CSci 5271 Introduction to Computer Security Day 14: Cryptography part 1: symmetric

Stephen McCamant

University of Minnesota, Computer Science & Engineering

Outline

Crypto basics

Announcements, midterm debrief

Block ciphers and modes of operation

Hash functions and MACs

Building a secure channel

-ography, -ology, -analysis

- Cryptography (narrow sense): designing encryption
- Cryptanalysis: breaking encryption
- Cryptology: both of the above
- Code (narrow sense): word-for-concept substitution
- Cipher: the "codes" we actually care about

Caesar cipher

Advance three letters in alphabet:

 $A \rightarrow D, B \rightarrow E, \dots$

- Decrypt by going back three letters
- Internet-era variant: rot-13
- Easy to break if you know the principle

Keys and Kerckhoffs's principle

- The only secret part of the cipher is a key
- Security does not depend on anything else being secret
- Modern (esp. civilian, academic) crypto embraces openness quite strongly

Symmetric vs. public key

- Symmetric key (today's lecture): one key used by all participants
- Public key: one key kept secret, another published
 - Techniques invented in 1970s
 - Makes key distribution easier
 - Depends on fancier math

Goal: secure channel

- Leaks no content information
 - Not protected: size, timing
- Messages delivered intact and in order
 - Or not at all
- Even if an adversary can read, insert, and delete traffic

One-time pad

- Secret key is truly random data as long as message
- Encrypt by XOR (more generally addition mod alphabet size)
- Provides perfect, "information-theoretic" secrecy
- No way to get around key size requirement

Computational security

- More realistic: assume adversary has a limit on computing power
- Secure if breaking encryption is computationally infeasible
 - E.g., exponential-time brute-force search
- Ties cryptography to complexity theory

Key sizes and security levels

- Difficulty measured in powers of two, ignore small constant factors
- Power of attack measured by number of steps, aim for better than brute force
- Modern symmetric key size: at least 2¹²⁸

Crypto primitives

- Base complicated systems on a minimal number of simple operations
- Designed to be fast, secure in wide variety of uses
- Study those primitives very intensely

Attacks on encryption

- Known ciphertext
 - Weakest attack
- Known plaintext (and corresponding ciphertext)
- Chosen plaintext
- Chosen ciphertext (and plaintext)
 - Strongest version: adaptive

Certificational attacks

- Good primitive claims no attack more effective than brute force
- Any break is news, even if it's not yet practical
 - Canary in the coal mine
- E.g., 2^{126.1} attack against AES-128
- Also watched: attacks against simplified variants

Fundamental ignorance

- We don't really know that any computational cryptosystem is secure
- Security proof would be tantamount to proving $P \neq NP$
- Crypto is fundamentally more uncertain than other parts of security

Relative proofs

- Prove security under an unproved assumption
- In symmetric crypto, prove a construction is secure if the primitive is
 - Often proof the looks like: if the construction is insecure, so is the primitive
- Can also prove immunity against a particular kind of attack

Random oracle paradigm

- Assume ideal model of primitives: functions selected uniformly from a large space
 - Anderson: elves in boxes
- Not theoretically sound; assumption cannot be satisfied
- But seems to be sound in practice

Pseudorandomness and distinguishers

- Claim: primitive cannot be distinguished from a truly random counterpart
 - In polynomial time with non-negligible probability
- We can build a distinguisher algorithm to exploit any weakness
- Slightly too strong for most practical primitives, but a good goal

Open standards

- How can we get good primitives?
- Open-world best practice: run competition, invite experts to propose then attack
- Run by neutral experts, e.g. US NIST
- Recent good examples: AES, SHA-3

A certain three-letter agency

- National Security Agency (NSA): has primary responsibility for "signals intelligence"
- Dual-mission tension:
 - Break the encryption of everyone in the world
 - Help US encryption not be broken by foreign powers

Stream ciphers

- Closest computational version of one-time pad
- Key (or seed) used to generate a long pseudorandom bitstream
- Closely related: cryptographic RNG

