CSci 527
Introduction to Computer Security
Day 14: Cryptography part 1. symmetric

Stephen McCamant
University of Minnesota, Computer Science & Engineering

Outline

Crypto basics

-ography, -ology, -analysis

©) Cryptography (narrow sense): designing
encryption

) Cryptanalysis: breaking encryption

) Cryptology: both of the above

) Code (narrow sense). word-for-concept
substitution

) Cipher: the “codes” we actually care
about

Caesar cipher

©) Advance three letters in alphabet:
A—-D,B—E,...

) Decrypt by going back three letters
) Internet-era variant: rot-13
) Easy to break if you know the principle

Keys and Kerckhoffs's principle

) The only secret part of the cipher is a
key

) Security does not depend on anything
else being secret

) Modern (esp. civilian, academic) crypto
embraces openness quite strongly

Symmetric vs. public key

£) Symmetric key (today’s lecture). one
key used by all participants
©) Public key: one key kept secret,

another published
® Techniques invented in 1970s
® Makes key distribution easier
® Depends on fancier math

Goal: secure channel

) Leaks no content information
® Not protected: size, timing
) Messages delivered intact and in order
® Or not at all
©) Even if an adversary can read, insert,
and delete traffic

One-time pad

©) Secret key is truly random data as long
as message

©) Encrypt by XOR (more generally
addition mod alphabet size)

£) Provides perfect, “information-theoretic”
secrecy

©) No way to get around key size
requirement

Computational security

) More realistic. assume adversary has a
limit on computing power
) Secure if breaking encryption is
computationally infeasible
® E.g, exponential-time brute-force search

) Ties cryptography to complexity theory

Key sizes and security levels

) Difficulty measured in powers of two,
ignore small constant factors

) Power of attack measured by number
of steps, aim for better than brute force

) 232 definitely too easy, probably 2% too

£) Modern symmetric key size: at least
2128

Crypto primitives

) Base complicated systems on a
minimal number of simple operations

) Designed to be fast, secure in wide
variety of uses

) Study those primitives very intensely

Attacks on encryption

£) Known ciphertext
m Weakest attack

©) Known plaintext (and corresponding
ciphertext)

£) Chosen plaintext

) Chosen ciphertext (and plaintext)
® Strongest version: adaptive

Certificational attacks

) Good primitive claims no attack more
effective than brute force
©) Any break is news, even if it's not yet
practical
® Canary in the coal mine
o Eg, 2'%%7 attack against AES-128

) Also watched: attacks against simplified
variants

Fundamental ignorance

£) We don't really know that any
computational cryptosystem is secure

) Security proof would be tantamount to
proving P = NP

©) Crypto is fundamentally more uncertain
than other parts of security

Relative proofs

) Prove security under an unproved
assumption

©) In symmetric crypto, prove a
construction is secure if the primitive is

m Often proof the looks like: if the
construction is insecure, so is the primitive

) Can also prove immunity against a

particular kind of attack

Random oracle paradigm

£) Assume ideal model of primitives:
functions selected uniformly from a
large space
® Anderson: elves in boxes
©) Not theoretically sound; assumption
cannot be satisfied

©) But seems to be sound in practice

Pseudorandomness and distinguishers

) Claim: primitive cannot be distinguished

from a truly random counterpart
® In polynomial time with non-nedligible
probability

) We can build a distinguisher algorithm
to exploit any weakness

) Slightly too strong for most practical
primitives, but a good goal

Open standards

) How can we get good primitives?

