
1

Architecture
(Sequential Implementation)

Antonia Zhai
Department Computer Science and Engineering

University of Minnesota

http://www.cs.umn.edu/~zhai

CSCI 2021: Machine Architecture and Organization

With Slides from Bryant and O’Hallaron

With Slides from Bryant and O’Hallaron

Data Path
•  State

•  Program counter register (PC)
•  Condition code register (CC)
•  Register File
•  Memories

•  Access same memory space
•  Data: for reading/writing program

data
•  Instruction: for reading

instructions

•  Instruction Flow
•  Read instruction at address

specified by PC
•  Process through stages
•  Update program counter

Instruction
memory Instruction
memory PC

increment PC
increment

CC CC
ALU ALU

Data
memory Data
memory

Fetch

Decode

Execute

Memory

Write back

icode , ifun
rA , rB

valC

Register
file Register
file

A B M
E Register

file Register
file

A B M
E

PC

valP

srcA , srcB
dstA , dstB

valA , valB

aluA , aluB
Cnd

valE

Addr , Data

valM

PC
valE , valM
newPC

2

With Slides from Bryant and O’Hallaron

Stages
•  Fetch

•  Read instruction from instruction
memory

•  Decode
•  Read program registers

•  Execute
•  Compute value or address

•  Memory
•  Read or write data

•  Write Back
•  Write program registers

•  PC
•  Update program counter

Instruction
memory Instruction
memory PC

increment PC
increment

CC CC
ALU ALU

Data
memory Data
memory

Fetch

Decode

Execute

Memory

Write back

icode , ifun
rA , rB

valC

Register
file Register
file

A B M
E Register

file Register
file

A B M
E

PC

valP

srcA , srcB
dstA , dstB

valA , valB

aluA , aluB
Cnd

valE

Addr , Data

valM

PC
valE , valM
newPC

With Slides from Bryant and O’Hallaron

Instruction Decoding

•  Instruction Format
•  Instruction byte icode:ifun
•  Optional register byte rA:rB
•  Optional constant word valC

5 0 rA rB D

icode
ifun

rA
rB

valC

Optional Optional

3

With Slides from Bryant and O’Hallaron

Executing Arith./Logical Operation

• Fetch
•  Read 2 bytes

• Decode
•  Read operand registers

• Execute
•  Perform operation
•  Set condition codes

• Memory
•  Do nothing

• Write back
•  Update register

• PC Update
•  Increment PC by 2

OPl rA, rB 6 fn rA rB

With Slides from Bryant and O’Hallaron

Stage Computation: Arith/Log. Ops

•  Formulate instruction execution as sequence of simple steps
•  Use same general form for all instructions

OPl rA, rB
icode:ifun ← M1[PC]
rA:rB ← M1[PC+1]

valP ← PC+2

Fetch

Read instruction byte
Read register byte

Compute next PC

valA ← R[rA]
valB ← R[rB]

Decode Read operand A
Read operand B

valE ← valB OP valA
Set CC

Execute Perform ALU operation
Set condition code register

 Memory
R[rB] ← valE

Write

back
Write back result

PC ← valP PC update Update PC

4

With Slides from Bryant and O’Hallaron

Executing rmmovl

• Fetch
•  Read 6 bytes

• Decode
•  Read operand registers

• Execute
•  Compute effective address

• Memory
•  Write to memory

• Write back
•  Do nothing

• PC Update
•  Increment PC by 6

rmmovl rA, D(rB) 4 0 rA rB D

With Slides from Bryant and O’Hallaron

Stage Computation: rmmovl

•  Use ALU for address computation

rmmovl rA, D(rB)
icode:ifun ← M1[PC]
rA:rB ← M1[PC+1]
valC ← M4[PC+2]
valP ← PC+6

Fetch

Read instruction byte
Read register byte
Read displacement D
Compute next PC

valA ← R[rA]
valB ← R[rB]

