
CSci 5271: Introduction to Computer Security

Homework 1 due: September 27th / October 4th, 2013

Ground Rules. You may choose to complete this homework in a group of up to three
people; working in a group is not required, but strongly recommended. If you work in a
group, only one group member should submit a solution, listing the names of all the group
members. Use the Moodle to submit a tarred and gzipped directory containing all the files
mentioned in the questions, by 11:55pm Central Time on October 4th. To help encourage
you to get started working early on the assignment, there is also an early submission due one
week ahead of the main deadline, by 11:55pm Central Time on September 27th, described
below. You may use any written source you can find to help with this assignment, on paper
or the Internet, but you must explicitly reference any sources other than the lecture notes,
assigned readings, and course staff.

Hackxploitation. This homework involves finding many different ways to exploit a poorly-
written program that runs as root, to “escalate privileges” from a normal user to the super-
user. The program we will exploit is the “Badly Coded Versioning System,” written, main-
tained, and handed down by CSci 5271 course staff across the ages. You can download the
source code for BCVS, as we call it for short, from the course web page near where you got
this assignment. For its intended mode of use, BCVS should be installed in a system-wide
directory, along with a private data directory, and setuid root.

Because BCVS is intended to run setuid-root, and breaking it lets you get root, we can’t
have you doing so directly on a CSE Labs machine. Instead, we will provide each group with
a setup to run a virtual machine, and you will have root access (using the sudo command)
inside the VM. The VMs will run on a CSE Labs cluster: we’ll provide more information
about running them once they’re available. You can start looking for vulnerabilities in the
BCVS source, and even testing many kinds of attacks, without a VM: BCVS can still run
in a location like your home directory if you set up the right data files, and you can test
attacks that culminate in getting a shell: it will just be a shell with your own UID, rather
than a root shell. You can also recompile it if you’d like, but don’t run make install.

The idea behind BCVS is to provide a very simple file repository system. The word
“versioning” in its name is a bit of a misnomer, since it doesn’t actually support keeping
multiple versions of a file, which is usually the idea behind version control; instead there’s
just a single version in the repository. Every user on the system may check their own copy
of a file into or out of the repository; when a file is checked-in it “clobbers” the previous
version stored in the repository, while checking out clobbers the user’s local copy. Of course
this is dangerous, so BCVS maintains a list of directories and files that are forbidden from
being either checked in or written to on check-out. BCVS also maintains a log of comments,
so that users can report what changes they have made. Of course, we’ve told you that the
code is buggy, so you should apply an appropriate degree of skepticism to any security claims
made here in the documentation.

1



1. [90 points] BCVS is intentionally sloppy code; please never use this code anywhere else!
It is so sloppy that when installed as intended (setuid root), it is full of ways that allow a
user to become root. For this part of the assignment, you should find four ways to get a
running command shell with UID 0 as a result of sloppy coding or design in BCVS. For each
hole you find, you should produce:

(a) A UNIX shell script (for the /bin/bash shell) that exploits this hole to open a root
shell. In fact more specifically, just so there’s no confusion about what’s a root shell,
we’ve created a new program named /bin/rootshell specifically for your exploit to
invoke. If you invoke rootshell as root, it will give you a root shell as the name
suggests; otherwise it will print a dismissive message.

Name your scripts exploit1.sh, exploit2.sh, exploit3.sh, and exploit4.sh re-
spectively. We will test your exploit scripts by running them as an ordinary user
named test, starting from that user’s home directory /home/test, with a fresh in-
stall of BCVS in /opt/bcvs. So your scripts will need to create any supporting file
or directory structures they need in order to work, and they need to run completely
automatically with no user interaction. On the same CSE Labs machines with the VMs
we will also provide you with a tool test-exploit you can use to test your exploit
scripts.

(b) A text file that explains how each of the exploits works, named readme1.txt, . . . ,
readme4.txt. The text file readmeN.txt should identify what mistakes in the source
code bcvs.c make the exploit possible, explain how you constructed your inputs, and
explain step-by-step what happens when an ordinary user runs exploitN.sh.

In order to get full credit, the following criteria must hold:

• Each exploit script must exploit a different vulnerability in the code. How can we judge
whether two scripts, exploit1 and exploit2 exploit different vulnerabilities? Imagine
that you are a lazy programmer for BCVS, Inc, and someone shows you exploit1: a
patch is in order! If there’s a plausible patch the lazy programmer might write which
would protect against exploit1, but still leave the program vulnerable to exploit2,
then the two scripts count as exploiting different vulnerabilities. If there could be
any doubt about whether two of your exploits too similar in this way, for instance if
they rely on the same or overlapping line(s) of code, you should argue for why they
are distinct in your readme files. If you’re not sure about whether two exploits are
distinct, please ask us before the assignment due date. (Or of course you could also
keep looking for more vulnerabilities: there are enough that clearly distinct if you can
find them.)

• Each exploit is worth up to 18 points, depending on the quality of your explanation,
but an exploit that does not run /bin/rootshell as root is not an exploit as far as
we’re concerned. A non-working exploit will be eligible for at most 3 points of partial
credit. Make sure to test your exploits carefully.

2



• For a further 10 points, at least one of your exploits should be a control-flow hijacking
attack as discussed in lecture. The classic tutorial on building such attacks is is ℵ1’s
“Smashing the stack for fun and profit,” which can be downloaded from http://www.

insecure.org/stf/smashstack.txt. Though it’s detailed, it will still take some work
to apply this tutorial to BCVS: for instance to find out the locations of things you’d
like to overwrite, you’ll need to do something like use GDB, add printf statements,
or examine the assembly-language code.

• To help encourage you to start early, there is an early submission deadline of September
27th by which you must submit a short writeup of three potential attacks your group
is working on. The attacks don’t have to be working yet, and you don’t need as much
detail as in your final readme files, but you should describe the general kind of attack
and which lines in the BCVS source have the vulnerability. If you’re already working
on more exploits or have more details to share please do so, and we’ll give you more
feedback. This early submission is worth 8 points.

2. [10 points] Even if we fixed all of the sloppy coding mistakes in BCVS, the design of
the system leaves it vulnerable to some kinds of attacks. In a file called design.txt you
should choose two or three secure design principles (for instance, among the ones discussed
in lecture) which are most blatantly violated by BCVS. For these design principles, discuss
how BCVS violates them and how you would change the design of BCVS to mitigate these
vulnerabilities. If you feel it will be helpful, you can include pseudocode or working C to
illustrate your changes.

Just for Fun. If you enjoy working on problems 1 and 2 above, keep looking for exploits!
For each additional distinct, working (exploitN.sh, readmeN.txt) pair you submit, you will
get one point of extra credit. In addition, the group or groups that find the largest total
number of exploits, as well as any groups that find particularly clever exploits or ones the
course staff didn’t know about, will be recognized in class. It’s hard to know whether you’ve
ever found all the vulnerabilities in a piece of software, but by your instructor’s count, this
year’s version of BCVS contains at least 10 kinds of security bug appearing in 14 different
code locations, and at least 10 kinds of exploits are possible, some with multiple variations.

Happy Hacking!

3


