
CSci 5271
Introduction to Computer Security

Day 14: Cryptography part 1: symmetric
Stephen McCamant

University of Minnesota, Computer Science & Engineering

Outline

Crypto basics

Announcements, midterm debrief

Block ciphers and modes of operation

Hash functions and MACs

Building a secure channel

-ography, -ology, -analysis

Cryptography (narrow sense): designing
encryption

Cryptanalysis: breaking encryption

Cryptology: both of the above

Code (narrow sense): word-for-concept
substitution

Cipher: the “codes” we actually care
about

Caesar cipher

Advance three letters in alphabet:
A! D;B! E; : : :

Decrypt by going back three letters

Internet-era variant: rot-13

Easy to break if you know the principle

Keys and Kerckhoffs’s principle

The only secret part of the cipher is a
key

Security does not depend on anything
else being secret

Modern (esp. civilian, academic) crypto
embraces openness quite strongly

Symmetric vs. public key

Symmetric key (today’s lecture): one
key used by all participants
Public key: one key kept secret,
another published

Techniques invented in 1970s
Makes key distribution easier
Depends on fancier math

Goal: secure channel

Leaks no content information
Not protected: size, timing

Messages delivered intact and in order
Or not at all

Even if an adversary can read, insert,
and delete traffic

One-time pad

Secret key is truly random data as long
as message

Encrypt by XOR (more generally
addition mod alphabet size)

Provides perfect, “information-theoretic”
secrecy

No way to get around key size
requirement

Computational security

More realistic: assume adversary has a
limit on computing power
Secure if breaking encryption is
computationally infeasible

E.g., exponential-time brute-force search

Ties cryptography to complexity theory

Key sizes and security levels

Difficulty measured in powers of two,
ignore small constant factors

Power of attack measured by number
of steps, aim for better than brute force

232 definitely too easy, probably 264 too

Modern symmetric key size: at least
2128

Crypto primitives

Base complicated systems on a
minimal number of simple operations

Designed to be fast, secure in wide
variety of uses

Study those primitives very intensely

Attacks on encryption

Known ciphertext
Weakest attack

Known plaintext (and corresponding
ciphertext)

Chosen plaintext

Chosen ciphertext (and plaintext)
Strongest version: adaptive

Certificational attacks

Good primitive claims no attack more
effective than brute force
Any break is news, even if it’s not yet
practical

Canary in the coal mine

E.g., 2126:1 attack against AES-128

Also watched: attacks against simplified
variants

Fundamental ignorance

We don’t really know that any
computational cryptosystem is secure

Security proof would be tantamount to
proving P 6= NP

Crypto is fundamentally more uncertain
than other parts of security

Relative proofs

Prove security under an unproved
assumption
In symmetric crypto, prove a
construction is secure if the primitive is

Often proof the looks like: if the
construction is insecure, so is the primitive

Can also prove immunity against a
particular kind of attack

Random oracle paradigm

Assume ideal model of primitives:
functions selected uniformly from a
large space

Anderson: elves in boxes

Not theoretically sound; assumption
cannot be satisfied

But seems to be sound in practice

Pseudorandomness and distinguishers

Claim: primitive cannot be distinguished
from a truly random counterpart

In polynomial time with non-negligible
probability

We can build a distinguisher algorithm
to exploit any weakness

Slightly too strong for most practical
primitives, but a good goal

Open standards

How can we get good primitives?