Decode Read operand A
Read operand B

valE ← valB + valC Execute Compute effective address

 M4[valE] ← valA Memory Write value to memory

Write

back
PC ← valP PC update Update PC

5

With Slides from Bryant and O’Hallaron

Executing popl

• Fetch
•  Read 2 bytes

• Decode
•  Read stack pointer

• Execute
•  Increment stack pointer by 4

• Memory
•  Read from old stack pointer

• Write back
•  Update stack pointer
•  Write result to register

• PC Update
•  Increment PC by 2

popl rA b 0 rA 8

With Slides from Bryant and O’Hallaron

Stage Computation: popl

•  Use ALU to increment stack pointer
•  Must update two registers

•  Popped value
•  New stack pointer

popl rA
icode:ifun ← M1[PC]
rA:rB ← M1[PC+1]

valP ← PC+2

Fetch

Read instruction byte
Read register byte

Compute next PC

valA ← R[%esp]
valB ← R [%esp]

Decode Read stack pointer
Read stack pointer

valE ← valB + 4 Execute Increment stack pointer

valM ← M4[valA] Memory Read from stack
R[%esp] ← valE
R[rA] ← valM

Write

back
Update stack pointer
Write back result

PC ← valP PC update Update PC

6

With Slides from Bryant and O’Hallaron

Executing Jumps

• Fetch
•  Read 5 bytes
•  Increment PC by 5

• Decode
•  Do nothing

• Execute
•  Determine whether to take

branch based on jump
condition and condition codes

• Memory
•  Do nothing

• Write back
•  Do nothing

• PC Update
•  Set PC to Dest if branch

taken or to incremented PC if
not branch

jXX Dest 7 fn Dest

XX XX fall thru:

XX XX target:

Not taken

Taken

With Slides from Bryant and O’Hallaron

Stage Computation: Jumps

•  Compute both addresses
•  Choose based on setting of condition codes and branch condition

jXX Dest
icode:ifun ← M1[PC]

valC ← M4[PC+1]
valP ← PC+5

Fetch

Read instruction byte

Read destination address
Fall through address

Decode

Cnd ← Cond(CC,ifun)
Execute

Take branch?
 Memory

Write

back
PC ← Cnd ? valC : valP PC update Update PC

7

With Slides from Bryant and O’Hallaron

Executing call

• Fetch
•  Read 5 bytes
•  Increment PC by 5

• Decode
•  Read stack pointer

• Execute
•  Decrement stack pointer by

4

• Memory
•  Write incremented PC to new

value of stack pointer

• Write back
•  Update stack pointer

• PC Update
•  Set PC to Dest

call Dest 8 0 Dest

XX XX return:

XX XX target:

With Slides from Bryant and O’Hallaron

Stage Computation: call

•  Use ALU to decrement stack pointer
•  Store incremented PC

call Dest
icode:ifun ← M1[PC]

 valC ← M4[PC+1]
valP ← PC+5

Fetch

Read instruction byte

Read destination address
Compute return point

valB ← R[%esp]
Decode

Read stack pointer
valE ← valB + –4 Execute Decrement stack pointer

M4[valE] ← valP Memory Write return value on stack
R[%esp] ← valE

Write

back
Update stack pointer

PC ← valC PC update Set PC to destination

8

With Slides from Bryant and O’Hallaron

Executing ret

• Fetch
•  Read 1 byte

• Decode
•  Read stack pointer

• Execute
•  Increment stack pointer by 4

• Memory
•  Read return address from

old stack pointer

• Write back
•  Update stack pointer

• PC Update
•  Set PC to return address

ret 9 0

XX XX return:

With Slides from Bryant and O’Hallaron

Stage Computation: ret

•  Use ALU to increment stack pointer
•  Read return address from memory

ret

icode:ifun ← M1[PC]

Fetch

Read instruction byte

valA ← R[%esp]
valB ← R[%esp]

Decode Read operand stack pointer
Read operand stack pointer

valE ← valB + 4 Execute Increment stack pointer

valM ← M4[valA] Memory Read return address
R[%esp] ← valE

Write

back
Update stack pointer

PC ← valM PC update Set PC to return address

9

With Slides from Bryant and O’Hallaron

Computation Steps

•  All instructions follow same general pattern
•  Differ in what gets computed on each step

OPl rA, rB
icode:ifun ← M1[PC]
rA:rB ← M1[PC+1]

valP ← PC+2

Fetch

Read instruction byte
Read register byte
[Read constant word]
Compute next PC

valA ← R[rA]
valB ← R[rB]

