
CSci 5271: Introduction to Computer Security

Exercise Set 2 due: Thursday October 9th, 2014

Ground Rules. You may choose to complete these exercises in a group of up to three students.
Each group should turn in one copy with the names of all group members on it. You may use any
source you can find to help with this assignment but you must explicitly reference any source you
use besides the lecture notes or textbook. An electronic (plain text or PDF) copy of your solution
should be submitted on the course Moodle by 11:55pm on Thursday, October 9th.

1. Buffer overflows and invariants. (25 pts) As an exercise in a C programming class, students
were asked to implement a certain transformation on character strings. Words inside parentheses
should have underscores put around each letter l i k e t h i s to simulate underlining, words
inside square brackets should be made upper-case, and words inside curly braces should be ROT13
encrypted. Also the output should end with a space and the word end (followed by the usual null
terminator). The output of the function is a limited-sized buffer, so some input characters might be
discarded, but to avoid causing syntax errors, we want to include the appropriate closing delimiters
in the output. Here’s an implementation by your friend Eric of that specification: the function
rot char, not shown, implements a Caesar cipher on a single character.

void transform(char *in_buf, char *out_buf, int out_size) {

char *p = in_buf;

char *bp = out_buf;

char *buflim = &out_buf[out_size - 8];

char c;

int skipping;

int in_paren, brack_lvl, brace_lvl, last_ul, rot_amt;

in_paren = brack_lvl = brace_lvl = last_ul = rot_amt = 0;

while ((c = *p++) != ’\0’) {

skipping = bp >= buflim;

if (brack_lvl > 0)

c = toupper(c);

c = rot_char(c, rot_amt);

if (in_paren && isalpha(c) && !skipping && !last_ul)

*bp++ = ’_’;

if (!skipping)

*bp++ = c;

if (in_paren && isalpha(c)) {

if (!skipping)

*bp++ = ’_’;

last_ul = 1;

} else {

last_ul = 0;

}

if (c == ’(’) {

in_paren = 1;

1

buflim--;

}

if (c == ’)’ && in_paren) {

if (!skipping)

in_paren = 0;

buflim++;

}

if ((unsigned)c - (unsigned)’[’ < 3u && c != ’\\’) {

int i = (c & 2) ? 1 : -1;

if (brack_lvl + i >= 0) {

if (!skipping || i < 0)

brack_lvl += i;

buflim -= i;

}

}

if (c == ’{’) {

if (!skipping)

brace_lvl++;

rot_amt += 13;

if (rot_amt == 26) {

rot_amt = 0;

buflim -= 2;

}

}

if (c == ’}’ && brace_lvl > 0) {

if (!skipping)

brace_lvl--;

rot_amt -= 13;

if (rot_amt < 0)

rot_amt = 0;

buflim++;

}

}

if (in_paren)

*bp++ = ’)’;

while (brack_lvl-- > 0)

*bp++ = ’]’;

while (brace_lvl-- > 0)

*bp++ = ’}’;

*bp++ = ’ ’;

*bp++ = ’e’;

*bp++ = ’n’;

*bp++ = ’d’;

*bp++ = ’\0’;

}

2

(a) Unfortunately, this code has a buffer overflow bug. Give an example of an input that will
cause an overflow if the output buffer is of size 20. (You may find it easier to do either this
part of the question or the next part first, or consider working on them together. We’ve also
posted a compilable version of the code on the course web site if you’d like to experiment
with it.)

(b) Use invariants to think about how to code this function safely. An invariant for this function
is a relationship between the values of one or more variables that should always hold at a
particular point in the program; even better are invariants that always hold, except perhaps
in the middle of updating the variables. Formulate some good invariants over the variables
of this function. It should be easy to see from your invariants that if the invariants are
maintained, the code won’t have a buffer overflow. And the invariants should also be related
to the variables in a way that explains why the variables change when they do. Because of the
bug, your invariants won’t all hold in the original version of the code, but suggest a minimal
code change that will make the invariants hold (and so make the code safe). If you want to
test out your invariants, you can add them as assert statements in the code.

2. Equal error rates and passwords. (20 pts) Many biometric authentication schemes produce
a “confidence” value that allows a tradeoff between “false positive” and “false negative” errors.
Password schemes are not typically considered in this light. List some reasons why you think
this might be. We could change the way we check passwords to produce a confidence value;
for example, the edit distance between a login attempt and the stored password. What are the
(security) challenges of this approach compared with the standard use of passwords? How would
you measure the EER of a password system using this approach? (Would your measurement be
meaningful?)

3. Reference monitor without hardware support. (15 pts) Alice is a developer for a toy
company. One day her boss Cindy rushes up to her desk excitedly and says “we are going to develop
a toy computer with an operating system and everything.” Alice is really excited about the prospect
of developing an operating system until she finds out that Cindy has already purchased processors
that have no access control mechanisms at all: neither a supervisor bit nor a MMU. On the plus
side, they are really fast and she has tons of RAM. Alice thinks for a bit longer and decides she
can solve this problem in a pretty straightforward way. Sketch out her solution, in enough details
to convince a fellow student it will be secure.

4. Sharing files in Unix. (25 pts) Alice wants to be able to share read and write access to
some of her files (on a Unix system) with dynamically changing sets of users. Since she is not root,
she can’t just construct new groups for each file, nor can she turn on the optional ACL feature
available on some systems. So she decides to use setuid programs that will implement ACLs for
sharing files with her friends. Alice’s design calls for two setuid-Alice, world-executable programs
(i.e., programs that anyone can run, and which execute with her privileges) named alice-write

and alice-read. She specifies that the programs should operate as follows:

• alice-write [in] [out] first checks a permission file written by Alice to make sure that
the real uid of the process (that of the calling user) is allowed to write to the file out. If so,
then the program reads the file in and writes it over out.

3

• alice-read [in] [out] first checks a permission file written by Alice to make sure that the
calling user is allowed to read the file in. If so, the the program reads in and writes it to the
file out.

Alice sat in on the first few weeks of 5271, so she also knows to be careful about implementing
programs like this. She knows there should be no buffer overflows in alice-read and alice-write,
that the permissions file should be uniquely named in the program and modifiable only by her, and
that the programs should only accept files paths listed in the permissions file. Before she goes off
to hire someone to implement her design, she asks you to critique it.

Point out some remaining security problems with Alice’s design. For instance, suppose Bob
can read and write some of Alice’s files but not others; can he use alice-write and alice-read

to gain access to files he shouldn’t? Are there potential attacks that could allow third parties to
read/write Alice’s files? Does any security-relevant part of Alice’s design seem vague or unclear?

To avoid the problems you’ve identified, suggest design changes to the interface and/or the
implementation of alice-write and alice-read. If you’d like some more background about
secure setuid programs, you can check out the paper “Setuid Demystified” by Chen, Wagner, and
Dean, which is available for download at

http://www.cs.berkeley.edu/~daw/papers/setuid-usenix02.ps .
But not all of the technical details in that paper are needed for this question.

5. Multilevel-secure classification. (15 pts) Bob is setting up an MLS operating system for
his company. His boss has told him that they will be using a multi-level classification system with
three ranks: public < corporate < management, and one specialized compartment, accounting.
Every user will hold a clearance according to this system.

Suppose Alice has current clearance (corporate, ∅). (∅ is the set of specialized compartments
she is a member of, namely none.) Draw the lattice of classifications in this system (there are 6
classifications). Mark with an “R” each classification that Alice should be able to read under the
BLP policy and with a “W” each classification that Alice should be able to write to under the BLP
policy.

4

