also pushes the address of
the next instruction on the stack

0xe8 with a 4-byte offset is a direct call
0xff/2 is an indirect call, commonly used for C function
pointers

Return ret (0xc3) is an indirect jump that pops its
address from the stack

Outline

x86 conditions

Machine code branching

Machine code loops

CFGs, basic blocks

It is useful to think of machine code in a graph
structure, called a control-flow graph
A node in a CFG is a group of adjacent instructions
called a basic block:

The only jumps into a basic block are to the first insn
The only jumps out of a basic block are from the last insn
I.e., a basic block always executes as a unit

Edges between blocks represent possible jumps

CFGs for simple branches

Domination relations

Basic block a dominates basic block b if every path
to b passes through a first; strictly dominates if
a 6= b

The immediate dominator a of b is the unique
“closest” dominator

a strictly dominates b, but there is no a 0 where a strictly
dominates a 0 and a 0 strictly dominates b

Post-dominators

Basic block b post-dominates a if every path
through a also passes through b later

Strict and immediate versions are analogous

The immediate post-dominator of a branch is the
block where execution “reconverges”

Linearizing a CFG to code Branches with jCC

The most general way to compile an if or if-else
statement is with a conditional jump
Note that the condition is inverted compared to the
way it’s written in source code

In simple if, condition to skip to the end
In if-else, condition to skip to else block

Also need an unconditional jump to skip the else
block

Compound conditions

Logical && and || usually compile to more
conditional jumps

if (A && B) S ! if (A) { if (B) S }

if (A || B) S ! if (A) S else if (B) S

But only one copy of S needed

Branches with conditional moves

If the branch sides are simple and have limited side
effects, straight-line code with a conditional move
may be faster
Intuitively, though not strictly, like if versus ?: in C

Actually C’s ?: short-circuits too

Benefits on modern CPU architectures:
Low cost to execute both sides (e.g. in parallel)
High cost of branch misprediction

Many-way branching

How about choosing between among many options,
like a C switch?
One option is to use a lot of 2-way branches

For a switch, a balanced binary-search-like tree is better
than a long if-else-if chain

For a sufficiently large and dense choice, using an
indirect jump is usually faster

Computed jump

Potentially, could space code equally and directly
compute a jump target

But this is rare, including because it would need
special assembler support

Jump table

More common approach is an array of jump targets,
indexed like an array

Usually also has a bounds check

Jump tables are a common kind of data to be
intermixed with code, which can be a challenge for
disassembly

Outline

x86 conditions

Machine code branching

Machine code loops

Loops

The source-code concept of a loop corresponds to
a cycle in the CFG

In C, while and do while loops differ in whether
the check comes before or after the body

for loops are syntactic sugar for while loops

CFG loop patterns

Rotating loop intuition

Since a loop is a cycle, it stays basically the same
when the parts are rotated

But must still keep entrances and exits at the right places

In source, break can exit anywhere

Source loops usually enter at the start
Inelegant alternatives: goto, code duplication, first
iteration flag

Loop optimizations

Some of the most interesting compiler optimizations
transform loops

Sweet spot of valuable but not too hard

Undo these optimizations in reverse engineering
when it makes the code more natural

Induction variables

An induction variable has a value that is a linear
function of the loop iteration count

Inefficient: counter and multiplication

Efficient: add constant on each iteration

E.g., equivalence of array indexing and pointer
traversal

Tail-call elimination

A tail call is a recursive call that is the last operation
on an execution path

The call and return can be replaced with a jump
back to the function beginning

Considered critical for functional languages, not as
important for C

More loop optimizations

Count up ! count down

Merge adjacent loops

Unroll groups of iterations, or all of them

