CSci 5271
Introduction to Computer Security
Day 1I: OS security: higher assurance

Stephen McCamant
University of Minnesota, Computer Science & Engineering

Outline

Capability-based access control

ACLs: no fine-grained subjects

) Subjects are a list of usernames
maintained by a sysadmin

©) Unusual to have a separate subject for
an application

) Cannot easily subset access (sandbox)

ACLs: ambient authority

©) All authority exists by virtue of identity

©) Kernel automatically applies all available
authority

) Authority applied incorrectly leads to
attacks

Confused deputy problem

) Compiler writes to billing database

) Compiler can produce debug output to
user-specified file

) Specify debug output to billing file,
disrupt billing

(Object) capabilities

©) A capability both designates a resource
and provides authority to access it
©) Similar to an object reference
® Unforgeable, but can copy and distribute

) Typically still managed by the kernel

Capability slogans (Miller et al)

) No designation with authority

©) Dynamic subject creation

) Subject-aggregated authority mgmt.
©) No ambient authority

) Composability of authorities

) Access-controlled delegation

) Dynamic resource creation

Partial example: Unix FDs

) Authority to access a specific file
) Managed by kernel on behalf of process

) Can be passed between processes
® Though rare other than parent to child

©) Unix not designed to use pervasively

Distinguish: password capabilities

©) Bit pattern itself is the capability
® No centralized management
) Modern example: authorization using
cryptographic certificates

Revocation with capabilities

) Use indirection: give real capability via
a pair of middlemen

DA —->BviaA—>F—-R—B

£) Retain capability to tell R to drop
capability to B

) Depends on composability

Confinement with capabilities

©) A cannot pass a capability to B if it
cannot communicate with A at all

) Disconnected parts of the capability
graph cannot be reconnected

) Depends on controlled delegation and
data/capability distinction

OKL4 and selL4

) Commercial and research microkernels

) Recent versions of OKL4 use capability
design from selL4

©) Used as a hypervisor, e9. underneath
paravirtualized Linux

) Shipped on over 1 billion cell phones

Joe-E and Caja

) Dialects of Java and JavaScript (resp.)
using capabilities for confined execution

©) Eg, of JavaScript in an advertisement

) Note reliance on Java and JavaScript
type safety

Outline

OS trust and assurance

Trusted and trustworthy

©) Part of your system is trusted if its
failure can break your security

©) Thus, OS is almost always trusted
©) Real question: is it trustworthy?

) Distinction not universally observed:
trusted boot, Trusted Solaris, etc.

Trusted (I/0) path

£) How do you know you're talking to the
right software?

©) And no one is sniffing the data?

©) Example: Trojan login screen

® Or worse: unlock screensaver with root
password
® Origin of “Press Ctrl-Alt-Del to log in”

Minimizing trust

©) Kernel — microkernel — nanokernel

) Reference monitor concept

) TCB size: measured relative to a policy
goal

) Reference monitor C TCB
® But hard to build monitor for all goals

How to gain assurance

) Use for a long time

) Testing

) Code / design review
©) Third-party certification
) Formal methods / proof

Evaluation / certification

) Testing and review performed by an
independent party

) Goal: separate incentives, separate
accountability

©) Compare with financial auditing

) Watch out for: form over substance,
misplaced incentives

Orange book OS evaluation

) Trusted Computer System Evaluation
Criteria
D. Minimal protection
C. Discretionary protection
®m C2 adds, eg., secure audit over Cl
B. Mandatory protection
® Bl<B2<B3: stricter classic MLS

A. Verified protection

Common Criteria

©) International standard and agreement
for IT security certification

) Certification against a protection profile,
and evaluation assurance level EAL 1-7

) Evaluation performed by
non-government labs

©) Up to EAL 4 automatically
cross-recognized

Common Criteria, Anderson’s view

) Many profiles don't specify the right
things
) OSes evaluated only in unrealistic
environments
® Eg., unpatched Windows XP with no
network attacks
£) "Corruption, Manipulation, and Inertia”
® Pernicious innovation: evaluation paid for
by vendor
® Labs beholden to national security
apparatus

Formal methods and proof

) Can math come to the rescue?
) Checking design vs. implementation

©) Automation possible only with other
tradeoffs
® Eg, bounded size model
) Starting to become possible:
machine-checked proof

Proof and complexity

©) Formal proof is only feasible for
programs that are small and elegant

©) If you honestly care about assurance,
you want your TCB small and elegant
anyway

) Should provability further quide design?

