CSci 5980/8980
Manual and Automated Binary Reverse Engineering
Slides 6: Binary RE for rewriting

Stephen McCamant
University of Minnesota

Application: binary rewriting

£) Key use for automated binary RE: enable modification
£ Instrumentation, optimization, security hardening
£) Needs limited capabilities, but highly accurate

Static vs. dynamic rewriting

) Static rewriting: transform complete binary before
execution

©) Dynamic rewriting: rewrite parts of code as they are
executed

£) Dynamic rewriting needs less analysis, but more
infrastructure

©) Reverse engineering is more closely related to static
rewriting

Disassembly: the easy problem

£) Given a starting location, what instruction is it?
® le, HWI1 question 1
£) Conceptually, not too hard
® Like a big lookup table
) Practically still not easy to perfectly cover a large
ISA

Disassembly: the hard problem

©) Finding what locations in a binary are code to
execute

©) Includes distinguishing code from data

©) Also harder on ISAs with variable-length/unaligned
instructions

£) Solving precisely is undecidable

Linear sweep disassembly

£) Start at beginning of code, assume every instruction
is followed directly by another
® Computing instruction length is “easy”
) Classic implementation: objdump

£) Works well for well-behaved binaries (esp. GCC on
X86)

® Strict separation between code and data
® With aligned instructions, easy to get a superset

Recursive disassembly

) Statically follow control flow from an entry point

® Explore both sides of branches
® Explore callee and after a function call

) False positives from no-return functions
) False negatives from indirect jumps

Superset disassembly

£) Ultimate approach to deal with variable-length
instructions:
® Disassemble starting at every byte offset

-+ No missed instructions
— Guaranteed to also have lots of junk




Indirect jump analysis

©) Key gap in recursive disassembly: code reachable
(only) via indirect jumps
£) Precise analysis is still undecidable

£) But partial or over/under-approximations are
possible

Jump tables

£) One easier case of indirect jumps: switch
statements

£ Jump target comes from a nearby lookup table

£) But must determine structure and bounds of the
table

VTables

©) Implementation of C+ virtual method dispatch

©) Table of method implementations, layout specified by
C+ ABI

©) Enumerating targets simpler than recovering
inheritance structure

Function pointers

£) Hardest case of indirect jumps in C code
£) Use can be unstructured
® Eg, stored in complex heap data structures
£) For disassembly, just need all targets, not jump to
targets map
£) Approximation: find all code-address-like values
used to initialize

Function boundaries

©) Nice to have but not truly needed for rewriting
©) Many good approximations, hard to get perfectly

©) Depending on the compiler, may not be a unique
right answer

Symbols vs. stripped

£) Many binary rewriting tools fudge by requiring some
symbol information
£) Enables some but not all use cases

£) Worst case: require special compiler to save
information no real compiler saves

) Best case: metadata already needed for ASLR or PIE

Reassembleable disassembly

) Better but even harder: recover assembly code that
uses labels

©) Enables rewriting just by changing output and
re-assembling

©) A 2015 paper pointed out this was desirable but not
available

£) My opinion: still no fully satisfactory implementation

Label symbolization

) Identify which occurrences of the bit pattern
0x4011e2 are meant to point to the function that
currently lives there

©) Also undecidable, but FPs and FNs are both hard to
live with

) Fairly simple heuristics get tantalizing close

£) Expensive analysis like symbolic execution can also
help




Type analysis

) Definitely also reverse engineering, but IMO not so
closely related to rewriting

) Better the subject of its own survey
) We'll also come back to this later




