CSci 5271
Introduction to Computer Security
Day 20: Firewalls, NATs, and IDSes

Stephen McCamant
University of Minnesota, Computer Science & Engineering

Outline

Cross-site scripting

XSS: HTML/JS injection (A3)

£) Another use of injection template

) Attacker supplies HTML containing
JavaScript (or occasionally CSS)
©) OWASP’s most prevalent weakness

® A category unto itself
® Easy to commit in any dynamic page
construction

No string-free solution

) For server-side XSS, no way to avoid
string concatenation
£) Web page will be sent as text in the
end
® Research topic: ways to change this?

£) XSS especially hard kind of injection

Danger: complex language embedding

) JS and CSS are complex languages in
their own
) Can appear in various places with
HTML
® But totally different parsing rules
©) Example: "..." used for HTML
attributes and JS strings

® What happens when attribute contains
Js?

Danger: forgiving parsers

) History: handwritten HTML, browser
competition

£) Many syntax mistakes given “likely”
interpretations

©) Handling of incorrect syntax was not
standardized

Sanitization: plain text only

) Easiest case: no tags intended, insert
at document text level

) Escape HTML special characters with
entities like &1t ; for <

) OWASP recommendation:
g <>m" o/

Sanitization: context matters

) An OWASP document lists 5 places in
a web page you might insert text
m For the rest, "don't do that”
£) Each one needs a very different kind of
escaping

Sanitization: tag whitelisting

©) In some applications, want to allow
benign markup like
) But, even benign tags can have JS

attributes
©) Handling well essentially requires an
HTML parser
® But with an adversarial-oriented design

Don't blacklist

) Browser capabilities continue to evolve

£) Attempts to list all bad constructs
inevitably incomplete

©) Even worse for XSS than other
injection attacks

Filter failure: one pass delete

) Simple idea: remove all occurrences of
<script>
) What happens to <scr<script>ipt>?

Filter failure: UTF-7

©) You may have heard of UTF-8
® Encode Unicode as 8-bit bytes

©) UTF-7 is similar but uses only ASCII

©) Encoding can be specified in a <meta>
tag, or some browsers will guess

f) +ADw-script+AD4-

Filter failure: event handlers

©) Put this on something the user will be
tempted to click on

) There are more than 100 handlers like
this recognized by various browsers

Use good libraries

©) Coding your own defenses will never
work

) Take advantage of known good
implementations
) Best case: already built into your

framework
® Disappointingly rare

Content Security Policy

©) New HTTP header, W3C candidate
recommendation
) Lets site opt-in to stricter treatment of

embedded content, such as:
® No inline JS, only loaded from separate
URLs
® Disable JS eval et al.
) Has an interesting violation-reporting

mode

Outline

More cross-site risks

HTTP header injection

) Untrusted data included in response
headers

) Can include CRLF and new headers, or
premature end to headers

) AKA “response splitting”

Content sniffing

£) Browsers determine file type from
headers, extension, and content-based
guessing
m Latter two for ~ 1% server errors
£) Many sites host “untrusted” images
and media
) Inconsistencies in guessing lead to kind
of XSS
® Eg, "chimera” PNG-HTML document

Cross-site request forgery (A8)

) Certain web form on bank . com used to
wire money

©) Link or script on evil.com loads it
with certain parameters

® Linking is exception to same-origin

) If I'm logged in, money sent
automatically

) Confused deputy, cookies are ambient
authority

CSRF prevention

) Give site’s forms random-nonce tokens

® Eg, in POST hidden fields
® Not in a cookie, that's the whole point

©) Reject requests without proper token
® Or, ask user to re-authenticate

£) XSS can be used to steal CSRF tokens

Open redirects (A10)

©) Common for one page to redirect
clients to another
) Target should be validated
®m With authentication check if appropriate
) Open redirect. target supplied in

parameter with no checks
® Doesn't directly hurt the hosting site
® But reputation risk, say if used in phishing
® We teach users to trust by site

Outline

Announcements intermission

Upcoming assignments

) Exercise set 4 posted late last week,

due 11/21
® A week from this Thursday

©) HW2 almost ready

Note: more readings this week

) More details on how to set up firewalls

£) Burglar alarms and “mimicry” attack on
IDSes

£) Containing high-speed worms
) Virus evolution in 2012

©) Use bookmarklet for on-campus
download links

Outline

Confidentiality and privacy

Site perspective (A6)

) Protect confidentiality of authenticators

® Passwords, session cookies, CSRF tokens
) Duty to protect some customer info
® Personally identifying info (“identity theft”)
® Credit-card info (Payment Card Industry
Data Security Standards)
m Health care (HIPAA), education (FERPA)
® Whatever customers reasonably expect

You need to use SSL

©) Finally coming around to view that
more sites need to support HTTPS

® Special thanks to WiFi, NSA
) If you take credit cards (of course)

0 If you ask users to log in

® Must be protecting something, right?
® Also important for users of Tor et al.