Decode Read operand A
Read operand B

valE ← valB OP valA
Set CC

Execute Perform ALU operation
Set condition code register

 Memory [Memory read/write]
R[rB] ← valE

Write

back
Write back ALU result
[Write back memory result]

PC ← valP PC update Update PC

icode,ifun
rA,rB
valC
valP
valA, srcA
valB, srcB
valE
Cond code
valM
dstE
dstM
PC

With Slides from Bryant and O’Hallaron

Computation Steps

•  All instructions follow same general pattern
•  Differ in what gets computed on each step

call Dest

Fetch

Decode

Execute

Memory
Write

back
PC update

icode,ifun
rA,rB
valC
valP
valA, srcA
valB, srcB
valE
Cond code
valM
dstE
dstM
PC

icode:ifun ← M1[PC]

valC ← M4[PC+1]
valP ← PC+5

valB ← R[%esp]
valE ← valB + –4

M4[valE] ← valP
R[%esp] ← valE

PC ← valC

Read instruction byte
[Read register byte]
Read constant word
Compute next PC
[Read operand A]
Read operand B
Perform ALU operation
[Set condition code reg.]
[Memory read/write]
[Write back ALU result]
Write back memory result
Update PC

10

With Slides from Bryant and O’Hallaron

3 Simulators

•  The most widely used methodology in computer architecture research
•  Using a simulator to mimic the functionality and performance metrics of a

target computer
•  Why simulator?

•  The system that we are studying is not yet built
•  Observe internal state that is not observable

•  Different levels of abstraction
•  Functional
•  Micro-architectural
•  Gate-level
•  Circuit level

--- We will use three Y86 simulators in this class

With Slides from Bryant and O’Hallaron

misc/yis: The ISA simulator

In misc/yis.c:
for (step = 0; step < max_steps && e == STAT_AOK; step++)

 e = step_state(s, stdout);

Output state change

In misc/isa.c
stat_t step_state(state_ptr s, FILE *error_file)

{

 ftpc++;

 hi0 = HI4(byte0);

 lo0 = LO4(byte0);

 …

}

11

With Slides from Bryant and O’Hallaron

misc/yis: The ISA simulator

In misc/isa.c
stat_t step_state(state_ptr s, FILE *error_file)

{
 …

 if (need_regids) {
 ok1 = get_byte_val(s->m, ftpc, &byte1);

 ftpc++;
 hi1 = HI4(byte1);

 lo1 = LO4(byte1);

 }
 if (need_imm) {

 okc = get_word_val(s->m, ftpc, &cval);
 ftpc += 4;

 }

 …

}

With Slides from Bryant and O’Hallaron

misc/yis: The ISA simulator

In misc/isa.c
stat_t step_state(state_ptr s, FILE *error_file)

{

 …

 switch (hi0) {

 case I_NOP:

 s->pc = ftpc;

 break;

 case I_HALT:

 …

 case I_RRMOVL:

 …

 }

12

With Slides from Bryant and O’Hallaron

SEQ Datapath

•  Key
•  Blue boxes: predesigned

hardware blocks
•  E.g., memories, ALU

•  Gray boxes:
control logic

•  Describe in HCL
•  White ovals:

labels for signals
•  Thick lines:

32-bit word values
•  Thin lines:

4-8 bit values
•  Dotted lines:

1-bit values

With Slides from Bryant and O’Hallaron

Hardware Control Language

•  Very simple hardware description language
•  Can only express limited aspects of hardware operation

•  Parts we want to explore and modify
Data Types

•  bool: Boolean
•  a, b, c, …

•  int: words
•  A, B, C, …
•  Does not specify word size---bytes, 32-bit words, …

Statements
•  bool a = bool-expr ;
•  int A = int-expr ;

13

With Slides from Bryant and O’Hallaron

HCL Operations

•  Classify by type of value returned
Boolean Expressions

•  Logic Operations
•  a && b, a || b, !a

•  Word Comparisons
•  A == B, A != B, A < B, A <= B, A >= B, A > B

•  Set Membership
•  A in { B, C, D }

•  Same as A == B || A == C || A == D

Word Expressions
•  Case expressions

•  [a : A; b : B; c : C]
•  Evaluate test expressions a, b, c, … in sequence
•  Return word expression A, B, C, … for first successful test

