
CSci 5980/8980
Manual and Automated Binary Reverse Engineering

Slides 4: x86 Functions
Stephen McCamant

University of Minnesota

Outline

x86 functions

Data in functions

Data structures

The stack

“The” stack is a memory region used for
function-related data

Growth is stack-structured, but some random access

Always allocated in multiples of 4 (32-bit) / 8
(64-bit) bytes

Grows towards numerically lower addresses

%rsp always points at lowest in-use location

Push and pop instructions

push allocates one space and stores a value there

pop loads the top value and moves the stack pointer
to deallocate it
Possible operands:

Push and pop of registers has a compact encoding
(0x5[0-f])
Can also push a constant, or push and pop memory
locations
Some special registers accessed by push/pop

Offset-based stack accesses

Can access stack locations as offsets from %rsp

“Top” is offset 0, older values are larger offsets
Offsets always a multiple of 4/8

Also, allocate with sub and deallocate with add

Mixing push/pop and offsets is confusing to people

Argument and return registers

In 64-bit, first 6 integer/pointer arguments are
passed in six registers

rdi, rsi, rdx, rcx, r8, r9
“Diane’s silk dress costs $89”

Return value is in eax/rax
edx/rdx avalilable for high bits

Sharing registers

The registers have to be shared by all functions
Need a usage convention to avoid conflicts

Mostly seen so far: scratch registers
Includes all the registers on the last slide

Might be modified by any function call

Convenient for leaf functions, but not around calls

Preserving registers

Other convention: preserved registers appear not
modified by a function call

More convenient for local variables in non-leaf functions

If all code is in a function, how can preserved
registers be used?
Must save old value before use, and restore later

Commonly by push, and pop in reverse order

Which registers are preserved?

For 64-bit, two part rule:
The low registers with b in the name (rbx, rbp)
The high registers numbered r12 and higher

esi and edi are preserved in 32-bit code

esp is also preserved, in a sense

Stack frames

The area of the stack used by a function invocation
is one stack frame

Frames also form a stack at a coarser granularity

Return addresses mark the boundary between
frames
In 64-bit, frames have 16-byte alignment

With return address is at an even multiple of 8

Stack-based argument passing

Stack locations are used for arguments after the
sixth on x86-64

And for all integer arguments on x86-32

Just before return address, first argument on top
I.e., pushed in reverse order

At function start, 0(%esp) is return address, args
start at 4(%esp) (32-bit) or 8(%rsp) (64-bit)

Variable-argument functions

The stack argument order is chosen because C has
variable-argument functions like printf

Varargs function implementations use macros va start,
va arg, etc.

First argument determines how many later
arguments there are

In the Windows world, this Linux/x86-32 calling
convention is called cdecl

Varargs functions on x86-64

Variable arguments are still passed in registers

But usually pushed on the stack on the
implementation side

So they can be referenced by pointers

Weird quirk: number of arguments in SIMD registers
passed in %al

To avoid saving SIMD registers if not needed

Frame pointers

A frame pointer is a second stack pointer that stays
fixed relative to the stack frame

Conventionally %ebp/%rbp

Makes it easier to reference arguments and other
stack variables when also using push/pop

But compilers can just do the math

Traditionally default on x86-32, now rare except
with alloca

x86-32 frame pointer conventions

%ebp is preserved, so caller’s value must be saved

Conventionally, the first thing saved and last restored

My %ebp points at the caller’s saved %ebp

Return address at 4(%ebp), args start at 8(%ebp)
Negative offsets from %ebp used for local variables, etc.

Instructions enter and leave embody this
convention

alloca

The function alloca allocates space within the
current stack frame

Automatically freed on exit, like local variables

Implemented just by changing the stack pointer
But requires a frame pointer since the size is dynamic

Convenient and available on most Unix systems, but
never standardized

Stack backtraces

Can we recover the structure of stack frames at
runtime?

