CSci 5271
Introduction to Computer Security
Day 8: Defensive programming and design,
part 2

Stephen McCamant
University of Minnesota, Computer Science & Engineering

Outline

Software engineering for security

Error handling

) Every error must be handled

® le, program must take an appropriate
response action

©) Errors can indicate bugs, precondition
violations, or situations in the
environment

Error codes

) Commonly, return value indicates error
if any

©) Bad: may overlap with reqular result

©) Bad: goes away if ignored

Exceptions

) Separate from data, triggers jump to
handler

) Good: avoid need for manual copying,
not dropped

) May support: automatic cleanup
(finally)

) Bad: non-local control flow can be
surprising

Testing and security

) “Testing shows the presence, not the
absence of bugs” - Dijkstra
) Easy versions of some bugs can be

found by targeted tests:
m Buffer overflows: long strings
® Integer overflows: large numbers
® Format string vulnerabilities: %x

Fuzz testing

) Random testing can also sometimes
reveal bugs

©) Original ‘fuzz’ (Miller): program
</dev/urandom

©) Modern: small random changes to a
benign input

Outline

Secure use of the OS

Avoid special privileges

) Require users to have appropriate
permissions
® Rather than putting trust in programs

) Anti-pattern 1. setuid/setgid program
©) Anti-pattern 2: privileged daemon
) But, sometimes unavoidable (e.qg., email)

One slide on setuid/setgid

©) Unix users and process have a user id
number (UID) as well as one or more
group IDs

) Normally, process has the IDs of the
use who starts it

) A setuid program instead takes the UID
of the program binary

Don't use shells or Tcl

£)...in security-sensitive applications

) String interpretation and re-parsing are
very hard to do safely

©) Eternal Unix code bug: path names with
spaces

Prefer file descriptors

£) Maintain references to files by keeping
them open and using file descriptors,
rather than by name

) References same contents despite file
system changes

£) Use openat, etc, variants to use FD
instead of directory paths

Prefer absolute paths

) Use full paths (starting with /) for
programs and files

) $PATH under local user control

©) Initial working directory under local user

control
m But FD-like, so can be used in place of
openat if missing

Prefer fully trusted paths

©) Each directory component in a path
must be write protected

) Read-only file in read-only directory
can be changed if a parent directory is
modified

Don't separate check from use

©) Avoid pattern of eg,, access then open
) Instead, just handle failure of open
® You have to do this anyway

) Multiple references allow races
® And access also has a history of bugs

Be careful with temporary files

) Create files exclusively with tight
permissions and never reopen them
® See detailed recommendations in Wheeler
) Not quite good enough: reopen and

check matching device and inode
® Fails with sufficiently patient attack

Give up privileges

) Using appropriate combinations of
set*id functions
m Alas, details differ between Unix variants

) Best: give up permanently
) Second best: give up temporarily

) Detailed recommendations: Setuid
Demystified (USENIX'02)

Whitelist environment variables

£) Can change the behavior of called
program in unexpected ways
) Decide which ones are necessary
® As few as possible

) Save these, remove any others

Outline

Announcements intermission

Deadlines reminder

©) Project progress reports: Wednesday
night

£) HW1 final submission: Friday night

©) Exercise set 2: week from Thursday

HWI1 so far

) Sending feedback on early submissions
) Most still have a long road ahead

) Ask your questions early

) Notes on a couple of misconceptions:

Stack and non-stack buffers

char global[100];
void f(void) {
char stack[100];
char xheap = malloc(100);

printf and sprintf

©) Buffer overflow and format strings
O printf("%s\n", untrusted)
) sprintf (buf, "%s", untrusted)

Changed office hours this Thu/Fri

) John will be traveling
® Should have already submitted HW1
groups
) Thursday 10-Tlam will substituted by
Stephen in his office 4-225E
) Friday will substituted by Mike, 3-4pm
in 2-209