With Slides from Bryant and O’Hallaron

seq/ssim: The Sequential Simulator

Compilation process:
•  ../misc/hcl2c -n seq-std.hcl <seq-std.hcl >seq-std.c

•  gcc -Wall -O2 -I../misc -o ssim seq-std.c ssim.c ../misc/isa.c -lm

In seq/ssim.c:
int sim_main(int argc, char **argv) {

 run_tty_sim();

}

Run_tty_sim() {

 icount = sim_run(instr_limit, &status, &result_cc);

}

14

With Slides from Bryant and O’Hallaron

seq/ssim: The Sequential Simulator

In seq/ssim.c
int sim_run(int max_instr, byte_t *statusp, cc_t *ccp)

{

 while (icount < max_instr) {

 run_status = sim_step();

 icount++;

 if (run_status != STAT_AOK)

 break;

 }

}

With Slides from Bryant and O’Hallaron

seq/ssim: The Sequential Simulator

In seq/ssim.c
static byte_t sim_step() {

 update_state(); /* Update state from last cycle */

 valp = pc;

 instr = …

 imem_error = …;

 imem_icode = HI4(instr);

 imem_ifun = LO4(instr);

 icode = gen_icode();

 ifun = gen_ifun();

 instr_valid = gen_instr_valid();

 …

15

With Slides from Bryant and O’Hallaron

seq/ssim: The Sequential Simulator

In seq/ssim.c
static byte_t sim_step() {

 …

 if (gen_need_regids()) { …

 if (gen_need_valC()) { …

 srcB = gen_srcB();

 if (srcB != REG_NONE) {

 valb = get_reg_val(reg, srcB);

 …

 cond = cond_holds(cc, ifun);

 destE = gen_dstE();

 destM = gen_dstM();

With Slides from Bryant and O’Hallaron

seq/ssim: The Sequential Simulator

In seq/seq-std.hcl
Determine instruction code

int icode = [

 imem_error: INOP;

 1: imem_icode; # Default: get from instruction memory

];

Determine instruction function

int ifun = [

 imem_error: FNONE;

 1: imem_ifun; # Default: get from instruction memory

];

16

With Slides from Bryant and O’Hallaron

seq/ssim: The Sequential Simulator

In seq/seq-std.hcl
Does fetched instruction require a regid byte?

bool need_regids =

 icode in { IRRMOVL, IOPL, IPUSHL, IPOPL,

 IIRMOVL, IRMMOVL, IMRMOVL };

Does fetched instruction require a constant word?

bool need_valC =

 icode in { IIRMOVL, IRMMOVL, IMRMOVL, IJXX, ICALL };

With Slides from Bryant and O’Hallaron

seq/ssim: The Sequential Simulator

In seq/seq-std.c
int gen_icode() { … }

int gen_ifun() { … }

int gen_need_regids() {

 return ((icode) == (I_RRMOVL) || (icode) == (I_ALU) || (icode) ==

 (I_PUSHL) || (icode) == (I_POPL) || (icode) == (I_IRMOVL) || (icode)

 == (I_RMMOVL) || (icode) == (I_MRMOVL));

}

int gen_need_valC() {… }

17

With Slides from Bryant and O’Hallaron

Fetch Logic

•  Predefined Blocks
•  PC: Register containing PC
•  Instruction memory: Read 6 bytes (PC to PC+5)

•  Signal invalid address
•  Split: Divide instruction byte into icode and ifun
•  Align: Get fields for rA, rB, and valC

Instruction
memory

PC
increment

rB icode ifun rA

PC

valC valP

Need
regids

Need
valC

Instr
valid

Align Split
Bytes 1-5 Byte 0

imem_error

icode ifun

With Slides from Bryant and O’Hallaron

Fetch Logic

•  Control Logic
•  Instr. Valid: Is this instruction valid?
•  icode, ifun: Generate no-op if invalid address
•  Need regids: Does this instruction have a register byte?
•  Need valC: Does this instruction have a constant word?

