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Data Path 
•  State 

•  Program counter register (PC) 
•  Condition code register (CC) 
•  Register File 
•  Memories 

•  Access same memory space 
•  Data: for reading/writing program 

data 
•  Instruction: for reading 

instructions 

•  Instruction Flow 
•  Read instruction at address 

specified by PC 
•  Process through stages 
•  Update program counter 
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Stages 
•  Fetch 

•  Read instruction from instruction 
memory 

•  Decode 
•  Read program registers 

•  Execute 
•  Compute value or address 

•  Memory 
•  Read or write data 

•  Write Back 
•  Write program registers 

•  PC 
•  Update program counter 

Instruction 
memory Instruction 
memory PC 

increment PC 
increment 

CC CC 
ALU ALU 

Data 
memory Data 
memory 

Fetch 

Decode 

Execute 

Memory 

Write back 

icode ,  ifun 
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Instruction Decoding 

•  Instruction Format 
•  Instruction byte  icode:ifun 
•  Optional register byte  rA:rB 
•  Optional constant word  valC 

5 0 rA rB D 

icode 
ifun 

rA 
rB 

valC 

Optional Optional 
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Executing Arith./Logical Operation 

• Fetch 
•  Read 2 bytes 

• Decode 
•  Read operand registers 

• Execute 
•  Perform operation 
•  Set condition codes 

• Memory 
•  Do nothing 

• Write back 
•  Update register 

• PC Update 
•  Increment PC by 2 

OPl rA, rB 6 fn rA rB 
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Stage Computation: Arith/Log. Ops 

•  Formulate instruction execution as sequence of simple steps 
•  Use same general form for all instructions 

OPl rA, rB 
icode:ifun ← M1[PC] 
rA:rB ← M1[PC+1] 
  
valP ← PC+2 

Fetch 

Read instruction byte 
Read register byte 
  
Compute next PC 

valA ← R[rA] 
valB ← R[rB] 

Decode Read operand A 
Read operand B 

valE ← valB OP valA 
Set CC 

Execute Perform ALU operation 
Set condition code register 

   Memory    
R[rB] ← valE 
  

Write 

back 
Write back result 
  

PC ← valP PC update Update PC 



4 

With Slides from Bryant and O’Hallaron 

Executing rmmovl 

• Fetch 
•  Read 6 bytes 

• Decode 
•  Read operand registers 

• Execute 
•  Compute effective address 

• Memory 
•  Write to memory 

• Write back 
•  Do nothing 

• PC Update 
•  Increment PC by 6 

rmmovl rA, D(rB) 4 0 rA rB D 
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Stage Computation: rmmovl 

•  Use ALU for address computation 

rmmovl rA, D(rB) 
icode:ifun ← M1[PC] 
rA:rB ← M1[PC+1] 
valC ← M4[PC+2] 
valP ← PC+6 

Fetch 

Read instruction byte 
Read register byte 
Read displacement D 
Compute next PC 

valA ← R[rA] 
valB ← R[rB] 

Decode Read operand A 
Read operand B 

valE ← valB + valC Execute Compute effective address 

 M4[valE] ← valA Memory Write value to memory   

  
Write 

back   
PC ← valP PC update Update PC 
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Executing popl 

• Fetch 
•  Read 2 bytes 

• Decode 
•  Read stack pointer 

• Execute 
•  Increment stack pointer by 4 

• Memory 
•  Read from old stack pointer 

• Write back 
•  Update stack pointer 
•  Write result to register 

• PC Update 
•  Increment PC by 2 

popl rA b 0 rA 8 
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Stage Computation: popl 

•  Use ALU to increment stack pointer 
•  Must update two registers 

•  Popped value 
•  New stack pointer 

popl rA 
icode:ifun ← M1[PC] 
rA:rB ← M1[PC+1] 
  
valP ← PC+2 

Fetch 

Read instruction byte 
Read register byte 
  
Compute next PC 

valA ← R[%esp] 
valB ← R [%esp] 

Decode Read stack pointer 
Read stack pointer 

valE ← valB + 4 Execute Increment stack pointer 

valM ← M4[valA] Memory Read from stack  
R[%esp] ← valE 
R[rA] ← valM 

Write 

back 
Update stack pointer 
Write back result 

PC ← valP PC update Update PC 
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Executing Jumps 

