
CSci 5271
Introduction to Computer Security

Day 11: OS security: higher assurance
Stephen McCamant

University of Minnesota, Computer Science & Engineering

Outline

Capability-based access control

OS trust and assurance

Assignment debrief and announcements

More Unix access control

ACLs: no fine-grained subjects

Subjects are a list of usernames
maintained by a sysadmin

Unusual to have a separate subject for
an application

Cannot easily subset access (sandbox)

ACLs: ambient authority

All authority exists by virtue of identity

Kernel automatically applies all available
authority

Authority applied incorrectly leads to
attacks

Confused deputy problem

Compiler writes to billing database

Compiler can produce debug output to
user-specified file

Specify debug output to billing file,
disrupt billing

(Object) capabilities

A capability both designates a resource
and provides authority to access it
Similar to an object reference

Unforgeable, but can copy and distribute

Typically still managed by the kernel

Capability slogans (Miller et al.)

No designation with authority

Dynamic subject creation

Subject-aggregated authority mgmt.

No ambient authority

Composability of authorities

Access-controlled delegation

Dynamic resource creation

Partial example: Unix FDs

Authority to access a specific file

Managed by kernel on behalf of process

Can be passed between processes
Though rare other than parent to child

Unix not designed to use pervasively

Distinguish: password capabilities

Bit pattern itself is the capability
No centralized management

Modern example: authorization using
cryptographic certificates

Revocation with capabilities

Use indirection: give real capability via
a pair of middlemen

A! B via A! F! R! B

Retain capability to tell R to drop
capability to B

Depends on composability

Confinement with capabilities

A cannot pass a capability to B if it
cannot communicate with A at all

Disconnected parts of the capability
graph cannot be reconnected

Depends on controlled delegation and
data/capability distinction

OKL4 and seL4

Commercial and research microkernels

Recent versions of OKL4 use capability
design from seL4

Used as a hypervisor, e.g. underneath
paravirtualized Linux

Shipped on over 1 billion cell phones

Joe-E and Caja

Dialects of Java and JavaScript (resp.)
using capabilities for confined execution

E.g., of JavaScript in an advertisement

Note reliance on Java and JavaScript
type safety

Outline

Capability-based access control

OS trust and assurance

Assignment debrief and announcements

More Unix access control

Trusted and trustworthy

Part of your system is trusted if its
failure can break your security

Thus, OS is almost always trusted

Real question: is it trustworthy?

Distinction not universally observed:
trusted boot, Trusted Solaris, etc.

Trusted (I/O) path

How do you know you’re talking to the
right software?

And no one is sniffing the data?

Example: Trojan login screen
Or worse: unlock screensaver with root
password
Origin of “Press Ctrl-Alt-Del to log in”

Minimizing trust

Kernel ! microkernel ! nanokernel

Reference monitor concept

TCB size: measured relative to a policy
goal
Reference monitor � TCB

But hard to build monitor for all goals

How to gain assurance

Use for a long time

Testing

Code / design review

Third-party certification

Formal methods / proof

Evaluation / certification

Testing and review performed by an
independent party

Goal: separate incentives, separate
accountability

Compare with financial auditing

Watch out for: form over substance,
misplaced incentives

Orange book OS evaluation

Trusted Computer System Evaluation
Criteria

D. Minimal protection
C. Discretionary protection

C2 adds, e.g., secure audit over C1
B. Mandatory protection

B1<B2<B3: stricter classic MLS

A. Verified protection

Common Criteria

International standard and agreement
for IT security certification

Certification against a protection profile,
and evaluation assurance level EAL 1-7

Evaluation performed by
non-government labs

Up to EAL 4 automatically
cross-recognized

Common Criteria, Anderson’s view

Many profiles don’t specify the right
things
OSes evaluated only in unrealistic
environments

E.g., unpatched Windows XP with no
network attacks

“Corruption, Manipulation, and Inertia”
Pernicious innovation: evaluation paid for
by vendor
Labs beholden to national security
apparatus

Formal methods and proof

Can math come to the rescue?

Checking design vs. implementation

Automation possible only with other
tradeoffs

E.g., bounded size model

Starting to become possible:
machine-checked proof

Proof and complexity

Formal proof is only feasible for
programs that are small and elegant

If you honestly care about assurance,
you want your TCB small and elegant
anyway

Should provability further guide design?