Instruction
memory

PC
increment

rB icode ifun rA

PC

valC valP

Need
regids

Need
valC

Instr
valid

Align Split
Bytes 1-5 Byte 0

imem_error

icode ifun

18

With Slides from Bryant and O’Hallaron

Fetch Control Logic in
HCL

Determine instruction code
int icode = [

 imem_error: INOP;

 1: imem_icode;

];

Determine instruction function

int ifun = [

 imem_error: FNONE;

 1: imem_ifun;

];

Instruction
memory

PC

Split
Byte 0

imem_error

icode ifun

With Slides from Bryant and O’Hallaron

Fetch Control Logic in
HCL

bool need_regids =

 icode in { IRRMOVL, IOPL, IPUSHL, IPOPL,

 IIRMOVL, IRMMOVL, IMRMOVL };

bool instr_valid = icode in

 { INOP, IHALT, IRRMOVL, IIRMOVL, IRMMOVL, IMRMOVL,

 IOPL, IJXX, ICALL, IRET, IPUSHL, IPOPL };

pushl rA A 0 rA 8

jXX Dest 7 fn Dest

popl rA B 0 rA 8

call Dest 8 0 Dest

cmovXX rA, rB 2 fn rA rB

irmovl V, rB 3 0 8 rB V

rmmovl rA, D(rB) 4 0 rA rB D

mrmovl D(rB), rA 5 0 rA rB D

OPl rA, rB 6 fn rA rB

ret 9 0

nop 1 0

halt 0 0

19

With Slides from Bryant and O’Hallaron

Decode Logic

•  Register File
•  Read ports A, B
•  Write ports E, M
•  Addresses are register IDs or 15

(0xF) (no access)

Control Logic
n  srcA, srcB: read port

addresses
n  dstE, dstM: write port

addresses rB

dstE dstM srcA srcB

Register
file

A B
M

E
dstE dstM srcA srcB

icode rA

valB valA valE valM Cnd

Signals
n  Cnd: Indicate whether or not

to perform conditional move
n  Computed in Execute stage

With Slides from Bryant and O’Hallaron

A Source

int srcA = [
 icode in { IRRMOVL, IRMMOVL, IOPL, IPUSHL } : rA;

 icode in { IPOPL, IRET } : RESP;

 1 : RNONE; # Don't need register

];

cmovXX rA, rB
valA ← R[rA] Decode Read operand A

rmmovl rA, D(rB)
valA ← R[rA] Decode Read operand A

popl rA
valA ← R[%esp] Decode Read stack pointer

jXX Dest
Decode No operand

call Dest

valA ← R[%esp] Decode Read stack pointer
ret

Decode No operand

OPl rA, rB
valA ← R[rA] Decode Read operand A

20

With Slides from Bryant and O’Hallaron

E Destination

int dstE = [
 icode in { IRRMOVL } && Cnd : rB;

 icode in { IIRMOVL, IOPL} : rB;

 icode in { IPUSHL, IPOPL, ICALL, IRET } : RESP;

 1 : RNONE; # Don't write any register

];

None

R[%esp] ← valE Update stack pointer

None

R[rB] ← valE
cmovXX rA, rB

Write-back

rmmovl rA, D(rB)

popl rA

jXX Dest

call Dest

ret

Write-back

Write-back

Write-back

Write-back

Write-back

Conditionally write
back result

R[%esp] ← valE Update stack pointer

R[%esp] ← valE Update stack pointer

R[rB] ← valE
OPl rA, rB

Write-back Write back result

With Slides from Bryant and O’Hallaron

Execute Logic

•  Units
•  ALU

•  Implements 4 required functions
•  Generates condition code values

•  CC
•  Register with 3 condition code

bits
•  cond

•  Computes conditional jump/move
flag

•  Control Logic
•  Set CC: Should condition code

register be loaded?
•  ALU A: Input A to ALU
•  ALU B: Input B to ALU
•  ALU fun: What function should

ALU compute?

CC ALU

ALU
A

ALU
B

ALU
fun.