Open-world best practice: run
competition, invite experts to propose
then attack

Run by neutral experts, e.g. US NIST

Recent good examples: AES, SHA-3

A certain three-letter agency

National Security Agency (NSA): has
primary responsibility for “signals
intelligence”
Dual-mission tension:

Break the encryption of everyone in the
world
Help US encryption not be broken by
foreign powers

Stream ciphers

Closest computational version of
one-time pad

Key (or seed) used to generate a long
pseudorandom bitstream

Closely related: cryptographic RNG

Shift register stream ciphers

Linear-feedback shift register (LFSR):
easy way to generate long
pseudorandom sequence

But linearity allows for attack

Several ways to add non-linearity

Common in constrained hardware, poor
security record

RC4

Fast, simple, widely used software
stream cipher

Previously a trade secret, also
“ARCFOUR”

Many attacks, none yet fatal to careful
users (e.g. TLS)

Famous non-careful user: WEP

Not recommended for new uses

Encryption 6= integrity

Encryption protects secrecy, not
message integrity

For constant-size encryption, changing
the ciphertext just creates a different
plaintext

How will your system handle that?

Always need to take care of integrity
separately

Stream cipher mutability

Strong example of encryption vs.
integrity

In stream cipher, flipping a ciphertext bit
flips the corresponding plaintext bit,
only

Very convenient for targeted changes

Stream cipher assessment

Currently out of fashion as a primitive in
software
Not inherently insecure

Other common pitfall: must not reuse
key(stream)

Currently no widely vetted primitives

Outline

Crypto basics

Announcements, midterm debrief

Block ciphers and modes of operation

Hash functions and MACs

Building a secure channel

Upcoming assignments

Exercise set 3 now up

HW1 grading: aiming for Wednesday

HW2: can start registering groups
By email to both TAs
Tell is even if same group as HW1

Project meetings: invitations RSN

Midterm grading

Moodle reflects +10 adjustment
compared to papers

To compensate for excess difficulty

But still may not be the grade you
hoped for

Letter grade mapping in syllabus

General suggestions

Open book, but you’re in trouble if you
have to look everything up

Be strategic about how you spend time

Suggested writing implement:
mechanical pencil

Unless you don’t make mistakes

Lattice up and down

Math: (l1; s1) v (l2; s2) if l1 � l2 and
s1 � s2
Graphical: if it’s drawn correctly, up
means up

Include transitive connections

Lattice image

U

 U//A//B

U//A U//B

TS//A//B TS//A//C TS//B//C S//A//B//C

S//A//C

S//C U//A//CTS

TS//A TS//B TS//C

U//C

S//B//C

U//B//C

U//A//B//C

Lattice counting

Old lattice has 24 points: 3 � 8
Don’t confuse the two 3s

Number of subsets of an n-element
set: 2n

New lattice: 3 � 28 = 3 � 256 = 768

Terminology matching

Easiest overall: many answers just
sound right, process of elimination
Common swap: “privilege” vs.
“capability”

Sound similar, but “capability” is a special
term

Tricky multiple choice

Several questions chosen to go with
readings or exercises

Use of “not” requires careful thinking

More explanations in posted solutions

C code bug 1: integer overflow

pieces = malloc(num_pieces

* sizeof(struct piece));

num pieces could be very large, but
shouldn’t

Multiplication could overflow, allocation
too small

C code bug 2: negative index

int r, c;

if (r >= 8 || c >= 8)

/* error exit */

board[r][c] = ...

Fails to check for lower bound

Negative indexes lead to out-of-bounds
access

C code bug 3: sprintf overflow

char buf[20];

sprintf(buf, "%d x %d: %s",

r, c, p[i].symbol);

Format could be too big for buffer

Several different fixes possible

C code non-bugs

Off-by-one in comparison: it’s correct

Null terminates pieces? It’s not a string

Failure to free pieces?

Format string vulnerability?