) Open-world best practice: run
competition, invite experts to propose
then attack

©) Run by neutral experts, eg. US NIST

©) Recent good examples: AES, SHA-3

A certain three-letter agency

) National Security Agency (NSA): has
primary responsibility for “signals
intelligence”

) Dual-mission tension:

® Break the encryption of everyone in the
world

® Help US encryption not be broken by
foreign powers

Stream ciphers

) Closest computational version of
one-time pad

©) Key (or seed) used to generate a long
pseudorandom bitstream

) Closely related: cryptographic RNG

Shift register stream ciphers

) Linear-feedback shift register (LFSR):

easy way to generate long
pseudorandom sequence
® But linearity allows for attack

) Several ways to add non-linearity

) Common in constrained hardware, poor
security record

RC4

) Fast, simple, widely used software
stream cipher

® Previously a trade secret, also
“ARCFOUR”

£) Many attacks, none yet fatal to careful
users (eg. TLS)
® Famous non-careful user. WEP

) Not recommended for new uses

Encryption # integrity

©) Encryption protects secrecy, not
message integrity

) For constant-size encryption, changing
the ciphertext just creates a different
plaintext

) How will your system handle that?

©) Always need to take care of integrity
separately

Stream cipher mutability

) Strong example of encryption vs.
integrity

©) In stream cipher, flipping a ciphertext bit
flips the corresponding plaintext bit,
only

) Very convenient for targeted changes

Stream cipher assessment

) Currently out of fashion as a primitive in
software
©) Not inherently insecure

® Other common pitfall: must not reuse
key(stream)

©) Currently no widely vetted primitives

Outline

Announcements, midterm debrief

Upcoming assignments

©) Exercise set 3 now up
©) HWI1 grading: aiming for Wednesday

£) HW2: can start registering groups

® By email to both TAs
® Tell is even if same group as HWI

£) Project meetings: invitations RSN

Midterm grading

£) Moodle reflects +10 adjustment
compared to papers
® To compensate for excess difficulty
©) But still may not be the grade you
hoped for

m Letter grade mapping in syllabus

General suggestions

) Open book, but you're in trouble if you
have to look everything up

) Be strategic about how you spend time

) Suggested writing implement:

mechanical pencil
® Unless you don't make mistakes

Lattice up and down

o Math: (14, s1) C (1, s2) if 1; <1, and
s1C s
) Graphical: if it's drawn correctly, up
means up
® Include transitive connections

Lattice image

Lattice counting

©) Old lattice has 24 points: 3 - 8

©) Don't confuse the two 3s

£) Number of subsets of an n-element
set: 2™

© New lattice: 3-28 =3.256 =768

Terminology matching

) Easiest overall: many answers just
sound right, process of elimination
©) Common swap: “privilege” vs.
“capability”
® Sound similar, but “capability” is a special
term

Tricky multiple choice

©) Several questions chosen to go with
readings or exercises

£) Use of "not” requires careful thinking
£) More explanations in posted solutions

C code bug 1. integer overflow

pieces = malloc(num_pieces
* sizeof (struct piece));

) num pieces could be very large, but
shouldn't

) Multiplication could overflow, allocation
too small

C code bug 2: negative index

int r, c;

if (r >=8 || ¢ >= 8)
/* error exit */

board[r][c] = ...

©) Fails to check for lower bound

©) Negative indexes lead to out-of-bounds
access

C code bug 3: sprintf overflow

char buf[20];
sprintf (buf, "Jd x %d: %s",
r, ¢, pli].symbol);

) Format could be too big for buffer
) Several different fixes possible

C code non-bugs

£ Off-by-one in comparison: it's correct
£) Null terminates pieces? It's not a string
©) Failure to free pieces?

£) Format string vulnerability?

ROP shellcoding

) Expected to be hardest (most
interesting) question
©) Easier if you read ROP paper, wrote
shellcode in HW1
® Versus Googled for it
©) Constant value comes after E (pop)
gadget

Course second half: more of the same

) Some might find topics more familiar,
others not

) HW2 has similar sources of difficulty to
HWI

©) Project: challenges of real research
©) Final: longer, similar difficulty to
(adjusted) midterm

Optional textbook show and tell

£) Firewalls and Internet Security
® Pay attention to the bombs
® First edition online, will use for firewalls
chapter
) Introduction to Modern Cryptography

® Focus on provable security, used in 5471
® You'll read part of the introduction