Server-side encryption

) Also consider encrypting data “at rest”
©) (Or, avoid storing it at all)
©) Provides defense in depth

® Reduce damage after another attack

£) May be hard to truly separate keys

®m OWASP example: public key for website
— backend credit card info

Adjusting client behavior

©) HTTPS and password fields are basic

hints
) Consider disabling autocomplete
m Usability tradeoff, save users from
themselves
® Finally standardized in HTML5
) Consider disabling caching

m Performance tradeoff
m Better not to have this on user’s disk
® Or proxy? You need SSL

User vs. site perspective

) User privacy goals can be opposed to
site goals
©) Such as in tracking for advertisements

) Browser makers can find themselves in

the middle
m Of course, differ in institutional pressures

Third party content / web bugs

) Much tracking involves sites other than

the one in the URL bar
® For fun, check where your cookies are
coming from

) Various levels of cooperation

) Web bugs are typically 1x1 images used
only for tracking

FLike <0

Cookies arms race

) Privacy-sensitive users like to block
and/or delete cookies

©) Sites have various reasons to retain
identification

) Various workarounds:

® Similar features in Flash and HTML5

® Various channels related to the cache

® Evercookie: store in . places, regenerate
if subset are deleted

Browser fingerprinting

) Combine various server or JS-visible

attributes passively
® User agent string (10 bits)
® Window/screen size (483 bits)
® Available fonts (13.9 bits)
® Plugin verions (154 bits)

(Data from panopticlick.eff.org, far from
exhaustive)

History stealing

) History of what sites you've visited is
not supposed to be JS-visible
£) But, many side-channel attacks have

been possible
® Query link color
® CSS style with external image for visited
links
® Slow-rendering timing channel
® Harvesting bitmaps
® User perception (e.qg. fake CAPTCHA)

Browser and extension choices

) More aggressive privacy behavior lives
in extensions
® Disabling most JavaScript (NoScript)
®m HTTPS Everywhere (whitelist)
® Tor Browser Bundle
) Default behavior is much more
controversial
® Concern not to kill advertising support as
an economic model

Outline

Even web more risks

Misconfiguration problems (A5)

) Default accounts
©) Unneeded features

) Framework behaviors

® Don't automatically create variables from
query fields

Openness tradeoffs

©) Error reporting

® Few benign users want to see a stack
backtrace

) Directory listings
® Hallmark of the old days
) Readable source code of scripts

® Doesn't have your DB password in it, does
it?

Using vulnerable components (A9)

©) Large web apps can use a lot of
third-part code
) Convenient for attackers too

® OWASP: two popular vulnerable
components downloaded 22m times

) Hiding doesn't work if it's popular
) Stay up to date on security
announcements

Clickjacking

©) Fool users about what they're clicking
on
® Circumvent security confirmations
® Fabricate ad interest

©) Example techniques:

® Frame embedding

® Transparency

® Spoof cursor

® Temporal “bait and switch”

Crawling and scraping

©) A lot of web content is free-of-charge,
but proprietary
® Yours in a certain context, if you view
ads, etc.

) Sites don't want it downloaded
automatically (web crawling)

©) Or parsed and user for another
purpose (screen scraping)

) High-rate or honest access detectable

Outline

Firewalls and NAT boxes

Internet addition: middleboxes

©) Original design: middle of net is only
routers
® End-to-end principle
) Modern reality: more functionality in the
network

) Security is one major driver

Security/connectivity tradeoff

©) A lot of security risk comes from a
network connection
® Attacker could be anywhere in the world
£) Reducing connectivity makes security
easier
) Connectivity demand comes from end
users

What a firewall is

) Basically, a router that chooses not to
forward some traffic
® Based on an a-priori policy
) More complex architectures have
multiple layers

