CSci 5980/8980
Manual and Automated Binary Reverse Engineering
Slides 4: x86 Functions

Stephen McCamant
University of Minnesota

Outline

x86 functions

The stack

£) “The" stack is a memory region used for
function-related data
® Growth is stack-structured, but some random access

©) Always allocated in multiples of 4 (32-bit) / 8
(64-bit) bytes

£) Grows towards numerically lower addresses

©) %rsp always points at lowest in-use location

Push and pop instructions

© push allocates one space and stores a value there

£) pop loads the top value and moves the stack pointer
to deallocate it
£) Possible operands:
® Push and pop of registers has a compact encoding
(0x5[0-£])
® Can also push a constant, or push and pop memory
locations
® Some special registers accessed by push/pop

Offset-based stack accesses

£) Can access stack locations as offsets from %rsp

® “Top” is offset O, older values are larger offsets
m Offsets always a multiple of 4/8

©) Also, allocate with sub and deallocate with add
©) Mixing push/pop and offsets is confusing to people

Argument and return registers

©) In 64-bit, first 6 integer/pointer arguments are
passed in six registers
® rdi, rsi, rdx, rcx, r8, r9
® “Diane’s silk dress costs $89”
£) Return value is in eax/rax
® edx/rdx avalilable for high bits

Sharing registers

£) The registers have to be shared by all functions
® Need a usage convention to avoid conflicts

©) Mostly seen so far: scratch registers
® Includes all the registers on the last slide

£) Might be modified by any function call

£) Convenient for leaf functions, but not around calls

Preserving reqisters

£) Other convention: preserved registers appear not
modified by a function call
= More convenient for local variables in non-leaf functions
o If all code is in a function, how can preserved
registers be used?
£) Must save old value before use, and restore later
® Commonly by push, and pop in reverse order

Which registers are preserved?

©) For 64-bit, two part rule:

® The low registers with b in the name (rbx, rbp)
® The high registers numbered r12 and higher

©) esi and edi are preserved in 32-bit code
£) esp is also preserved, in a sense

Stack frames

£) The area of the stack used by a function invocation
is one stack frame

£) Frames also form a stack at a coarser granularity

£) Return addresses mark the boundary between

frames
£) In 64-bit, frames have 16-byte alignment
® With return address is at an even multiple of 8

Stack-based argument passing

) Stack locations are used for arguments after the
sixth on x86-64
©) And for all integer arguments on x86-32
©) Just before return address, first argument on top
® le, pushed in reverse order

©) At function start, 0(%esp) is return address, args
start at 4 (%esp) (32-bit) or 8(%rsp) (64-bit)

Variable-argument functions

£) The stack argument order is chosen because C has
variable-argument functions like printf
® Varargs function implementations use macros va start,
va_arg, etc.

) First argument determines how many later
arguments there are

£) In the Windows world, this Linux/x86-32 calling
convention is called cdecl

Varargs functions on x86-64

) Variable arguments are still passed in registers

©) But usually pushed on the stack on the
implementation side
® So they can be referenced by pointers
©) Weird quirk: number of arguments in SIMD registers

passed in %al
® To avoid saving SIMD registers if not needed

Frame pointers

£) A frame pointer is a second stack pointer that stays
fixed relative to the stack frame
® Conventionally %ebp//rbp
£) Makes it easier to reference arguments and other
stack variables when also using push/pop
® But compilers can just do the math
£) Traditionally default on x86-32, now rare except
with alloca

x86-32 frame pointer conventions

©) %ebp is preserved, so caller's value must be saved
©) Conventionally, the first thing saved and last restored

) My %ebp points at the caller's saved %ebp

® Return address at 4 (%ebp), args start at 8 (%ebp)
® Negative offsets from %ebp used for local variables, etc.