ROP shellcoding

Expected to be hardest (most
interesting) question
Easier if you read ROP paper, wrote
shellcode in HW1

Versus Googled for it

Constant value comes after E (pop)
gadget

Course second half: more of the same

Some might find topics more familiar,
others not

HW2 has similar sources of difficulty to
HW1

Project: challenges of real research

Final: longer, similar difficulty to
(adjusted) midterm

Optional textbook show and tell

Firewalls and Internet Security
Pay attention to the bombs
First edition online, will use for firewalls
chapter

Introduction to Modern Cryptography
Focus on provable security, used in 5471
You’ll read part of the introduction

Outline

Crypto basics

Announcements, midterm debrief

Block ciphers and modes of operation

Hash functions and MACs

Building a secure channel

Basic idea

Encryption/decryption for a fixed sized
block
Insecure if block size is too small

Barely enough: 64 bits; current standard:
128

Reversible, so must be one-to-one and
onto function

Pseudorandom permutation

Ideal model: key selects a random
invertible function
I.e., permutation (PRP) on block space

Note: not permutation on bits

“Strong” PRP: distinguisher can decrypt
as well as encrypt

Confusion and diffusion

Basic design principles articulated by
Shannon

Confusion: combine elements so none
can be analyzed individually

Diffusion: spread the effect of one
symbol around to others

Iterate multiple rounds of
transformation

Substitution/permutation network

Parallel structure combining reversible
elements:

Substitution: invertible lookup table
(“S-box”)

Permutation: shuffle bits

AES

Advanced Encryption Standard: NIST
contest 2001

Developed under the name Rijndael

128-bit block, 128/192/256-bit key

Fast software implementation with
lookup tables (or dedicated insns)

Allowed by US government up to Top
Secret

Feistel cipher

Split block in half, operate in turn:
(Li+1; Ri+1) = (Ri; Li � F(Ri; Ki))

Key advantage: F need not be
invertible

Also saves space in hardware

Luby-Rackoff: if F is pseudo-random, 4
or more rounds gives a strong PRP

DES

Data Encryption Standard: AES
predecessor 1977-2005

64-bit block, 56-bit key

Implementable in 70s hardware, not
terribly fast in software

Triple DES variant still used in places

Some DES history

Developed primarily at IBM, based on
an earlier cipher named “Lucifer”
Final spec helped and “helped” by the
NSA

Argued for smaller key size
S-boxes tweaked to avoid a then-secret
attack

Eventually victim to brute-force attack

DES brute force history

1977 est. $20m cost custom hardware

1993 est. $1m cost custom hardware

1997 distributed software break

1998 $250k built ASIC hardware

2006 $10k FPGAs

2012 as-a-service against MS-CHAPv2

Double encryption?

Combine two different block ciphers?
Belt and suspenders

Anderson: don’t do it

FS&K: could do it, not a
recommendation

Maurer and Massey (J.Crypt’93): might
only be as strong as first cipher

Modes of operation

How to build a cipher for
arbitrary-length data from a block
cipher
Many approaches considered

For some reason, most have three-letter
acronyms

More recently: properties susceptible
to relative proof

ECB

Electronic CodeBook

Split into blocks, apply cipher to each
one individually

Leaks equalities between plaintext
blocks

Almost never suitable for general use

Do not use ECB CBC

Cipher Block Chaining

Ci = EK(Pi � Ci-1)

Probably most popular in current
systems

Plaintext changes propagate forever,
ciphertext changes only one block

CBC: getting an IV

C0 is called the initialization vector (IV)
Must be known for decryption

IV should be random-looking
To prevent first-block equalities from
leaking (lesser version of ECB problem)

Common approaches
Generate at random
Encrypt a nonce

Stream modes: OFB, CTR

Output FeedBack: produce keystream
by repeatedly encrypting the IV

Danger: collisions lead to repeated
keystream

Counter: produce from encryptions of
an incrementing value

Recently becoming more popular: allows
parallelization and random access

Outline

Crypto basics

Announcements, midterm debrief

Block ciphers and modes of operation

Hash functions and MACs

Building a secure channel

Ideal model

Ideal crypto hash function:
pseudorandom function

Arbitrary input, fixed-size output

Simplest kind of elf in box, theoretically
very convenient

But large gap with real systems: better
practice is to target particular
properties

Kinds of attacks

Pre-image, “inversion”: given y, find x
such that H(x) = y

Second preimage, targeted collision:
given x, H(x), find x 0 6= x such that
H(x 0) = H(x)