Used in GDB’s backtrace and related debugging features

Traditional implementation followed the chain of
frame pointers
Now, debugging metadata maps from code locations
to stack depth

More complex, but more efficient at runtime

Outline

x86 functions

Data in functions

Data structures

Local variables

Local (C auto) variables are stored in registers or
on the stack

Stack or preserved registers needed if live across
function calls
The same location might hold different variables at
different times

As long as their live ranges are disjoint
Registers more often reused, since the stack is cheap

Global variables

Global variables are stored at static memory
locations

.data section, or .bss for zero-initialized

Location is a constant determined after linking
In assembly, a label

Also C function-static variables

Position-independent code

For shared libraries and better ASLR, let code
execute at different addresses

Runtime relocations (locations fixups) are an alternative
But changing code has startup-time and sharing penalties

For direct jumps, this is automatic from the relative
offset encoding

Assuming caller and callee compiled together

RIP-relative addressing

x86-64 mechanism for PIC data accesses: offset
from program counter

Takes over mod=00, r/m = 5 32-bit displacement
Non-RIP mode available via SIB encoding

Computed by linker once code and data locations
determined

Quite low overhead compared to non-PIC

x86-32 PIC

Older approach: global data pointer in %ebx

Initialize by stub call to get PC, add offset

Performance hit from losing a register for other
purposes

And x86-32 has fewer registers to start with

This cost slowed adoption of full ASLR (PIE)

Runtime relocations

PIC still needs runtime relocations for, e.g., initialized
global function pointers

Part of �100,000 instruction startup cost for glibc

Windows demonstrates a relocation-only approach
is also viable

Especially with fewer small programs and multi-process
servers

Memory segments

Primary memory management feature in 16-bit era:
separate 64k areas

CS, SS and DS are defaults for code, stack, and
non-stack data accesses
ES, later FS and GS also available via overrides

Size limits on segments provided isolation
In 32-bit paging era, mostly unused

All default segments set to address same flat memory

Largely removed in x86-64

Thread-local storage

Threads share memory but have own registers

Want some data in multi-threaded programs to be
private to each thread

Classic example: errno “global”

x86-32 and -64 OSes use FS or GS for this
purpose

Segments set up by kernel, selected in user space

Stack canaries

Security feature: check if return address has been
overwritten

-fstack-protector in GCC, enabled in many
distributions

Store random value on stack, check if changed

The per-execution canary value is stored with
thread-local data

Relatively harder for attacks to access

Outline

x86 functions

Data in functions

Data structures

C pointer arithmetic

C pointers are pretty much addresses

Use same registers and operators as integer values
Most common operation is pointer + offset = pointer

Biggest difference: pointer arithmetic unit is object
size

I.e., integers multiplied by object size
This makes pointer types important

Arrays and pointers

C arrays are just objects next to each other in
memory

No other runtime information like size

Array indexing is just pointer arithmetic
Arrays decay to pointer to first element in many places

Traditional local and global arrays are fixed-sized

C99 variable-length local arrays are like alloca

Multidimensional arrays

Multidimensional arrays are “rectangular” object
layouts

C convention is row-major, i.e. contiguous last dimension

Computing an element location involves multiplication

Different from multi-level array of array pointers
(Despite the same access syntax in C)

Structs and unions

Objects of mixed type can be grouped in structs

Contiguous (except padding)

Fields identified by byte offsets

Union is the less-common counterparts where the
objects overlap

I.e., every offset is 0
Only one is usable at once

Alignment

An atomic-typed value is naturally aligned if its
address is a multiple of its size
Unaligned values are harder for hardware to support

Unaligned integers on x86 work but are slower
Unsupported for x86 SIMD and many other ISAs

Compound types (arrays and structs) inherit
alignment from their contents

Alignment in structs

A struct has the same alignment requirement as any
field

Padding appears between elements that need more
alignment
Padding after the last element ensures the struct’s
size is a multiple of its alignment

E.g., for arrays of the struct

Indistinguishable structures

A struct of same-type elements is like a fixed-size
array

Potentially identical at the machine-code level
Difference: an array allows variable indexing

Nested structs (not pointers) look like one big struct

Adjacent same-type arrays look like one big one

Statically allocated structs look like separate
variables

