
CSci 5980/8980
Manual and Automated Binary Reverse Engineering

Slides 5: The ELF Binary File Format
Stephen McCamant

University of Minnesota

Outline

ELF basics

Static and dynamic linking

Executable/object file formats

Modern systems usually use a common format for
relocatable object files during compilation and final
executables

Mostly binary data representing code and data

Plus metadata allowing the data to be linked and
loaded

Brief history of binary file formats (Unix)

Early Unix had a simple a.out format
Lasted until early days of free Linux/BSD, now obsolete

AT&T’s second try was named COFF
Still limited, but widely adopted with changes

AT&T’s third try was ELF, now used in almost all Unix
systems

Brief history of binary file formats (non-Unix)

Early DOS and Windows had several limited formats

Since the 32-bit era, Windows uses the PE (Portable
Executable) format

Partially derived from COFF

OS X era Apple (including iOS, etc) uses a format
named Mach-O

First developed for the Mach microkernel used on the
NeXT

Compile-time and run-time

Some file features are used during compilation
Typically first created by assembler, then used/modified
by the linker

Other features are used when the program runs
By the OS when the program starts
And now also by runtime linking

Static and dynamic/shared linking

Traditional “static” linking happens all at compile time
Libraries become indistinguishable from the rest of the
program

For efficiency and flexibility, it is now more common
to postpone library linking until runtime

At startup, or later in execution
Library code stays separate, so its memory can be
shared

ELF

Executable (or Extensible) and Linking (or Linkable)
Format

First appeared in System V Release 4 Unix, c. 1989

Linux switched to ELF c. 1995
In part because they’d chosen a hard-to-use approach to
a.out shared libraries
BSD switched later, c. 1998-2000



Segments and sections

The run-time structure of an ELF executable divides
it into segments

The table describing segments is the program headers

The compile-time structure of an ELF file divides it
into sections

The table describing segments is the section headers

Commonly several sections make up a segment

High-level ELF file structure

A fixed-size header with a magic number \x7fELF
and basic information
The program headers
Code and data that are loaded when the program
runs
Data that isn’t normally loaded, like debugging
symbols
The section headers

Kinds of ELF files

Relocatable object .o files (Windows: .obj)

Executables (Windows: .exe)

Dynamic/shared object .so files (Windows: .dll)

Core dumps

The two main segments

The code segment contains executable code, and
read-only data

The data segment contains writeable data

Both are type LOAD

The segments are arranged this way so only two
memory mappings are needed

Other common segments

INTERP: holds pathname of dynamic loader

DYNAMIC: information used by dynamic linking

(GNU )STACK: specifies stack permissions

NOTE: miscellaneous data; in core dumps, register
values

The main sections

.text: most code

.rodata: read-only data like string constants

.data: initialized data (values stored in file)

.bss: zero-initialized data (zeros not stored)

Other common sections

.init/.fini: startup/cleanup code

.rel.*/.rela.*: relocation information

.comment: compiler version number

.eh frame: exception-handling metadata

.debug *: debugging information

Outline

ELF basics

Static and dynamic linking



Static linking

At compile time, combining .o files into an
executable binary

The Unix linker is traditionally called ld

Generally, content from the same section of each
object file is grouped together

Traditionally, the linker chooses a fixed address for
the binary to be loaded at

Static linking vs. PIE

Standard fixed addresses:
x86-32: Starting at 0x08480000
x86-64: Code at 0x400000, data at 0x600000

Recent systems default to making even the main
executable position independent

PIE = position-independent executable

PIE binaries look like shared libraries, and look on
disk like they start at address 0

At run-time, these offsets added to a random base

Static libraries

Unix static libraries end in .a, and are just archives
of .o files

Program ar was once a relative of tar

The .o file are the unit of code inclusion
So, often one per API function

Transitive requirements and ordering are not
automatic

Relocation

Content in .o files must be fixed up when final
locations chosen
The relocation table tells the linker how

Gives location, target symbol, machine-specific type
An additional offset (“addend”) may be stored in the
original bytes or in the table

Relocations are always size-preserving

Symbol table

ELF files that define symbols list them in a symbol
table section .symtab

Can examine with nm as well as objdump

By default, finished executables include the symbol
table

But it is removed by strip

Static program startup

Static programs are loaded just by the kernel, and
fairly simple

Code and data regions are mapped as if by mmap

(demand paged)

Stack is initialized with arguments, environment
variables, and auxiliary vector auxv

Execution starts at the entry point

Kinds of dynamic linking

Automatic: libraries chosen at compile time, loaded
before main

See list with ldd

Linking process transparent to code, like static

On-demand: requested by program
Open library with dlopen, lookup symbol with dlsym (in
library libdl)
Used for things like plugins

Dynamic program startup

The kernel loads both the program and the dynamic
loader ld.so

Full name, e.g., /lib64/ld-linux-x86-64.so.2

ld.so runs first and performs linking
Then returns control to the main program

You can also invoke ld.so manually



Dynamic linking structures

Dynamic linking uses ELF file structures separate but
analogous to static linking, e.g.:

.dynamic section is DYNAMIC segment
Dynamic symbols .dynsym (c.f. nm -D)
Dynamic relocations .rela.dyn

Calls to dynamically-linked functions use code stubs
in the PLT referencing pointers in the GOT

The PLT and GOT

The Procedure Linkage Table (PLT) contains a code
stub for each called function from an external library

The static linker makes calls to, e.g., printf@plt, in place
of a static function address

PLT stubs reference function pointers stored in the
Global Offset Table (GOT)

E.g. a pointer holding the location of printf in the C
library

Lazy resolution vs. RELRO

To save startup time, symbol lookup for a function is
often delayed until the first call, “lazy”
On the other hand, dynamic linker structures are
useful for attackers

Writeable function pointers with a standard layout

RELRO (relocation read-only) configurations make
more dynamic linking state read-only after startup

Full RELRO disables lazy resolution