Some hopeful proof results

seL4 microkernel (SOSP’09 and
ongoing)

7.5 kL C, 200 kL proof, 160 bugs fixed, 25
person years

CompCert C-subset compiler (PLDI’06
and ongoing)

RockSalt SFI verifier (PLDI’12)

Outline

Capability-based access control

OS trust and assurance

Assignment debrief and announcements

More Unix access control

Exercise set 1 comments

Net risk reduction: this is a formula,
know how to compute it

`grep $username`: I should have said
two good ways to change the code

Solving 13 � x � 10 (mod 2
32)

Silly function

stat(pathname, &f);
stat("/what/ever", &we);
if (f.st_dev == we.st_dev && f.st_ino == we.st_ino) {

return;
}
rfd = open(pathname, O_RDONLY);
buf = malloc(f.st_size - 1);
read(rfd, buf, f.st_size - 1);
close(rfd);
stat(pathname, &f);
if (f.st_dev == we.st_dev && f.st_ino == we.st_ino) {

return;
}
wfd = open(pathname, O_WRONLY | O_TRUNC);
write(wfd, buf, f.st_size-1);
close(wfd);

Reversing the stack

void func(char *str) {

char buf[128];

strcpy(buf, str);

do_something();

return;

}

Payment app

void payment(char *name, int amount_gbp,

char *purpose) {

int amount_usd = (amount_gbp*156)/100;

char memo[32];

strcpy(memo, "Payment for: ");

strcat(memo, purpose);

write_check(name, amount_usd, memo);

}

Big- and little-endian

Overwriting 0x12345678 with
"...AAAAA\0":

0x00345678

0x41005678

0x41410078

0x41414100

0x41414141

Big- and little-endian

Overwriting 0x12345678 with
"...AAAAA\0":

0x12345600

0x12340041

0x12004141

0x00414141

0x41414141

Zip function

char *zip(char *a, char *b) {

char *result;

int len, i;

len = strlen(a);

result = malloc(2*len);

for(i = 0; i <= len; i++) {

result[2*i] = a[i];

result[2*i+1] = b[i];

}

return result;

}

BCVS vulnerabilities

Type 1: Buffer overflows and similar
Some easy to spot, but hard to exploit

Type 2: Logic errors in running
programs, file accesses, etc.

Usually easier to exploit once found

BCVS exploiting overflows

Make sure control flow reaches the
return

Compensate for collateral damage

Find your shellcode

Writing shellcode

BCVS design changes

Avoid unnecessary changes to benign
functionality

Restricting length or character sets of
arguments
Though, what is the benign functionality?

Not a great candidate for privilege
separation

Lattice model notation

Element in lattice is a pair of:
Clearance level, totally ordered by �
Set of compartments, partially ordered
by �

Different notations:
TA ! (TA, ?)

Faculty//5271//8271 ! (Faculty, f5271; 8271g)

Midterm exam Monday

Usual class time and location

Covers up through today’s lecture

Mix of short-answer and exercise-like
questions

Open books/notes/printouts, no
computers or other electronics

Outline

Capability-based access control

OS trust and assurance

Assignment debrief and announcements

More Unix access control

Special case: /tmp

We’d like to allow anyone to make files
in /tmp

So, everyone should have write
permission

But don’t want Alice deleting Bob’s files

Solution: “sticky bit” 01000

Special case: group inheritance

When using group to manage
permissions, want a whole tree to have
a single group
When 02000 bit set, newly created
entries with have the parent’s group

(Historic BSD behavior)

Also, directories will themselves inherit
02000

“POSIX” ACLs

Based on a withdrawn standardization

More flexible permissions, still fairly
Unix-like
Multiple user and group entries

Decision still based on one entry

Default ACLs: generalize group
inheritance

Command line: getfacl, setfacl

ACL legacy interactions

Hard problem: don’t break security of
legacy code

Suggests: “fail closed”

Contrary pressure: don’t want to break
functionality

Suggests: “fail open”

POSIX ACL design: old group
permission bits are a mask on all novel
permissions

“POSIX” “capabilities”

Divide root privilege into smaller (�35)
pieces

Note: not real capabilities

First runtime only, then added to FS
similar to setuid

Motivating example: ping

Also allows permanent disabling

Privilege escalation dangers

Many pieces of the root privilege are
enough to regain the whole thing

Access to files as UID 0
CAP DAC OVERRIDE

CAP FOWNER

CAP SYS MODULE

CAP MKNOD

CAP PTRACE

CAP SYS ADMIN (mount)

Legacy interaction dangers

Former bug: take away capability to
drop privileges

Use of temporary files by no-longer
setuid programs

For more details: “Exploiting
capabilities”, Emeric Nasi

Next time

Good luck on the midterm