• Fetch 
•  Read 5 bytes 
•  Increment PC by 5 

• Decode 
•  Do nothing 

• Execute 
•  Determine whether to take 

branch based on jump 
condition and condition codes 

• Memory 
•  Do nothing 

• Write back 
•  Do nothing 

• PC Update 
•  Set PC to Dest if branch 

taken or to incremented PC if 
not branch 

jXX Dest 7 fn Dest 

XX XX fall thru: 

XX XX target: 

Not taken 

Taken 
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Stage Computation: Jumps 

•  Compute both addresses 
•  Choose based on setting of condition codes and branch condition 

jXX Dest 
icode:ifun ← M1[PC] 

valC ← M4[PC+1] 
valP ← PC+5 

Fetch 

Read instruction byte 

Read destination address 
Fall through address 

Decode 

Cnd ← Cond(CC,ifun) 
Execute 

Take branch? 
   Memory    

  
Write 

back   
PC ← Cnd ? valC : valP PC update Update PC 
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Executing call 

• Fetch 
•  Read 5 bytes 
•  Increment PC by 5 

• Decode 
•  Read stack pointer 

• Execute 
•  Decrement stack pointer by 

4 

• Memory 
•  Write incremented PC to new 

value of stack pointer 

• Write back 
•  Update stack pointer 

• PC Update 
•  Set PC to Dest 

call Dest 8 0 Dest 

XX XX return: 

XX XX target: 
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Stage Computation: call 

•  Use ALU to decrement stack pointer 
•  Store incremented PC 

call Dest 
icode:ifun ← M1[PC] 

 valC ← M4[PC+1] 
valP ← PC+5 

Fetch 

Read instruction byte 

Read destination address  
Compute return point 

valB ← R[%esp] 
Decode 

Read stack pointer 
valE ← valB + –4 Execute Decrement stack pointer 

M4[valE] ← valP  Memory Write return value on stack  
R[%esp] ← valE 
  

Write 

back 
Update stack pointer 
  

PC ← valC PC update Set PC to destination 
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Executing ret 

• Fetch 
•  Read 1 byte 

• Decode 
•  Read stack pointer 

• Execute 
•  Increment stack pointer by 4 

• Memory 
•  Read return address from 

old stack pointer 

• Write back 
•  Update stack pointer 

• PC Update 
•  Set PC to return address 

ret 9 0 

XX XX return: 
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Stage Computation: ret 

•  Use ALU to increment stack pointer 
•  Read return address from memory 

ret 

icode:ifun ← M1[PC] 

  
Fetch 

Read instruction byte 

  

valA ← R[%esp] 
valB ← R[%esp] 

Decode Read operand stack pointer 
Read operand stack pointer 

valE ← valB + 4 Execute Increment stack pointer 

valM ← M4[valA]   Memory Read return address 
R[%esp] ← valE 
  

Write 

back 
Update stack pointer 
  

PC ← valM PC update Set PC to return address 
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Computation Steps 

•  All instructions follow same general pattern 
•  Differ in what gets computed on each step 

OPl rA, rB 
icode:ifun ← M1[PC] 
rA:rB ← M1[PC+1] 
  
valP ← PC+2 

Fetch 

Read instruction byte 
Read register byte 
[Read constant word] 
Compute next PC 

valA ← R[rA] 
valB ← R[rB] 

Decode Read operand A 
Read operand B 

valE ← valB OP valA 
Set CC 

Execute Perform ALU operation 
Set condition code register 

   Memory [Memory read/write]   
R[rB] ← valE 
  

Write 

back 
Write back ALU result 
[Write back memory result]  

PC ← valP PC update Update PC 

icode,ifun 
rA,rB 
valC 
valP 
valA, srcA 
valB, srcB 
valE 
Cond code 
valM 
dstE 
dstM 
PC 
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Computation Steps 