Shift register stream ciphers

- Linear-feedback shift register (LFSR): easy way to generate long pseudorandom sequence
 - But linearity allows for attack
- Several ways to add non-linearity
- Common in constrained hardware, poor security record

RC4

- Fast, simple, widely used software stream cipher
 - Previously a trade secret, also "ARCFOUR"
- Many attacks, none yet fatal to careful users (e.g. TLS)
 - Famous non-careful user: WEP
- Not recommended for new uses

Encryption \neq integrity

- Encryption protects secrecy, not message integrity
- For constant-size encryption, changing the ciphertext just creates a different plaintext
- How will your system handle that?
- Always need to take care of integrity separately

Stream cipher mutability

- Strong example of encryption vs. integrity
- In stream cipher, flipping a ciphertext bit flips the corresponding plaintext bit, only
- Very convenient for targeted changes

Stream cipher assessment

- Currently out of fashion as a primitive in software
- Not inherently insecure
 - Other common pitfall: must not reuse key(stream)
- Currently no widely vetted primitives

Outline

Crypto basics

Announcements, midterm debrief

Block ciphers and modes of operation

Hash functions and MACs

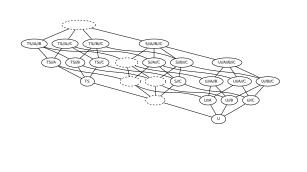
Building a secure channel

Upcoming assignments

- Exercise set 3 now up
- HW1 grading: aiming for Wednesday
- HW2: can start registering groups
 - By email to both TAs
 - Tell is even if same group as HW1
- Project meetings: invitations RSN

Midterm grading

- Moodle reflects +10 adjustment compared to papers
 - To compensate for excess difficulty
- But still may not be the grade you hoped for
 - Letter grade mapping in syllabus


General suggestions

- Open book, but you're in trouble if you have to look everything up
- Be strategic about how you spend time
- Suggested writing implement: mechanical pencil
 - Unless you don't make mistakes

Lattice up and down

- Graphical: if it's drawn correctly, up means up
 - Include transitive connections

Lattice image

Lattice counting

- Old lattice has 24 points: 3 · 8
- Don't confuse the two 3s
- Number of subsets of an n-element set: 2ⁿ
- **new lattice**: $3 \cdot 2^8 = 3 \cdot 256 = 768$

Terminology matching

- Easiest overall: many answers just sound right, process of elimination
- Common swap: "privilege" vs. "capability"
 - Sound similar, but "capability" is a special term

Tricky multiple choice

- Several questions chosen to go with readings or exercises
- Use of "not" requires careful thinking
- More explanations in posted solutions

C code bug 1: integer overflow

- num_pieces could be very large, but shouldn't
- Multiplication could overflow, allocation too small

C code bug 2: negative index

```
int r, c;
if (r >= 8 || c >= 8)
   /* error exit */
board[r][c] = ...
```

- Fails to check for lower bound
- Negative indexes lead to out-of-bounds access

C code bug 3: sprintf overflow

- Format could be too big for buffer
- Several different fixes possible

C code non-bugs

- Off-by-one in comparison: it's correct
- Null terminates pieces? It's not a string
- Failure to free pieces?
- Format string vulnerability?

ROP shellcoding

- Expected to be hardest (most interesting) question
- Easier if you read ROP paper, wrote shellcode in HW1
 - Versus Googled for it
- Constant value comes after E (pop) gadget

Course second half: more of the same

- Some might find topics more familiar, others not
- HW2 has similar sources of difficulty to HW1
- Project: challenges of real research
- Final: longer, similar difficulty to (adjusted) midterm

Optional textbook show and tell

- Firewalls and Internet Security
 - Pay attention to the bombs
 - First edition online, will use for firewalls chapter
- Introduction to Modern Cryptography
 - Focus on provable security, used in 5471
 - You'll read part of the introduction

Outline

Crypto basics

Announcements, midterm debrief

Block ciphers and modes of operation

Hash functions and MACs

Building a secure channel

Basic idea

- Encryption/decryption for a fixed sized block
- Insecure if block size is too small
 - Barely enough: 64 bits; current standard: 128
- Reversible, so must be one-to-one and onto function

