
CSci 5980/8980
Manual and Automated Binary Reverse Engineering

Slides 6: Binary RE for rewriting
Stephen McCamant

University of Minnesota

Application: binary rewriting

Key use for automated binary RE: enable modification

Instrumentation, optimization, security hardening

Needs limited capabilities, but highly accurate

Static vs. dynamic rewriting

Static rewriting: transform complete binary before
execution
Dynamic rewriting: rewrite parts of code as they are
executed
Dynamic rewriting needs less analysis, but more
infrastructure
Reverse engineering is more closely related to static
rewriting

Disassembly: the easy problem

Given a starting location, what instruction is it?
I.e., HW1 question 1

Conceptually, not too hard
Like a big lookup table

Practically still not easy to perfectly cover a large
ISA

Disassembly: the hard problem

Finding what locations in a binary are code to
execute

Includes distinguishing code from data

Also harder on ISAs with variable-length/unaligned
instructions

Solving precisely is undecidable

Linear sweep disassembly

Start at beginning of code, assume every instruction
is followed directly by another

Computing instruction length is “easy”

Classic implementation: objdump

Works well for well-behaved binaries (esp. GCC on
x86)

Strict separation between code and data
With aligned instructions, easy to get a superset

Recursive disassembly

Statically follow control flow from an entry point
Explore both sides of branches
Explore callee and after a function call

False positives from no-return functions

False negatives from indirect jumps

Superset disassembly

Ultimate approach to deal with variable-length
instructions:

Disassemble starting at every byte offset

+ No missed instructions

- Guaranteed to also have lots of junk



Indirect jump analysis

Key gap in recursive disassembly: code reachable
(only) via indirect jumps

Precise analysis is still undecidable

But partial or over/under-approximations are
possible

Jump tables

One easier case of indirect jumps: switch
statements

Jump target comes from a nearby lookup table

But must determine structure and bounds of the
table

VTables

Implementation of C++ virtual method dispatch

Table of method implementations, layout specified by
C++ ABI

Enumerating targets simpler than recovering
inheritance structure

Function pointers

Hardest case of indirect jumps in C code

Use can be unstructured
E.g., stored in complex heap data structures

For disassembly, just need all targets, not jump to
targets map

Approximation: find all code-address-like values
used to initialize

Function boundaries

Nice to have but not truly needed for rewriting

Many good approximations, hard to get perfectly

Depending on the compiler, may not be a unique
right answer

Symbols vs. stripped

Many binary rewriting tools fudge by requiring some
symbol information

Enables some but not all use cases

Worst case: require special compiler to save
information no real compiler saves

Best case: metadata already needed for ASLR or PIE

Reassembleable disassembly

Better but even harder: recover assembly code that
uses labels

Enables rewriting just by changing output and
re-assembling

A 2015 paper pointed out this was desirable but not
available

My opinion: still no fully satisfactory implementation

Label symbolization

Identify which occurrences of the bit pattern
0x4011e2 are meant to point to the function that
currently lives there
Also undecidable, but FPs and FNs are both hard to
live with
Fairly simple heuristics get tantalizing close
Expensive analysis like symbolic execution can also
help



Type analysis

Definitely also reverse engineering, but IMO not so
closely related to rewriting

Better the subject of its own survey

We’ll also come back to this later