•  All instructions follow same general pattern 
•  Differ in what gets computed on each step 

call Dest 

Fetch 

Decode 

Execute 

Memory 
Write 

back 
PC update 

icode,ifun 
rA,rB 
valC 
valP 
valA, srcA 
valB, srcB 
valE 
Cond code 
valM 
dstE 
dstM 
PC 

icode:ifun ← M1[PC] 

valC ← M4[PC+1] 
valP ← PC+5 

valB ← R[%esp] 
valE ← valB + –4 

M4[valE] ← valP  
R[%esp] ← valE 
  
PC ← valC 

Read instruction byte 
[Read register byte] 
Read constant word 
Compute next PC 
[Read operand A] 
Read operand B 
Perform ALU operation 
[Set condition code reg.] 
[Memory read/write]   
[Write back ALU result] 
Write back memory result 
Update PC 
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3 Simulators 

•  The most widely used methodology in computer architecture research 
•  Using a simulator to mimic the functionality and performance metrics of a 

target computer 
•  Why simulator? 

•  The system that we are studying is not yet built 
•  Observe internal state that is not observable 

•  Different levels of abstraction 
•  Functional 
•  Micro-architectural 
•  Gate-level 
•  Circuit level 

 

--- We will use three Y86 simulators in this class  

With Slides from Bryant and O’Hallaron 

misc/yis: The ISA simulator 

In misc/yis.c:   
for (step = 0; step < max_steps && e == STAT_AOK; step++) 

        e = step_state(s, stdout); 

Output state change 

In misc/isa.c 
stat_t step_state(state_ptr s, FILE *error_file) 

{ 

    ftpc++; 

    hi0 = HI4(byte0); 

    lo0 = LO4(byte0); 

    …  

} 
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misc/yis: The ISA simulator 

In misc/isa.c 
stat_t step_state(state_ptr s, FILE *error_file) 

{ 
   …  

   if (need_regids) { 
        ok1 = get_byte_val(s->m, ftpc, &byte1); 

        ftpc++; 
        hi1 = HI4(byte1); 

        lo1 = LO4(byte1); 

    } 
   if (need_imm) { 

        okc = get_word_val(s->m, ftpc, &cval); 
        ftpc += 4; 

    }    

    …  

} 
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misc/yis: The ISA simulator 

In misc/isa.c 
stat_t step_state(state_ptr s, FILE *error_file) 

{ 

    …  

 switch (hi0) { 

    case I_NOP: 

        s->pc = ftpc; 

        break; 

    case I_HALT: 

        …  

    case I_RRMOVL: 

       …  

 } 



12 

With Slides from Bryant and O’Hallaron 

SEQ Datapath 

•  Key 
•  Blue boxes:     predesigned 

hardware blocks 
•  E.g., memories, ALU 

•  Gray boxes:             
control logic 

•  Describe in HCL 
•  White ovals:                      

labels for signals 
•  Thick lines:                     

32-bit word values 
•  Thin lines:                         

4-8 bit values 
•  Dotted lines:                     

1-bit values 
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Hardware Control Language 

•  Very simple hardware description language 
•  Can only express limited aspects of hardware operation 

•  Parts we want to explore and modify 
Data Types 

•   bool: Boolean 
•  a, b, c, … 

•   int: words 
•  A, B, C, … 
•  Does not specify word size---bytes, 32-bit words, … 

Statements 
•   bool a = bool-expr ; 
•   int A = int-expr ; 
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HCL Operations 

•  Classify by type of value returned 
Boolean Expressions 

•  Logic Operations 
•   a && b, a || b, !a 

•  Word Comparisons 
•  A == B, A != B, A < B, A <= B, A >= B, A > B 

•  Set Membership 
•   A in { B, C, D } 

•  Same as A == B || A == C || A == D 

Word Expressions 
•  Case expressions 

•   [ a : A; b : B; c : C ] 
•  Evaluate test expressions a, b, c, … in sequence 
•  Return word expression A, B, C, … for first successful test 
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seq/ssim: The Sequential Simulator 

Compilation process: 
•  ../misc/hcl2c -n seq-std.hcl <seq-std.hcl >seq-std.c 

•  gcc -Wall -O2  -I../misc  -o ssim seq-std.c ssim.c ../misc/isa.c  -lm 

In seq/ssim.c:   
int sim_main(int argc, char **argv)  { 

  run_tty_sim();      