®m DMZ area between outer and inner
layers, for outward-facing services

Inbound and outbound control

) Most obvious firewall use: prevent
attacks from the outside
) Often also some control of insiders

® Block malware-infected hosts

® Employees wasting time on Facebook
® Selling sensitive info to competitors
® Nation-state Internet management

£) May want to log or rate-limit, not block

Default: deny

) Usual whitelist approach: first, block
everything

©) Then allow certain traffic

) Basic: filter packets based on headers

) More sophisticated: proxy traffic at a
higher level

IPv4 address scarcity

) Design limit of 232 hosts
® Actually less for many reasons

) Addresses becoming gradually more
scarce over a many-year scale

£) Some high-profile exhaustions in 201

£) IPv6 adoption still very low, occasional
signs of progress

Network address translation (NAT)

) Middlebox that rewrites addresses in
packets
£) Main use: allow inside network to use

non-unique IP addresses

® RFC 1918: 10.*, 192168.*, etc.
® While sharing one outside IP address

) Inside hosts not addressable from
outside
m De-facto firewall

Packet filtering rules

©) Match based on:
m Source IP address
® Source port
m Destination IP address
® Destination port
m Packet flags: TCP vs. UDP TCP ACK, etc.

) Action, eg. allow or block
) Obviously limited in specificity

Client and server ports

) TCP servers listen on well-known port
numbers

® Often < 1024, e.q. 22 for SSH or 80 for
HTTP

©) Clients use a kernel-assigned random
high port

) Plain packet filter would need to allow
all high-port incoming traffic

Stateful filtering

©) In general: firewall rules depend on
previously-seen traffic

©) Key instance: allow replies to an
outbound connection
£) See: port 23746 to port 80

©) Allow incoming port 23746
® To same inside host

©) Needed to make a NAT practical

Circuit-level proxying

) Firewall forwards TCP connections for

inside client
) Standard protocol: SOCKS

® Supported by most web browsers
® Wrapper approaches for non-aware apps

©) Not much more powerful that
packet-level filtering

Application-level proxying

©) Knows about higher-level semantics

£) Long history for, eg., email, now HTTP
most important

£) More knowledge allows better filtering

decisions
® But, more effort to set up

£) Newer: “transparent proxy”
® Pretty much a man-in-the-middle

Tunneling

©) Any data can be transmitted on any
channel, if both sides agree
©) E.g, encapsulate IP packets over SSH

connection
® Compare covert channels, steganography

) Powerful way to subvert firewall
®m Some legitimate uses

Outline

Intrusion detection systems

Basic idea: detect attacks

) The worst attacks are the ones you

don't even know about
) Best case: stop before damage occurs
® Marketed as “prevention”

) Still good: prompt response
) Challenge: what is an attack?

Network and host-based IDSes

©) Network IDS: watch packets similar to

firewall
® But don't know what's bad until you see it
® More often implemented offline

) Host-based IDS: look for compromised
process or user from within machine

Signature matching

©) Signature is a pattern that matches
known bad behavior

) Typically human-curated to ensure
specificity

£) See also: anti-virus scanners

Anomaly detection

©) Learn pattern of normal behavior

©) "Not normal” is a sign of a potential
attack

) Has possibility of finding novel attacks

©) Performance depends on normal
behavior too

Recall: FPs and FNs

©) False positive: detector goes off
without real attack

£) False negative: attack happens without
detection

) Any detector design is a tradeoff
between these (ROC curve)

Signature and anomaly weaknesses

©) Signatures

®m Won't exist for novel attacks
® Often easy to attack around

£) Anomaly detection

® Hard to avoid false positives
® Adversary can train over time

Base rate problems

) If the true incidence is small (low base
rate), most positives will be false
®m Example: screening test for rare disease
) Easy for false positives to overwhelm
admins
0 E.g, 100 attacks out of 10 million

packets, 0.01% FP rate
® How many false alarms?

Adversarial challenges

) FP/FN statistics based on a fixed set of
attacks

©) But attackers won't keep using
techniques that are detected
) Instead, will look for:

® Existing attacks that are not detected
® Minimal changes to attacks
® Truly novel attacks

Wagner and Soto mimicry attack

) Host-based IDS based on sequence of
syscalls
©) Compute A N M, where:

® A models allowed sequences
® M models sequences achieving
attacker's goals

©) Further techniques required:
® Many syscalls made into NOPs

® Replacement subsequences with similar
effect

Next time

) Malware and network denial of service