(Free) collision: find x1, x2 such that
H(x1) = H(x2)

Birthday paradox and attack

There are almost certainly two people
in this classroom with the same
birthday

n people have
�
n
2

�
= �(n2) pairs

So only about
p
n expected for

collision

“Birthday attack” finds collisions in any
function

Security levels

For function with k-bit output:

Preimage and second preimage should
have complexity 2k

Collision has complexity 2k=2

Conservative: use hash function twice
as big as block cipher

Though if you’re paranoid, cipher blocks
can collide too

Not cryptographic hash functions

The ones you probably use for hash
tables

CRCs, checksums

Output too small, but also not resistant
to attack

E.g., CRC is linear and algebraically nice

Short hash function history

One the way out: MD5 (128 bit)
Flaws known, collision-finding now routine

SHA(-0): first from NIST/NSA, quickly
withdrawn

Likely flaw discovered 3 years later

SHA-1: fixed SHA-0, 160-bit output.

Attacks with complexity around 260

No collisions yet publicly demonstrated

Length extension problem

MD5, SHA1, etc., computed left to right
over blocks
Can sometimes compute H(a k b) in
terms of H(a)

k means bit string concatenation

Makes many PRF-style constructions
insecure

SHA-2 and SHA-3

SHA-2: evolutionary, larger,
improvement of SHA-1

Exists as SHA-f224; 256; 384; 512g
But still has length-extension problem

SHA-3: chosen recently in open
competition like AES

Formerly known as Keccak, some
standardization details pending
New design, fixes length extension
Too early for wide use yet

MAC: basic idea

Message authentication code: similar to
hash function, but with a key

Adversary without key cannot forge
MACs

Strong definition: adversary cannot
forge anything, even given
chosen-message MACs on other
messages

CBC-MAC construction

Same process as CBC encryption, but:
Start with IV of 0
Return only the last ciphertext block

Both these conditions needed for
security

For fixed-length messages (only), as
secure as the block cipher

HMAC construction

H(K kM): insecure due to length
extension

Still not recommended: H(M k K),
H(K k M k K)

HMAC: H(K� a k H(K� b kM))

Standard a = 0x5c�, b = 0x36�

Probably most widely used MAC

Outline

Crypto basics

Announcements, midterm debrief

Block ciphers and modes of operation

Hash functions and MACs

Building a secure channel

Session keys

Don’t use your long term password,
etc., directly as a key

Instead, session key used for just one
channel

In practice, usually obtained with
public-key crypto

Separate keys for encryption and
MACing

Order of operations

Encrypt and MAC (“in parallel”)
Safe only under extra assumptions on the
MAC

Encrypt then MAC
Has cleanest formal safety proof

MAC then Encrypt
Preferred by FS&K for some practical
reasons
Can also be secure

Authenticated encryption modes

Encrypting and MACing as separate
steps is about twice as expensive as
just encrypting
“Authenticated encryption” modes do
both at once

Recent (circa 2000) innovation, many
variants

NIST-standardized and unpatented:
Galois Counter Mode (GCM)

Ordering and message numbers

Also don’t want attacker to be able to
replay or reorder messages

Simple approach: prefix each message
with counter

Discard duplicate/out-of-order
messages

Padding

Adjust message size to match multiple
of block size

To be reversible, must sometimes make
message longer

E.g.: for 16-byte block, append either 1,
or 2 2, or 3 3 3, up to 16 “16” bytes

Padding oracle attack

Have to be careful that decoding of
padding does not leak information

E.g., spend same amount of time
MACing and checking padding whether
or not padding is right

Remote timing attack against CBC TLS
published just this year

Don’t actually reinvent the wheel

This is all implemented carefully in
OpenSSL, SSH, etc.

Good to understand it, but rarely
sensible to reimplement it

You’ll probably miss at least one of
decades worth of attacks

Next time

Public-key encryption protocols

More about provable security and
appropriate paranoia

