CSci 5980/8980
Manual and Automated Binary Reverse Engineering
Slides 5: The ELF Binary File Format

Stephen McCamant
University of Minnesota

Outline

ELF basics

Executable/object file formats

£) Modern systems usually use a common format for
relocatable object files during compilation and final
executables

©) Mostly binary data representing code and data

©) Plus metadata allowing the data to be linked and
loaded

Brief history of binary file formats (Unix)

£) Early Unix had a simple a.out format
® Lasted until early days of free Linux/BSD, now obsolete
£) AT&T's second try was named COFF
» Still limited, but widely adopted with changes
£) AT&T's third try was ELF, now used in almost all Unix
systems

Brief history of binary file formats (non-Unix)

©) Early DOS and Windows had several limited formats

£) Since the 32-bit era, Windows uses the PE (Portable
Executable) format
® Partially derived from COFF
£) OS X era Apple (including iOS, etc) uses a format
named Mach-O

® First developed for the Mach microkernel used on the
NeXT

Compile-time and run-time

£) Some file features are used during compilation
® Typically first created by assembler, then used/modified
by the linker
) Other features are used when the program runs
® By the OS when the program starts
® And now also by runtime linking

Static and dynamic/shared linking

) Traditional “static” linking happens all at compile time
® Libraries become indistinguishable from the rest of the
program
£) For efficiency and flexibility, it is now more common
to postpone library linking until runtime
® At startup, or later in execution

® Library code stays separate, so its memory can be
shared

ELF

©) Executable (or Extensible) and Linking (or Linkable)
Format

£) First appeared in System V Release 4 Unix, c. 1989

©) Linux switched to ELF c. 1995

® In part because theyd chosen a hard-to-use approach to
aout shared libraries
® BSD switched later, ¢. 1998-2000




Segments and sections

£) The run-time structure of an ELF executable divides
it into segments
® The table describing segments is the program headers
£) The compile-time structure of an ELF file divides it
into sections
® The table describing segments is the section headers

©) Commonly several sections make up a segment

High-level ELF file structure

£ A fixed-size header with a magic number \x7fELF
and basic information

©) The program headers

£) Code and data that are loaded when the program
runs

£) Data that isn't normally loaded, like debugging
symbols

©) The section headers

Kinds of ELF files

©) Relocatable object . o files (Windows: .obj)

©) Executables (Windows: .exe)

©) Dynamic/shared object . so files (Windows: .d11)
£) Core dumps

The two main segments

©) The code segment contains executable code, and
read-only data

£) The data segment contains writeable data

£) Both are type LOAD

£) The segments are arranged this way so only two
memory mappings are needed

Other common segments

©) INTERP: holds pathname of dynamic loader
£) DYNAMIC: information used by dynamic linking
) (GNU_)STACK: specifies stack permissions

©) NOTE: miscellaneous data; in core dumps, register
values

The main sections

©) .text: most code

£) .rodata: read-only data like string constants
£) .data: initialized data (values stored in file)
£) .bss: zero-initialized data (zeros not stored)

Other common sections

©) .init/.fini: startup/cleanup code

£) .rel.*/.rela.*: relocation information
£) . comment: compiler version number

©) .eh_frame: exception-handling metadata
©) .debug_*: debugging information

Outline

Static and dynamic linking




Static linking

£) At compile time, combining . o files into an
executable binary

©) The Unix linker is traditionally called 1d

£) Generally, content from the same section of each
object file is grouped together

©) Traditionally, the linker chooses a fixed address for
the binary to be loaded at

Static linking vs. PIE

) Standard fixed addresses:

® x86-32: Starting at 0x08480000
® x86-64: Code at 0x400000, data at 0x600000

©) Recent systems default to making even the main
executable position independent
® PIE = position-independent executable
£) PIE binaries look like shared libraries, and look on

disk like they start at address O
® At run-time, these offsets added to a random base

Static libraries

©) Unix static libraries end in . a, and are just archives
of .o files
® Program ar was once a relative of tar

£) The .o file are the unit of code inclusion
® So, often one per API function
©) Transitive requirements and ordering are not
automatic

Relocation

£) Content in . o files must be fixed up when final
locations chosen
) The relocation table tells the linker how

® Gives location, target symbol, machine-specific type
® An additional offset (“addend”) may be stored in the
original bytes or in the table

£) Relocations are always size-preserving

Symbol table

) ELF files that define symbols list them in a symbol
table section .symtab

©) Can examine with nm as well as objdump

©) By default, finished executables include the symbol

table
® But it is removed by strip

Static program startup

£) Static programs are loaded just by the kernel, and
fairly simple

©) Code and data regions are mapped as if by mmap
(demand paged)

£) Stack is initialized with arguments, environment
variables, and auxiliary vector auxv

©) Execution starts at the entry point

Kinds of dynamic linking

©) Automatic: libraries chosen at compile time, loaded
before main
® See list with 1dd
® Linking process transparent to code, like static
£) On-demand: requested by program
® Open library with d1open, lookup symbol with d1sym (in
library 1ibdl)
® Used for things like plugins

Dynamic program startup

£) The kernel loads both the program and the dynamic

loader 1d.so
® Full name, eq,, /1ib64/1d-1inux-x86-64.50.2

£) 1d. so runs first and performs linking
® Then returns control to the main program

£) You can also invoke 1d.so manually




Dynamic linking structures

©) Dynamic linking uses ELF file structures separate but
analogous to static linking, e.g.
® .dynamic section is DYNAMIC segment
® Dynamic symbols .dynsym (cf nm -D)
® Dynamic relocations .rela.dyn
) Calls to dynamically-linked functions use code stubs
in the PLT referencing pointers in the GOT

The PLT and GOT

£) The Procedure Linkage Table (PLT) contains a code
stub for each called function from an external library
® The static linker makes calls to, eg, printf@plt, in place
of a static function address
£) PLT stubs reference function pointers stored in the
Global Offset Table (GOT)
® Eg. a pointer holding the location of printf in the C
library

Lazy resolution vs. RELRO

©) To save startup time, symbol lookup for a function is
often delayed until the first call, “lazy”
©) On the other hand, dynamic linker structures are
useful for attackers
® Writeable function pointers with a standard layout
©) RELRO (relocation read-only) configurations make
more dynamic linking state read-only after startup

©) Full RELRO disables lazy resolution