} 

Run_tty_sim()  { 

 icount = sim_run(instr_limit, &status, &result_cc); 

}  
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seq/ssim: The Sequential Simulator 

In seq/ssim.c 
int sim_run(int max_instr, byte_t *statusp, cc_t *ccp) 

{ 

    while (icount < max_instr) { 

        run_status = sim_step(); 

        icount++; 

        if (run_status != STAT_AOK) 

            break; 

    } 

} 
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seq/ssim: The Sequential Simulator 

In seq/ssim.c 
static byte_t sim_step()  { 

    update_state(); /* Update state from last cycle */ 

    valp = pc; 

    instr = …  

    imem_error = …; 

    imem_icode = HI4(instr); 

    imem_ifun = LO4(instr); 

    icode = gen_icode(); 

    ifun  = gen_ifun(); 

    instr_valid = gen_instr_valid(); 

    …  
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seq/ssim: The Sequential Simulator 

In seq/ssim.c 
static byte_t sim_step()  { 

 …  

     if (gen_need_regids()) { …  

     if (gen_need_valC()) { …  

     srcB = gen_srcB(); 

    if (srcB != REG_NONE) { 

        valb = get_reg_val(reg, srcB); 

    …  

    cond = cond_holds(cc, ifun); 

    destE = gen_dstE(); 

    destM = gen_dstM();  
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seq/ssim: The Sequential Simulator 

In seq/seq-std.hcl 
# Determine instruction code 

int icode = [ 

        imem_error: INOP; 

        1: imem_icode;          # Default: get from instruction memory 

]; 

 

# Determine instruction function 

int ifun = [ 

        imem_error: FNONE; 

        1: imem_ifun;           # Default: get from instruction memory 

]; 
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seq/ssim: The Sequential Simulator 

In seq/seq-std.hcl 
# Does fetched instruction require a regid byte? 

bool need_regids = 

        icode in { IRRMOVL, IOPL, IPUSHL, IPOPL, 

                     IIRMOVL, IRMMOVL, IMRMOVL }; 

 

# Does fetched instruction require a constant word? 

bool need_valC = 

        icode in { IIRMOVL, IRMMOVL, IMRMOVL, IJXX, ICALL }; 
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seq/ssim: The Sequential Simulator 

In seq/seq-std.c 
int gen_icode()   { … } 

int gen_ifun()   { … } 

int gen_need_regids()  { 

  return ((icode) == (I_RRMOVL) || (icode) == (I_ALU) || (icode) == 

      (I_PUSHL) || (icode) == (I_POPL) || (icode) == (I_IRMOVL) || (icode) 

       == (I_RMMOVL) || (icode) == (I_MRMOVL)); 

} 

int gen_need_valC() {… } 
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Fetch Logic 

•  Predefined Blocks 
•  PC: Register containing PC 
•  Instruction memory: Read 6 bytes (PC to PC+5) 

•  Signal invalid address 
•  Split: Divide instruction byte into icode and ifun 
•  Align: Get fields for rA, rB, and valC 

Instruction 
memory 

PC 
increment 

rB icode ifun rA 

PC 

valC valP 

Need 
regids 

Need 
valC 

Instr 
valid 

Align Split 
Bytes 1-5 Byte 0 

imem_error 

icode ifun 
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Fetch Logic 

•  Control Logic 
•  Instr. Valid: Is this instruction valid? 
•  icode, ifun: Generate no-op if invalid address 
•  Need regids: Does this instruction have a register byte? 
•  Need valC: Does this instruction have a constant word? 

Instruction 
memory 

PC 
increment 

rB icode ifun rA 

PC 

valC valP 

Need 
regids 

Need 
valC 

Instr 
valid 

Align Split 
Bytes 1-5 Byte 0 

imem_error 

icode ifun 
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Fetch Control Logic in 
HCL 

# Determine instruction code 
int icode = [ 

 imem_error: INOP; 

 1: imem_icode; 

]; 

 

# Determine instruction function 

int ifun = [ 

 imem_error: FNONE; 

 1: imem_ifun; 

]; 