Pseudorandom permutation

- Ideal model: key selects a random invertible function
- I.e., permutation (PRP) on block space
 Note: not permutation on bits
- "Strong" PRP: distinguisher can decrypt as well as encrypt

Confusion and diffusion

- Basic design principles articulated by Shannon
- Confusion: combine elements so none can be analyzed individually
- Diffusion: spread the effect of one symbol around to others
- Iterate multiple rounds of transformation

Substitution/permutation network

- Parallel structure combining reversible elements:
- Substitution: invertible lookup table ("S-box")
- Permutation: shuffle bits

AES

- Advanced Encryption Standard: NIST contest 2001
 - Developed under the name Rijndael
- 128-bit block, 128/192/256-bit key
- Fast software implementation with lookup tables (or dedicated insns)
- Allowed by US government up to Top Secret

Feistel cipher

- Split block in half, operate in turn: $(L_{i+1}, R_{i+1}) = (R_i, L_i \oplus F(R_i, K_i))$
- Key advantage: F need not be invertible
 - Also saves space in hardware
- Luby-Rackoff: if F is pseudo-random, 4 or more rounds gives a strong PRP

DES

- Data Encryption Standard: AES predecessor 1977-2005
- 64-bit block, 56-bit key
- Implementable in 70s hardware, not terribly fast in software
- Triple DES variant still used in places

Some DES history

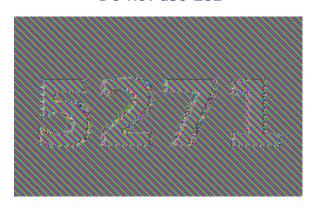
- Developed primarily at IBM, based on an earlier cipher named "Lucifer"
- Final spec helped and "helped" by the NSΔ
 - Argued for smaller key size
 - S-boxes tweaked to avoid a then-secret attack
- Eventually victim to brute-force attack

DES brute force history

- 1977 est. \$20m cost custom hardware
- 1993 est. \$1m cost custom hardware
- 1997 distributed software break
- 1998 \$250k built ASIC hardware
- 2006 \$10k FPGAs
- 2012 as-a-service against MS-CHAPv2

Double encryption?

- Combine two different block ciphers?
 - Belt and suspenders
- Anderson: don't do it
- FS&K: could do it, not a recommendation
- Maurer and Massey (J.Crypt'93): might only be as strong as first cipher


Modes of operation

- How to build a cipher for arbitrary-length data from a block cipher
- Many approaches considered
 - For some reason, most have three-letter acronyms
- More recently: properties susceptible to relative proof

ECB

- Electronic CodeBook
- Split into blocks, apply cipher to each one individually
- Leaks equalities between plaintext blocks
- Almost never suitable for general use

Do not use ECB

CBC

- Cipher Block Chaining
- Probably most popular in current systems
- Plaintext changes propagate forever, ciphertext changes only one block

CBC: getting an IV

- - Must be known for decryption
- IV should be random-looking
 - To prevent first-block equalities from leaking (lesser version of ECB problem)
- Common approaches
 - Generate at random
 - Encrypt a nonce

Stream modes: OFB, CTR

- Output FeedBack: produce keystream by repeatedly encrypting the IV
 - Danger: collisions lead to repeated keystream
- Counter: produce from encryptions of an incrementing value
 - Recently becoming more popular: allows parallelization and random access

Outline

Crypto basics

Announcements, midterm debrief

Block ciphers and modes of operation

Hash functions and MACs

Building a secure channel

Ideal model

- Ideal crypto hash function: pseudorandom function
 - Arbitrary input, fixed-size output
- Simplest kind of elf in box, theoretically very convenient
- But large gap with real systems: better practice is to target particular properties

Kinds of attacks

- **!** Pre-image, "inversion": given y, find x such that H(x) = y
- Second preimage, targeted collision: given x, H(x), find $x' \neq x$ such that H(x') = H(x)
- (Free) collision: find x_1 , x_2 such that $H(x_1) = H(x_2)$