©) Instructions enter and leave embody this
convention

alloca

£) The function alloca allocates space within the
current stack frame
©) Automatically freed on exit, like local variables
©) Implemented just by changing the stack pointer
® But requires a frame pointer since the size is dynamic
£) Convenient and available on most Unix systems, but
never standardized

Stack backtraces

©) Can we recover the structure of stack frames at
runtime?
® Used in GDB's backtrace and related debugging features
©) Traditional implementation followed the chain of
frame pointers
©) Now, debugging metadata maps from code locations
to stack depth
® More complex, but more efficient at runtime

Outline

Data in functions

Local variables

©) Local (C auto) variables are stored in registers or
on the stack

©) Stack or preserved registers needed if live across
function calls

©) The same location might hold different variables at
different times

® As long as their live ranges are disjoint
® Registers more often reused, since the stack is cheap

Global variables

£) Global variables are stored at static memory
locations
® .data section, or .bss for zero-initialized
£) Location is a constant determined after linking
® In assembly, a label

) Also C function-static variables

Position-independent code

©) For shared libraries and better ASLR, let code
execute at different addresses
® Runtime relocations (locations fixups) are an alternative
® But changing code has startup-time and sharing penalties
©) For direct jumps, this is automatic from the relative
offset encoding
® Assuming caller and callee compiled together

RIP-relative addressing

£) x86-64 mechanism for PIC data accesses: offset
from program counter
® Takes over mod=00, r/m = 5 32-bit displacement
® Non-RIP mode available via SIB encoding
£) Computed by linker once code and data locations
determined

£) Quite low overhead compared to non-PIC

x86-32 PIC

©) Older approach: global data pointer in %ebx
o) Initialize by stub call to get PC, add offset

) Performance hit from losing a register for other
purposes
® And x86-32 has fewer registers to start with

£) This cost slowed adoption of full ASLR (PIE)

Runtime relocations

£) PIC still needs runtime relocations for, e.g,, initialized
global function pointers
® Part of ~100,000 instruction startup cost for glibc
£) Windows demonstrates a relocation-only approach
is also viable

® Especially with fewer small programs and multi-process
servers

Memory segments

©) Primary memory management feature in 16-bit era:

separate 64k areas
® CS, SS and DS are defaults for code, stack, and
non-stack data accesses
® ES, later FS and GS also available via overrides

©) Size limits on segments provided isolation

©) In 32-bit paging era, mostly unused
® All default segments set to address same flat memory

©) Largely removed in x86-64

Thread-local storage

£) Threads share memory but have own registers

£) Want some data in multi-threaded programs to be
private to each thread
® Classic example: errno “global”

£) x86-32 and -64 OSes use FS or GS for this
purpose
£) Segments set up by kernel, selected in user space

Stack canaries

©) Security feature: check if return address has been
overwritten
® -fstack-protector in GCC, enabled in many
distributions

) Store random value on stack, check if changed
£) The per-execution canary value is stored with

thread-local data
® Relatively harder for attacks to access

Outline

Data structures

C pointer arithmetic

©) C pointers are pretty much addresses
£) Use same registers and operators as integer values
® Most common operation is pointer + offset = pointer
) Biggest difference: pointer arithmetic unit is object
size
® le, integers multiplied by object size
® This makes pointer types important

Arrays and pointers

£) C arrays are just objects next to each other in
memory
® No other runtime information like size

©) Array indexing is just pointer arithmetic
® Arrays decay to pointer to first element in many places
£) Traditional local and global arrays are fixed-sized

£) C99 variable-length local arrays are like alloca

Multidimensional arrays

£) Multidimensional arrays are “rectangular” object

layouts
® C convention is row-major, i.e. contiguous last dimension

©) Computing an element location involves multiplication

) Different from multi-level array of array pointers
® (Despite the same access syntax in C)

Structs and unions

£) Objects of mixed type can be grouped in structs
) Contiguous (except padding)
) Fields identified by byte offsets

£) Union is the less-common counterparts where the

objects overlap
® le, every offset is O
® Only one is usable at once

Alignment

©) An atomic-typed value is naturally aligned if its
address is a multiple of its size
©) Unaligned values are harder for hardware to support

® Unaligned integers on x86 work but are slower
® Unsupported for x86 SIMD and many other ISAs

£) Compound types (arrays and structs) inherit
alignment from their contents

Alignment in structs

£) A struct has the same alignment requirement as any
field

©) Padding appears between elements that need more
alignment
£) Padding after the last element ensures the struct's

size is a multiple of its alignment
® Eg, for arrays of the struct

Indistinguishable structures

©) A struct of same-type elements is like a fixed-size
array
» Potentially identical at the machine-code level
m Difference: an array allows variable indexing

£) Nested structs (not pointers) look like one big struct
©) Adjacent same-type arrays look like one big one

©) Statically allocated structs look like separate
variables