Outline

Block ciphers and modes of operation

Basic idea

©) Encryption/decryption for a fixed sized

block
) Insecure if block size is too small

® Barely enough: 64 bits; current standard:
128

) Reversible, so must be one-to-one and
onto function

Pseudorandom permutation

©) Ideal model: key selects a random
invertible function
£ l.e, permutation (PRP) on block space
® Note: not permutation on bits
) “"Strong” PRP: distinguisher can decrypt
as well as encrypt

Confusion and diffusion

) Basic design principles articulated by
Shannon

) Confusion: combine elements so none
can be analyzed individually

) Diffusion: spread the effect of one
symbol around to others

) lterate multiple rounds of
transformation

Substitution/permutation network

) Parallel structure combining reversible
elements:

£) Substitution: invertible lookup table
("S-box")

©) Permutation: shuffle bits

AES

©) Advanced Encryption Standard: NIST

contest 2001
® Developed under the name Rijndael

) 128-bit block, 128/192/256-bit key

) Fast software implementation with
lookup tables (or dedicated insns)

) Allowed by US government up to Top
Secret

Feistel cipher

©) Split block in half, operate in turn:
(Liy1, Riy1) = (R, Li @ F(Ry, Ky))
©) Key advantage: F need not be
invertible
® Also saves space in hardware
©) Luby-Rackoff: if F is pseudo-random, 4
or more rounds gives a strong PRP

DES

) Data Encryption Standard: AES
predecessor 1977-2005

) 64-bit block, 56-bit key

) Implementable in 70s hardware, not
terribly fast in software

©) Triple DES variant still used in places

Some DES history

) Developed primarily at IBM, based on
an earlier cipher named “Lucifer”
©) Final spec helped and “helped” by the

NSA

® Argued for smaller key size
m S-boxes tweaked to avoid a then-secret
attack

©) Eventually victim to brute-force attack

DES brute force history

1977 est. $20m cost custom hardware
1993 est. $Im cost custom hardware
1997 distributed software break

1998 $250Kk built ASIC hardware

2006 $10k FPGAs

2012 as-a-service against MS-CHAPv2

Double encryption?

) Combine two different block ciphers?
® Belt and suspenders
©) Anderson: don't do it
) FS&K: could do it, not a
recommendation
©) Maurer and Massey (JCrypt'93). might
only be as strong as first cipher

Modes of operation

) How to build a cipher for
arbitrary-length data from a block
cipher

£) Many approaches considered

m For some reason, most have three-letter
acronyms

) More recently: properties susceptible
to relative proof

ECB

) Electronic CodeBook

) Split into blocks, apply cipher to each
one individually

©) Leaks equalities between plaintext
blocks

©) Almost never suitable for general use

Do not use ECB

CBC

) Cipher Block Chaining

0 Ci = Ex(Pi @ Ci 1)

) Probably most popular in current
systems

) Plaintext changes propagate forever,
ciphertext changes only one block

CBC.: getting an IV

) C, is called the initialization vector (V)
® Must be known for decryption
©) IV should be random-looking
® To prevent first-block equalities from
leaking (lesser version of ECB problem)
©) Common approaches

® Generate at random
® Encrypt a nonce

Stream modes: OFB, CTR

) Output FeedBack: produce keystream
by repeatedly encrypting the IV

® Danger: collisions lead to repeated
keystream

) Counter: produce from encryptions of
an incrementing value

® Recently becoming more popular: allows
parallelization and random access

Outline

Hash functions and MACs

|[deal model

©) Ideal crypto hash function:

pseudorandom function
® Arbitrary input, fixed-size output

) Simplest kind of elf in box, theoretically
very convenient

©) But large gap with real systems: better
practice is to target particular
properties

Kinds of attacks

) Pre-image, “inversion”: given vy, find x
such that H(x) =y

) Second preimage, targeted collision:
given x, H(x), find x" # x such that
H(x") = H(x)