Outline

Bernstein’s perspective

Historical background

£) Traditional Unix MTA: Sendmail (BSD)
= Monolithic setuid root program
® Designed for a more trusting era
® In mid-90s, bugs seemed endless
©) Spurred development of new,
security-oriented replacements
® Bernstein’s gmail
® Venema et al’s Postfix

Distinctive gmail features

) Single, security-oriented developer

) Architecture with separate programs
and UIDs

) Replacements for standard libraries

) Deliveries into directories rather than
large files

Ineffective privilege separation

©) Example: prevent Netscape DNS helper
from accessing local file system
) Before: bug in DNS code
— read user's private files
) After: bug in DNS code

— inject bogus DNS results
— man-in-the-middle attack
— read user’s private web data

Effective privilege separation

) Transformations with constrained 1/0

) General argument: worst adversary can

do is control output
® Which is just the benign functionality

) MTA header parsing (Sendmail bug)
£) jpegtopnm inside xloadimage

Eliminating bugs

) Enforce explicit data flow

©) Simplify integer semantics

£) Avoid parsing

) Generalize from errors to inputs

Eliminating code

) Identify common functions
©) Automatically handle errors
) Reuse network tools

) Reuse access controls

) Reuse the filesystem

The “gmail security guarantee”

) $500, later $1000 offered for security
bug
©) Never paid out

) Issues proposed:

® Memory exhaustion DoS
® Overflow of signed integer indexes

) Defensiveness does not encourage
more submissions

gmail today

) Originally had terms that prohibited
modified redistribution
® Now true public domain

) Latest release from Bernstein: 1998:;
netgmail: 2007

) Does not have large market share

) All MTAs, even Sendmail, are more
secure now

Outline

Techniques for privilege separation

Restricted languages

) Main application: code provided by
untrusted parties

) Packet filters in the kernel

) JavaScript in web browsers
® Also Java, Flash ActionScript, etc.

SFl

r) Software-based Fault Isolation

) Instruction-level rewriting like (but
predates) CFl

©) Limit memory stores and sometimes
loads

£ Can't jump out except to designated
points

©) E.g, Google Native Client

Separate processes

©) OS (and hardware) isolate one process
from another

) Pay overhead for creation and
communication

) System call interface allows many
possibilities for mischief

System-call interposition

) Trusted process examines syscalls
made by untrusted

©) Implement via ptrace (like strace, gdb)
or via kernel change

©) Easy policy: deny

Interposition challenges

©) Argument values can change in
memory (TOCTTOU)

) OS objects can change (TOCTTOU)
©) How to get canonical object identifiers?

) Interposer must accurately model
kernel behavior

) Details: Garfinkel (NDSS'03)

Separate users

) Reuse OS facilities for access control
©) Unit of trust: program or application
) Older example: gmail

©) Newer example: Android

) Limitation: lots of things available to
any user

chroot

) Unix system call to change root
directory

) Restrict/virtualize file system access
) Only available to root
) Does not isolate other namespaces

OS-enabled containers

©) One kernel, but virtualizes all
namespaces

) FreeBSD jails, Linux LXC, Solaris zones,
etc.

©) Quite robust, but the full, fixed, kernel is
in the TCB

(System) virtual machines

) Presents hardware-like interface to an
untrusted kernel

) Strong isolation, full administrative
complexity

©) 1/0 interface looks like a network, etc.

Virtual machine designs

©) (Type 1) hypervisor: ‘superkernel’
underneath VMs

©) Hosted: reqular OS underneath VMs

©) Paravirtualizaion: modify kernels in VMs
for ease of virtualization

Virtual machine technologies

) Hardware based: fastest, now common
) Partial translation: e.g., original VMware

) Full emulation: e.q. QEMU proper

® Slowest, but can be a different CPU
architecture

Modern example: Chrom(ium)

) Separates “browser kernel” from

less-trusted “rendering engine”
® Pragmatic, keeps high-risk components
together

) Experimented with various Windows
and Linux sandboxing techniques

) Blocked 70% of historic vulnerabilities,
not all new ones

) http://seclab.stanford.edu/websec/

chromium/

Next time

) Protection and isolation
) Basic (e.g, classic Unix) access control