Cnd

icode ifun valC valB valA

valE

Set
CC

cond

21

With Slides from Bryant and O’Hallaron

ALU A
Input

int aluA = [
 icode in { IRRMOVL, IOPL } : valA;

 icode in { IIRMOVL, IRMMOVL, IMRMOVL } : valC;

 icode in { ICALL, IPUSHL } : -4;

 icode in { IRET, IPOPL } : 4;

 # Other instructions don't need ALU

];

valE ← valB + –4 Decrement stack pointer

No operation

valE ← valB + 4 Increment stack pointer

valE ← valB + valC Compute effective address

valE ← 0 + valA Pass valA through ALU
cmovXX rA, rB

Execute

rmmovl rA, D(rB)

popl rA

jXX Dest

call Dest

ret

Execute

Execute

Execute

Execute

Execute valE ← valB + 4 Increment stack pointer

valE ← valB OP valA Perform ALU operation
OPl rA, rB

Execute

With Slides from Bryant and O’Hallaron

ALU
Oper-
ation

int alufun = [
 icode == IOPL : ifun;

 1 : ALUADD;

];

valE ← valB + –4 Decrement stack pointer

No operation

valE ← valB + 4 Increment stack pointer

valE ← valB + valC Compute effective address

valE ← 0 + valA Pass valA through ALU
cmovXX rA, rB

Execute

rmmovl rA, D(rB)

popl rA

jXX Dest

call Dest

ret

Execute

Execute

Execute

Execute

Execute valE ← valB + 4 Increment stack pointer

valE ← valB OP valA Perform ALU operation
OPl rA, rB

Execute

22

With Slides from Bryant and O’Hallaron

Memory Logic

•  Memory
•  Reads or writes memory word

•  Control Logic
•  stat: What is instruction

status?
•  Mem. read: should word be

read?
•  Mem. write: should word be

written?
•  Mem. addr.: Select address
•  Mem. data.: Select data

Data
memory

Mem.
read

Mem.
addr

read

write

data out

Mem.
data

valE

valM

valA valP

Mem.
write

data in

icode

Stat

dmem_error

instr_vali
d

imem_erro
r

stat

With Slides from Bryant and O’Hallaron

Instruction Status

•  Control Logic
•  stat: What is instruction

status?
Data

memory

Mem.
read

Mem.
addr

read

write

data out

Mem.
data

valE

valM

valA valP

Mem.
write

data in

icode

Stat

dmem_error

instr_vali
d

imem_erro
r

stat

Determine instruction status
int Stat = [

 imem_error || dmem_error : SADR;

 !instr_valid: SINS;

 icode == IHALT : SHLT;

 1 : SAOK;

];

23

With Slides from Bryant and O’Hallaron

Memory Address
OPl rA, rB

Memory

rmmovl rA, D(rB)

popl rA

jXX Dest

call Dest

ret

 No operation

 M4[valE] ← valA Memory Write value to memory

valM ← M4[valA] Memory Read from stack

M4[valE] ← valP Memory Write return value on stack

valM ← M4[valA] Memory Read return address

Memory No operation

int mem_addr = [

 icode in { IRMMOVL, IPUSHL, ICALL, IMRMOVL } : valE;

 icode in { IPOPL, IRET } : valA;

 # Other instructions don't need address

];

With Slides from Bryant and O’Hallaron

Memory Read

OPl rA, rB
Memory

rmmovl rA, D(rB)

popl rA

jXX Dest

call Dest

ret

 No operation

 M4[valE] ← valA Memory Write value to memory

valM ← M4[valA] Memory Read from stack

M4[valE] ← valP Memory Write return value on stack

valM ← M4[valA] Memory Read return address

Memory No operation

bool mem_read = icode in { IMRMOVL, IPOPL, IRET };

24

With Slides from Bryant and O’Hallaron

PC Update Logic

•  New PC
•  Select next value of PC

New
PC

Cnd icode valC valP valM

PC

With Slides from Bryant and O’Hallaron

PC
Update OPl rA, rB

rmmovl rA, D(rB)

popl rA

jXX Dest

call Dest

ret

PC ← valP PC update Update PC

PC ← valP PC update Update PC

PC ← valP PC update Update PC

PC ← Cnd ? valC : valP PC update Update PC

PC ← valC PC update Set PC to destination

PC ← valM PC update Set PC to return address

int new_pc = [
 icode == ICALL : valC;

 icode == IJXX && Cnd : valC;

 icode == IRET : valM;

 1 : valP;

];

25

With Slides from Bryant and O’Hallaron

SEQ Operation

•  State
•  PC register
•  Cond. Code register
•  Data memory
•  Register file
All updated as clock rises