Instruction 
memory 

PC 

Split 
Byte 0 

imem_error 

icode ifun 

With Slides from Bryant and O’Hallaron 

Fetch Control Logic in 
HCL 

bool need_regids = 

 icode in { IRRMOVL, IOPL, IPUSHL, IPOPL,  

       IIRMOVL, IRMMOVL, IMRMOVL }; 

 

bool instr_valid = icode in  

 { INOP, IHALT, IRRMOVL, IIRMOVL, IRMMOVL, IMRMOVL, 

        IOPL, IJXX, ICALL, IRET, IPUSHL, IPOPL }; 

pushl rA A 0 rA 8 

jXX Dest 7 fn Dest 

popl rA B 0 rA 8 

call Dest 8 0 Dest 

cmovXX rA, rB 2 fn rA rB 

irmovl V, rB 3 0 8 rB V 

rmmovl rA, D(rB) 4 0 rA rB D 

mrmovl D(rB), rA 5 0 rA rB D 

OPl rA, rB 6 fn rA rB 

ret 9 0 

nop 1 0 

halt 0 0 
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Decode Logic 

•  Register File 
•  Read ports A, B 
•  Write ports E, M 
•  Addresses are register IDs or 15 

(0xF) (no access) 

Control Logic 
n  srcA, srcB: read port 

addresses 
n  dstE, dstM: write port 

addresses rB 

dstE dstM srcA srcB 

Register 
file 

A B 
M 

E 
dstE dstM srcA srcB 

icode rA 

valB valA valE valM Cnd 

Signals 
n  Cnd: Indicate whether or not 

to perform conditional move 
n  Computed in Execute stage 
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A Source 

int srcA = [ 
 icode in { IRRMOVL, IRMMOVL, IOPL, IPUSHL  } : rA; 

 icode in { IPOPL, IRET } : RESP; 

 1 : RNONE; # Don't need register 

]; 

cmovXX rA, rB 
valA ← R[rA] Decode Read operand A 

rmmovl rA, D(rB) 
valA ← R[rA] Decode Read operand A 

popl rA 
valA ← R[%esp] Decode Read stack pointer 

jXX Dest 
Decode No operand 

call Dest 

valA ← R[%esp] Decode Read stack pointer 
ret 

Decode No operand 

OPl rA, rB 
valA ← R[rA] Decode Read operand A 
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E Destination 

int dstE = [ 
 icode in { IRRMOVL } && Cnd : rB; 

 icode in { IIRMOVL, IOPL} : rB; 

 icode in { IPUSHL, IPOPL, ICALL, IRET } : RESP; 

 1 : RNONE;  # Don't write any register 

]; 

None 

R[%esp] ← valE Update stack pointer 

None 

R[rB] ← valE 
cmovXX rA, rB 

Write-back 

rmmovl rA, D(rB) 

popl rA 

jXX Dest 

call Dest 

ret 

Write-back 

Write-back 

Write-back 

Write-back 

Write-back 

Conditionally write 
back result 

R[%esp] ← valE Update stack pointer 

R[%esp] ← valE Update stack pointer 

R[rB] ← valE 
OPl rA, rB 

Write-back Write back result 
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Execute Logic 

•  Units 
•  ALU 

•  Implements 4 required functions 
•  Generates condition code values 

•  CC 
•  Register with 3 condition code 

bits 
•  cond 

•  Computes conditional jump/move 
flag 

•  Control Logic 
•  Set CC: Should condition code 

register be loaded? 
•  ALU A: Input A to ALU 
•  ALU B: Input B to ALU 
•  ALU fun: What function should 

ALU compute? 

CC ALU 

ALU 
A 

ALU 
B 

ALU 
fun. 

Cnd 

icode ifun valC valB valA 

valE 

Set 
CC 

cond 
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ALU A  
Input 

int aluA = [ 
 icode in { IRRMOVL, IOPL } : valA; 

 icode in { IIRMOVL, IRMMOVL, IMRMOVL } : valC; 

 icode in { ICALL, IPUSHL } : -4; 

 icode in { IRET, IPOPL } : 4; 

