
CSci 5271: Introduction to Computer Security

Exercise Set 3 due: October 31st, 2013

Ground Rules. You may choose to complete these exercises in a group of up to three students.
Each group should turn in one copy with the names of all group members on it. You may use any
source you can find to help with this assignment but you must explicitly reference any source you
use besides the lecture notes or textbook. An electronic (plain text or PDF) copy of your solution
should be submitted on the course Moodle by 11:55pm on Thursday, October 31st.

1. TCP-Unfriendly. (25 pts) TCP’s “congestion control” mechanism relies on end-hosts (i.e.,
users) to respond appropriately to network congestion by backing off their sending rate. One po-
tential problem with this mechanism is what’s called by economists the “tragedy of the commons.”
Suppose Alice knows that everyone else obeys TCP’s congestion control mechanism. Then if she
continues sending at the same rate, everyone else will slow down a little bit more and she will get
better service from the network. So Alice has no motivation to obey TCP congestion control (other
than the fact that not doing so involves finding or writing her own TCP stack—details, details)
and in fact neither does anyone else. But if no one obeys the mechanism, the network (commons)
becomes useless, which is the tragedy.

(a) Bob the Network Builder has an idea about how to solve this problem. He reasons that con-
gested routers can see the exact state of a TCP connection. So if a particular connection does
not slow down in response to dropped packets, the router can send a RST packet to each end
of the connection. This will cause both ends of the connection to drop the connection, much
more painful than just dropping an odd packet or two. From a security standpoint, what’s
the problem with Bob’s idea—that is, if I’m an unscrupulous user intent on communicating
at a high rate, can I circumvent this mechanism?

(b) When Bob realizes that reset packets aren’t sufficient, he proposes a more direct approach:
blacklisting. Under this idea, routers that notice TCP senders that don’t respond to dropped
packets appropriately will just stop routing packets for that sender. List several ways in which
this is both ineffective against adversaries and a generally bad idea if adversaries got wind of
it.

2. (Mis-)using message authentication codes. (25 pts) Armed with a copy of Schneier’s
Applied Cryptography from a used bookstore, Sly can’t wait to design his own encrypted thinga-
madoodad protocol. He starts off with a super-secure key exchange protocol that ends with Alice
and Bob sharing secret keys for encryption (Ke) and authentication (Ka). Now he wants to design
a secure symmetric channel using these keys.

(a) Sly decides at first that he wants to use a CBC-MAC based on AES with 128 bit blocks for
integrity. He looks carefully at his key exchange protocol and realizes that an adversary can
interfere to make Alice and Bob end up deciding on different keys. So the first message sent
over by Alice will be τ0 = cbcMACKa(0128) = aesEncryptKa

(0128). If Bob’s local value doesn’t
check out, he aborts, otherwise the channel is usable. Afterwards, whenever Alice wants to
send the message M over the secure channel, she’ll compute τM ← cbcMACKa(M) and send

1

the pair (M, τM) over the channel; Bob will check whether τM = cbcMACKa(M) and if so
will conclude that Alice said M .

This is a pretty bad idea. Show how to use the values τ0, M and τM to compose a message
to Bob that will convince him Alice meant to say the two-block message (M, τM) instead of
just M . Explain why your message will convince Bob that Alice meant to say (M, τM) rather
than just M . Hint: try writing a recursive definition of CBC-MAC, and use the facts that
for any string A, A⊕A = 0|A| and A⊕ 0|A| = A.

Since τM is just 128 random-looking bits, why is this a big deal?

(b) Sly’s friend Sally notices the same attack on his scheme. She proposes a different method
of authenticating (and encrypting) messages: ignore the key Ka. Instead, to authenticate
and encrypt the message M , first compute H(M) using SHA-256; then encrypt (M,H(M))
together, using AES-CTR encryption. So the message sent on the insecure channel would be
CTR-EncryptKe

(M,H(M)); Bob would decrypt the message using Ke, check that the last 256
bits of the plaintext are the hash of all of the previous bits, and accept the message if they
are.

Show that this is also a bad idea: if Alice ever sends a ciphertext corresponding to the message
M , where Eve knows M , Eve can generate a ciphertext corresponding to any message M ′,
(of the same length as M) that Bob will accept. (For example, if Alice sends the message
“ATTACK AT TEN AM” Eve can drop it and make Bob accept the message “GO BACK
HOME BOB” instead.)

3. Protocol (an)droids. (25 pts) Two robots Artoo and C3-2-0 often fly on different starships
and need to alert each other to their presence when their ships come in contact—otherwise they
might accidentally blow each other up! They agree on a shared key K and a MAC algorithm that
outputs 256-bit tags to use in the following protocol.

1. A −→ C: a random 256-bit string NA and MACK(NA).

2. C: on message n, t checks that MACK(n) = t, and if so, he accepts A, otherwise he blows up
the other party.

3. C −→ A: MACK(t).

4. A: on message t′ checks that t′ = MACK(MACK(NA)). If so, he accepts C, otherwise he
blows him up.

The idea here is that A proves he is A by correctly MACing NA (which, if the key is secret,
only A or C could do) and C proves he is C by MACing the MAC. But...

(a) A and C use this protocol for a while and then discover, to their dismay, that sometimes
the evil galactic emperor, E, has been successfully fooling C into believing he is A. Even
supposing that robot-in-the-middle attacks are prevented by speed-of-light limitations or some
other plot contrivance, what is a simple way for him to do this?

2

(b) A and C decide that one way to prevent the attack is for C to remember every value of NA

used in a previous challenge and reject if one is ever reused. Suppose E sees one authentication
between A and C. How can he fool C into believing he is A as many times afterwards as he
wants?

4. Hashing and Signing. (25 pts) Nearly every digital signature scheme works by first hashing
a message to be signed (with a cryptographic hash function) and then performing some operation
on the hash—so in essence, we are “signing the hash” and not the message. In particular, if Eve
sees Alice’s signature on the message M and can find a message M ′ 6= M so that H(M) = H(M ′),
she can convince people that Alice signed M ′. This is OK, since a good crypto hash function H
will resist finding targeted collisions (second pre-images) like this.

Suppose our signature scheme uses a hash function H with an output length ` that is sufficient
to resist second pre-images but NOT resistant to free collisions (e.g. the hash length is around 100-
120 bits). Then it is possible that if Eve can get Alice to sign one of a pair of colliding messages,
she can later claim that Alice signed the other.

(a) It might be tempting to think that the risk of such an attack is minimal, since the birthday
attack works by hashing random messages until two have the same hash; why would Alice
want to sign a random message, and even if she did, why would we care that Eve could claim
she signed a different random message? Give a simple explanation why even this attack could
be troublesome.

(b) Let’s show that in fact, it is worse than that. Suppose that a message is “favorable” if it is
something that Alice would sign, for example “I will pay $5 to McDonald’s for my lunch.”
Suppose that a message is “undesirable” if it is something that Alice would not sign, like “I
will pay $500,000 to Eve for her lunch.” Notice that we can generate 256 different “favorable”
messages from the example above, for instance by varying the number of space characters
between words between 1 and 2. Extend this idea to show how to generate a pair of messages,
one favorable and one undesirable, with the same hash. Your attack should compute about
as many hashes as the birthday attack.

(c) Complete the attack: how would Eve use the pair she generates in part (b) to her advantage?

3