•  Combinational Logic
•  ALU
•  Control logic
•  Memory reads

•  Instruction memory
•  Register file
•  Data memory

Combinational
Logic Data

memory
Data

memory

Register
file

Register
file

PC
0x00c

CCCC
Read
Ports

Write
Ports

Read WriteRead Write

With Slides from Bryant and O’Hallaron

Combinational
Logic Data

memory
Data

memory

Register
file

%ebx = 0x100

Register
file

%ebx = 0x100

PC
0x00c

CC
100
CC
100

Read
Ports

Write
Ports

Read WriteRead Write

0x00c: addl %edx,%ebx # %ebx <-- 0x300 CC <-- 000

0x00e: je dest # Not taken

Cycle 3:

Cycle 4:

0x006: irmovl $0x200,%edx # %edx <-- 0x200Cycle 2:

0x000: irmovl $0x100,%ebx # %ebx <-- 0x100Cycle 1:

Clock
Cycle 1 Cycle 2 Cycle 3 Cycle 4

SEQ
Operation #2

•  state set according to
second irmovl
instruction

•  combinational logic
starting to react to
state changes

26

With Slides from Bryant and O’Hallaron

0x00c: addl %edx,%ebx # %ebx <-- 0x300 CC <-- 000

0x00e: je dest # Not taken

Cycle 3:

Cycle 4:

0x006: irmovl $0x200,%edx # %edx <-- 0x200Cycle 2:

0x000: irmovl $0x100,%ebx # %ebx <-- 0x100Cycle 1:

Clock
Cycle 1 Cycle 2 Cycle 3 Cycle 4

SEQ
Operation #3

•  state set according to
second irmovl instruction

•  combinational logic
generates results for addl
instruction

Combinational
Logic Data

memory
Data

memory

Register
file

%ebx = 0x100

Register
file

%ebx = 0x100

PC
0x00c

CC
100
CC
100

Read
Ports

Write
Ports

0x00e

000

Read WriteRead Write

With Slides from Bryant and O’Hallaron

0x00c: addl %edx,%ebx # %ebx <-- 0x300 CC <-- 000

0x00e: je dest # Not taken

Cycle 3:

Cycle 4:

0x006: irmovl $0x200,%edx # %edx <-- 0x200Cycle 2:

0x000: irmovl $0x100,%ebx # %ebx <-- 0x100Cycle 1:

Clock
Cycle 1 Cycle 2 Cycle 3 Cycle 4

SEQ
Operation #4

•  state set according
to addl instruction

•  combinational logic
starting to react to
state changes

Combinational
Logic Data

memory
Data

memory

Register
file

%ebx = 0x300

Register
file

%ebx = 0x300

PC
0x00e

CC
000
CC
000

Read
Ports

Write
Ports

Read WriteRead Write

27

With Slides from Bryant and O’Hallaron

0x00c: addl %edx,%ebx # %ebx <-- 0x300 CC <-- 000

0x00e: je dest # Not taken

Cycle 3:

Cycle 4:

0x006: irmovl $0x200,%edx # %edx <-- 0x200Cycle 2:

0x000: irmovl $0x100,%ebx # %ebx <-- 0x100Cycle 1:

Clock
Cycle 1 Cycle 2 Cycle 3 Cycle 4

SEQ
Operation #5

•  state set according
to addl instruction

•  combinational logic
generates results
for je instruction

Combinational
Logic Data

memory
Data

memory

Register
file

%ebx = 0x300

Register
file

%ebx = 0x300

PC
0x00e

CC
000
CC
000

Read
Ports

Write
Ports

0x013

Combinational
Logic Data

memory
Data

memory

Register
file

%ebx = 0x300

Register
file

%ebx = 0x300

PC
0x00e

CC
000
CC
000

Read
Ports

Write
Ports

0x013

Read WriteRead Write

With Slides from Bryant and O’Hallaron

SEQ Summary

•  Implementation
•  Express every instruction as series of simple steps
•  Follow same general flow for each instruction type
•  Assemble registers, memories, predesigned combinational blocks
•  Connect with control logic

•  Limitations
•  Too slow to be practical
•  In one cycle, must propagate through instruction memory, register

file, ALU, and data memory
•  Would need to run clock very slowly
•  Hardware units only active for fraction of clock cycle