 # Other instructions don't need ALU 

]; 

valE ← valB + –4 Decrement stack pointer 

No operation 

valE ← valB + 4 Increment stack pointer 

valE ← valB + valC Compute effective address 

valE ← 0 + valA Pass valA through ALU 
cmovXX rA, rB 

Execute 

rmmovl rA, D(rB) 

popl rA 

jXX Dest 

call Dest 

ret 

Execute 

Execute 

Execute 

Execute 

Execute valE ← valB + 4 Increment stack pointer 

valE ← valB OP valA Perform ALU operation 
OPl rA, rB 

Execute 
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ALU 
Oper- 
ation 

int alufun = [ 
 icode == IOPL : ifun; 

 1 : ALUADD; 

]; 

valE ← valB + –4 Decrement stack pointer 

No operation 

valE ← valB + 4 Increment stack pointer 

valE ← valB + valC Compute effective address 

valE ← 0 + valA Pass valA through ALU 
cmovXX rA, rB 

Execute 

rmmovl rA, D(rB) 

popl rA 

jXX Dest 

call Dest 

ret 

Execute 

Execute 

Execute 

Execute 

Execute valE ← valB + 4 Increment stack pointer 

valE ← valB OP valA Perform ALU operation 
OPl rA, rB 

Execute 
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Memory Logic 

•  Memory 
•  Reads or writes memory word 

•  Control Logic 
•  stat: What is instruction 

status? 
•  Mem. read: should word be 

read? 
•  Mem. write: should word be 

written? 
•  Mem. addr.: Select address 
•  Mem. data.: Select data 

Data 
memory 

Mem. 
read 

Mem. 
addr 

read 

write 

data out 

Mem. 
data 

valE 

valM 

valA valP 

Mem. 
write 

data in 

icode 

Stat 

dmem_error 

instr_vali
d 

imem_erro
r 

stat 
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Instruction Status 

•  Control Logic 
•  stat: What is instruction 

status? 
Data 

memory 

Mem. 
read 

Mem. 
addr 

read 

write 

data out 

Mem. 
data 

valE 

valM 

valA valP 

Mem. 
write 

data in 

icode 

Stat 

dmem_error 

instr_vali
d 

imem_erro
r 

stat 

## Determine instruction status 
int Stat = [ 

 imem_error || dmem_error : SADR; 

 !instr_valid: SINS; 

 icode == IHALT : SHLT; 

 1 : SAOK; 

]; 
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Memory Address 
OPl rA, rB 

Memory 

rmmovl rA, D(rB) 

popl rA 

jXX Dest 

call Dest 

ret 

   No operation  

 M4[valE] ← valA Memory Write value to memory   

valM ← M4[valA] Memory Read from stack  

M4[valE] ← valP  Memory Write return value on stack  

valM ← M4[valA]   Memory Read return address 

Memory    No operation  

int mem_addr = [ 

 icode in { IRMMOVL, IPUSHL, ICALL, IMRMOVL } : valE; 

 icode in { IPOPL, IRET } : valA; 

 # Other instructions don't need address 

]; 
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Memory Read 

OPl rA, rB 
Memory 

rmmovl rA, D(rB) 

popl rA 

jXX Dest 

call Dest 

ret 

   No operation  

 M4[valE] ← valA Memory Write value to memory   

valM ← M4[valA] Memory Read from stack  

M4[valE] ← valP  Memory Write return value on stack  

valM ← M4[valA]   Memory Read return address 

Memory    No operation  

bool mem_read = icode in { IMRMOVL, IPOPL, IRET }; 
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PC Update Logic 

•  New PC 
•  Select next value of PC 

New 
PC 

Cnd icode valC valP valM 

PC 
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PC 
Update OPl rA, rB 

rmmovl rA, D(rB) 

popl rA 

jXX Dest 

call Dest 

ret 

PC ← valP PC update Update PC 

PC ← valP PC update Update PC 

PC ← valP PC update Update PC 

PC ← Cnd ? valC : valP PC update Update PC 

PC ← valC PC update Set PC to destination 

PC ← valM PC update Set PC to return address 

int new_pc = [ 
 icode == ICALL : valC; 

 icode == IJXX && Cnd : valC; 

 icode == IRET : valM; 

 1 : valP; 

]; 
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SEQ Operation 

•  State 
•  PC register 
•  Cond. Code register 
•  Data memory 
•  Register file 
All updated as clock rises 