Some hopeful proof results

) seL.4 microkernel (SOSP'09 and
ongoing)
®m 75 kL C, 200 kL proof, 160 bugs fixed, 25
person years

) CompCert C-subset compiler (PLDI'O6
and ongoing)
©) RockSalt SFI verifier (PLDI'12)

Outline

Assignment debrief and announcements

Exercise set 1 comments

) Net risk reduction: this is a formula,
know how to compute it

) ‘grep $username ‘: | should have said
two good ways to change the code

©Solving 13- x =10 (mod 23%)

Silly function

stat(pathname, &f);

stat("/what/ever", &we);

if (f.st_dev == we.st_dev && f.st_ino == we.st_ino) {
return;

}

rfd = open(pathname, O_RDONLY);

buf = malloc(f.st_size - 1);

read(rfd, buf, f.st_size - 1);

close(rfd);
stat (pathname, &f);
if (f.st_dev == we.st_dev && f.st_ino == we.st_ino) {

return;
}
wfd = open(pathname, O_WRONLY | O_TRUNC);
write(wfd, buf, f.st_size-1);
close(wfd);

Reversing the stack

void func(char *str) {
char buf[128];
strcpy(buf, str);
do_something() ;
return;

Payment app

void payment(char *name, int amount_gbp,
char *purpose) {
int amount_usd = (amount_gbp*156)/100;
char memo[32] ;
strcpy(memo, "Payment for: ");
strcat (memo, purpose);
write_check(name, amount_usd, memo) ;

Big- and little-endian

) Overwriting 0x12345678 with
", . AAAAA\O":
® 0x00345678
® 0x41005678
® 0x41410078
® 0x41414100
® 0x41414141

Big- and little-endian

©) Overwriting 0x12345678 with
", .. AAAAA\O":
® 0x12345600
® 0x12340041
® 0x12004141
® 0x00414141
® 0x41414141

Zip function

char *zip(char *a, char *b) {

char *result;

int len, 1i;

len = strlen(a);

result = malloc(2x*len);

for(i = 0; i <= len; i++) {
result[2*i] = a[i];
result[2xi+1] = b[i];

b

return result;

BCVS vulnerabilities

©) Type 1. Buffer overflows and similar
® Some easy to spot, but hard to exploit
©) Type 2: Logic errors in running

programs, file accesses, etc.
m Usually easier to exploit once found

BCVS exploiting overflows

) Make sure control flow reaches the
return

) Compensate for collateral damage
) Find your shellcode
) Writing shellcode

BCVS design changes

©) Avoid unnecessary changes to benign
functionality
® Restricting length or character sets of
arguments
® Though, what is the benign functionality?
©) Not a great candidate for privilege

separation

Lattice model notation

©) Element in lattice is a pair of:
m Clearance level, totally ordered by <
m Set of compartments, partially ordered
by C
) Different notations:
TA — (TA, @)
Faculty//5271//8271 — (Faculty, {5271, 8271})

Midterm exam Monday

£) Usual class time and location

) Covers up through today’s lecture

£) Mix of short-answer and exercise-like
questions

) Open books/notes/printouts, no
computers or other electronics

Outline

More Unix access control

Special case: /tmp

) Wed like to allow anyone to make files
in /tmp

) So, everyone should have write
permission

©) But don't want Alice deleting Bob's files

) Solution: “sticky bit” 01000

Special case: group inheritance

©) When using group to manage
permissions, want a whole tree to have
a single group

©) When 02000 bit set, newly created
entries with have the parent’s group

® (Historic BSD behavior)

) Also, directories will themselves inherit

02000

"POSIX" ACLs

) Based on a withdrawn standardization
) More flexible permissions, still fairly
Unix-like
£) Multiple user and group entries
® Decision still based on one entry
©) Default ACLs: generalize group
inheritance

£) Command line: getfacl, setfacl

ACL legacy interactions

©) Hard problem: don't break security of

legacy code
® Suggests: “fail closed”

©) Contrary pressure: don't want to break
functionality
® Suggests: “fail open”
) POSIX ACL design: old group
permission bits are a mask on all novel
permissions

"POSIX" “capabilities”

) Divide root privilege into smaller (~35)
pieces
©) Note: not real capabilities

) First runtime only, then added to FS
similar to setuid

) Motivating example: ping
) Also allows permanent disabling

Privilege escalation dangers

©) Many pieces of the root privilege are
enough to regain the whole thing
m Access to files as UID O
® CAP_DAC_OVERRIDE
® CAP_FOWNER
CAP_SYS_MODULE
® CAP_MKNOD
® CAP_PTRACE
® CAP_SYS_ADMIN (mount)

@

Legacy interaction dangers

©) Former bug: take away capability to
drop privileges

) Use of temporary files by no-longer
setuid programs

) For more details: “Exploiting
capabilities”, Emeric Nasi

Next time

) Good luck on the midterm