) (Free) collision: find x;, x, such that
H(x1) = H(x2)

Birthday paradox and attack

) There are almost certainly two people
in this classroom with the same
birthday

o n people have () = ©(n?) pairs

©) So only about \/n expected for
collision

) "Birthday attack” finds collisions in any
function

Security levels

©) For function with k-bit output:

) Preimage and second preimage should
have complexity 2*

) Collision has complexity 2/2

) Conservative: use hash function twice
as big as block cipher

® Though if you're paranoid, cipher blocks
can collide too

Not cryptographic hash functions

) The ones you probably use for hash
tables

) CRCs, checksums

) Output too small, but also not resistant
to attack

©) Eg, CRC is linear and algebraically nice

Short hash function history

) One the way out: MD5 (128 bit)

® Flaws known, collision-finding now routine
) SHA(-O): first from NIST/NSA, quickly
withdrawn
® Likely flaw discovered 3 years later
) SHA-1: fixed SHA-O, 160-bit output.
) Attacks with complexity around 2°°
® No collisions yet publicly demonstrated

Length extension problem

) MD5, SHA|, etc., computed left to right
over blocks
) Can sometimes compute H(a || b) in
terms of H(a)
® || means bit string concatenation
) Makes many PRF-style constructions
insecure

SHA-2 and SHA-3

) SHA-2: evolutionary, larger,
improvement of SHA-1
® Exists as SHA-{224, 256, 384,512}
® But still has length-extension problem
) SHA-3: chosen recently in open

competition like AES
® Formerly known as Keccak, some
standardization details pending
® New design, fixes length extension
® Too early for wide use yet

MAC: basic idea

£) Message authentication code: similar to
hash function, but with a key

) Adversary without key cannot forge
MACs

) Strong definition: adversary cannot
forge anything, even given
chosen-message MACs on other
messages

CBC-MAC construction

) Same process as CBC encryption, but:

m Start with IV of O
® Return only the last ciphertext block

) Both these conditions needed for
security

) For fixed-length messages (only), as
secure as the block cipher

HMAC construction

©) H(K || M): insecure due to length
extension

® Still not recommended: H(M || K),
H(K [M K)

OHMAC: HK @ a || H(K® b || M))
r) Standard a = 0x5c¢*, b = 0x36*
) Probably most widely used MAC

Outline

Building a secure channel

Session keys

) Don't use your long term password,
etc, directly as a key

) Instead, session key used for just one
channel

©) In practice, usually obtained with
public-key crypto

) Separate keys for encryption and
MACing

Order of operations

©) Encrypt and MAC ("in parallel”)
m Safe only under extra assumptions on the
MAC
©) Encrypt then MAC
® Has cleanest formal safety proof

£) MAC then Encrypt
® Preferred by FS&K for some practical
reasons
® Can also be secure

Authenticated encryption modes

©) Encrypting and MACing as separate
steps is about twice as expensive as
just encrypting

) "Authenticated encryption” modes do
both at once

® Recent (circa 2000) innovation, many
variants

£) NIST-standardized and unpatented:

Galois Counter Mode (GCM)

Ordering and message numbers

) Also don't want attacker to be able to
replay or reorder messages

©) Simple approach: prefix each message
with counter

) Discard duplicate/out-of-order
messages

Padding

©) Adjust message size to match multiple
of block size

) To be reversible, must sometimes make
message longer

©) Eq. for 16-byte block, append either 1,
or22 or333, uptol6 "16" bytes

Padding oracle attack

) Have to be careful that decoding of
padding does not leak information

©) Eg., spend same amount of time
MACing and checking padding whether
or not padding is right

) Remote timing attack against CBC TLS
published just this year

Don't actually reinvent the wheel

©) This is all implemented carefully in
OpenSSL, SSH, etc.

©) Good to understand it, but rarely
sensible to reimplement it

©) You'll probably miss at least one of
decades worth of attacks

Next time

) Public-key encryption protocols

) More about provable security and
appropriate paranoia