•  Combinational Logic 
•  ALU 
•  Control logic 
•  Memory reads 

•  Instruction memory 
•  Register file 
•  Data memory 

Combinational
Logic Data

memory
Data

memory

Register
file

Register
file

PC
0x00c

CCCC
Read
Ports

Write
Ports

Read WriteRead Write
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Combinational
Logic Data

memory
Data

memory

Register
file

%ebx = 0x100

Register
file

%ebx = 0x100

PC
0x00c

CC
100
CC
100

Read
Ports

Write
Ports

Read WriteRead Write

0x00c: addl %edx,%ebx      # %ebx <-- 0x300 CC <-- 000

0x00e: je dest             # Not taken

Cycle 3:

Cycle 4:

0x006: irmovl $0x200,%edx  # %edx <-- 0x200Cycle 2:

0x000: irmovl $0x100,%ebx  # %ebx <-- 0x100Cycle 1:

Clock
Cycle 1 Cycle 2 Cycle 3 Cycle 4

SEQ 
Operation #2 

•  state set according to 
second irmovl 
instruction 

•  combinational logic 
starting to react to 
state changes 
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0x00c: addl %edx,%ebx      # %ebx <-- 0x300 CC <-- 000

0x00e: je dest             # Not taken

Cycle 3:

Cycle 4:

0x006: irmovl $0x200,%edx  # %edx <-- 0x200Cycle 2:

0x000: irmovl $0x100,%ebx  # %ebx <-- 0x100Cycle 1:

Clock
Cycle 1 Cycle 2 Cycle 3 Cycle 4

SEQ 
Operation #3 

•  state set according to 
second irmovl instruction 

•  combinational logic 
generates results for addl 
instruction 

Combinational
Logic Data

memory
Data

memory

Register
file

%ebx = 0x100

Register
file

%ebx = 0x100

PC
0x00c

CC
100
CC
100

Read
Ports

Write
Ports

0x00e

000

Read WriteRead Write
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0x00c: addl %edx,%ebx      # %ebx <-- 0x300 CC <-- 000

0x00e: je dest             # Not taken

Cycle 3:

Cycle 4:

0x006: irmovl $0x200,%edx  # %edx <-- 0x200Cycle 2:

0x000: irmovl $0x100,%ebx  # %ebx <-- 0x100Cycle 1:

Clock
Cycle 1 Cycle 2 Cycle 3 Cycle 4

SEQ 
Operation #4 

•  state set according 
to addl instruction 

•  combinational logic 
starting to react to 
state changes 

Combinational
Logic Data

memory
Data

memory

Register
file

%ebx = 0x300

Register
file

%ebx = 0x300

PC
0x00e

CC
000
CC
000

Read
Ports

Write
Ports

Read WriteRead Write
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0x00c: addl %edx,%ebx      # %ebx <-- 0x300 CC <-- 000

0x00e: je dest             # Not taken

Cycle 3:

Cycle 4:

0x006: irmovl $0x200,%edx  # %edx <-- 0x200Cycle 2:

0x000: irmovl $0x100,%ebx  # %ebx <-- 0x100Cycle 1:

Clock
Cycle 1 Cycle 2 Cycle 3 Cycle 4

SEQ 
Operation #5 

•  state set according 
to addl instruction 

•  combinational logic 
generates results 
for je instruction 

Combinational
Logic Data

memory
Data

memory

Register
file

%ebx = 0x300

Register
file

%ebx = 0x300

PC
0x00e

CC
000
CC
000

Read
Ports

Write
Ports

0x013

Combinational
Logic Data

memory
Data

memory

Register
file

%ebx = 0x300

Register
file

%ebx = 0x300

PC
0x00e

CC
000
CC
000

Read
Ports

Write
Ports

0x013

Read WriteRead Write
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SEQ Summary 

•  Implementation 
•  Express every instruction as series of simple steps 
•  Follow same general flow for each instruction type 
•  Assemble registers, memories, predesigned combinational blocks 
•  Connect with control logic 

•  Limitations 
•  Too slow to be practical 
•  In one cycle, must propagate through instruction memory, register 

file, ALU, and data memory 
•  Would need to run clock very slowly 
•  Hardware units only active for fraction of clock cycle 