Birthday paradox and attack

- There are almost certainly two people in this classroom with the same birthday

- "Birthday attack" finds collisions in any function

Security levels

- For function with k-bit output:
- Preimage and second preimage should have complexity 2^k
- \bigcirc Collision has complexity $2^{k/2}$
- Conservative: use hash function twice as big as block cipher
 - Though if you're paranoid, cipher blocks can collide too

Not cryptographic hash functions

- The ones you probably use for hash tables
- CRCs, checksums
- Output too small, but also not resistant to attack
- E.g., CRC is linear and algebraically nice

Short hash function history

- One the way out: MD5 (128 bit)
 - Flaws known, collision-finding now routine
- SHA(-0): first from NIST/NSA, quickly withdrawn
 - Likely flaw discovered 3 years later
- SHA-1: fixed SHA-0, 160-bit output.
- \blacksquare Attacks with complexity around 2^{60}
 - No collisions yet publicly demonstrated

Length extension problem

- MD5, SHA1, etc., computed left to right over blocks
- \blacksquare Can sometimes compute $H(a \parallel b)$ in terms of H(a)
 - means bit string concatenation
- Makes many PRF-style constructions insecure

SHA-2 and SHA-3

- SHA-2: evolutionary, larger, improvement of SHA-1
 - **Exists as SHA**-{224, 256, 384, 512}
 - But still has length-extension problem
- SHA-3: chosen recently in open competition like AES
 - Formerly known as Keccak, some standardization details pending
 - New design, fixes length extension
 - Too early for wide use yet

MAC: basic idea

- Message authentication code: similar to hash function, but with a key
- Adversary without key cannot forge MACs
- Strong definition: adversary cannot forge anything, even given chosen-message MACs on other messages

CBC-MAC construction

- Same process as CBC encryption, but:
 - Start with IV of 0
 - Return only the last ciphertext block
- Both these conditions needed for security
- For fixed-length messages (only), as secure as the block cipher

HMAC construction

- \blacksquare H(K \parallel M): insecure due to length extension
- **<u>B</u>** HMAC: $H(K \oplus \alpha \parallel H(K \oplus b \parallel M))$
- **o** Standard $a = 0x5c^*$, $b = 0x36^*$
- Probably most widely used MAC

Outline

Crypto basics

Announcements, midterm debrief

Block ciphers and modes of operation

Hash functions and MACs

Building a secure channel

Session keys

- Don't use your long term password, etc., directly as a key
- Instead, session key used for just one channel
- In practice, usually obtained with public-key crypto
- Separate keys for encryption and MACing

Order of operations

- Encrypt and MAC ("in parallel")
 - Safe only under extra assumptions on the MAC
- Encrypt then MAC
 - Has cleanest formal safety proof
- MAC then Encrypt
 - Preferred by FS&K for some practical reasons
 - Can also be secure

Authenticated encryption modes

- Encrypting and MACing as separate steps is about twice as expensive as just encrypting
- "Authenticated encryption" modes do both at once
 - Recent (circa 2000) innovation, many variants
- NIST-standardized and unpatented: Galois Counter Mode (GCM)

Ordering and message numbers

- Also don't want attacker to be able to replay or reorder messages
- Simple approach: prefix each message with counter
- Discard duplicate/out-of-order messages

Padding

- Adjust message size to match multiple of block size
- To be reversible, must sometimes make message longer
- **E.g.**: for 16-byte block, append either 1, or 2 2, or 3 3 3, up to 16 "16" bytes

Padding oracle attack

- Have to be careful that decoding of padding does not leak information
- E.g., spend same amount of time MACing and checking padding whether or not padding is right
- Remote timing attack against CBC TLS published just this year

Don't actually reinvent the wheel

- This is all implemented carefully in OpenSSL, SSH, etc.
- Good to understand it, but rarely sensible to reimplement it
- You'll probably miss at least one of decades worth of attacks

Next time

- Public-key encryption protocols
- More about provable security and appropriate paranoia