CSci 5271
Introduction to Computer Security
Day 4: Low-level attacks

Stephen McCamant
University of Minnesota, Computer Science & Engineering

Outline

Non-buffer problems

Integer overflow

©) Fixed size result ## math result

©) Sum of two positive ints negative or
less than addend

©) Also multiplication, left shift, etc.
) Negation of most-negative value
©) (low + high)/2

Integer overflow example

int n = read_int();
obj *p = malloc(n * sizeof(obj));
for (i = 0; i < n; i++)

plil = read_obj();

Signed and unsigned

©) Unsigned gives more range for, eq.,
size_t

©) At machine level, many but not all
operations are the same

©) Most important difference: ordering

) In C, signed overflow is undefined
behavior

Mixing integer sizes

) Complicated rules for implicit
conversions
® Also includes signed vs. unsigned
) Generally, convert before operation:
mEg, 1ULL << 63
©) Sign-extend vs. zero-extend
® char ¢ = Oxff; (int)c

Null pointers

) Vanilla null dereference is usually
non-exploitable (just a DoS)

©) But not if there could be an offset (e.q.,
field of struct)

©) And not in the kernel if an untrusted
user has allocated the zero page

Undefined behavior

) C standard “undefined behavior”:
anything could happen

) Can be unexpectedly bad for security

£) Most common problem: compiler
optimizes assuming undefined behavior
cannot happen

Linux kernel example

struct sock *sk = tun->sk;
/] ...
if ('tun)
return POLLERR;
// more uses of tun and sk

Format strings

©) printf format strings are a little
interpreter

©) printf (msg) with untrusted msg lets
the attacker program it
) Allows:

® Dumping stack contents
® Denial of service
® Arbitrary memory modifications!

Outline

Classic code injection attacks

Overwriting the return address

12(%ebp)

8(%ebp)

5] 4 (%ebp)

le—— %ebp

-4(%ebp)

—_—

-8(%ebp)

I
"top" of har(8]
stack

%esp. [0] |-16(%ebp)

Collateral damage

12 (%ebp)

8(%ebp)

4(%ebp)

—
o [§%
3

l«— %ebp

-4(%ebp)

i -8(ssebp)

I
"top" of har(8]
sta

%esp. [0] |-16(%ebp)

Collateral damage

) Stop the program from crashing early
) ‘Overwrite’ with same value, or another
legal one

£) Minimize time between overwrite and
use

Other code injection targets

£) Function pointers
® Local, global, on heap

£) longjmp buffers
£) GOT (PLT) / import tables
) Exception handlers

Indirect overwrites

©) Change a data pointer used to access
a code pointer

) Easiest if there are few other uses

) Common examples

® Frame pointer
m C+ object vtable pointer

Non-sequential writes

©) E.g. missing bounds check, corrupted
pointer

) Can be more flexible and targeted
) More likely needs an absolute location
©) May have less control of value written

Unexpected-size writes

) Attacks don't need to obey normal
conventions

) Overwrite one byte within a pointer

) Use mis-aligned word writes to isolate
a byte

Outline

Announcements intermission

Project meeting scheduling

) Will pick a half-hour meeting slot, use
for three different meetings

) List of about 75 slots on the web page

) Choose ordered list in pre-proposal,
length inverse to popularity

HAI first attack

) First attack due tomorrow (Friday) night

) Most groups have gotten their VM
assignments

) Suggested first exploit: back door

£) Moodle or email to staff available for
guestions

Outline

Shellcode and other targets

Basic definition

) Shellcode: attacker supplied instructions
implementing malicious functionality

) Name comes from example of starting
a shell

) Often requires attention to
machine-language encoding

Classic execve /bin/sh

f) execve(fname, argv, envp)
system call

) Specialized syscall calling conventions

) Omit unneeded arguments

©) Doable in under 25 bytes for Linux/x86

Avoiding zero bytes

) Common requirement for shellcode in C
string
) Analogy: broken O key on keyboard

£) May occur in other parts of encoding
as well

More restrictions

£) No newlines

©) Only printable characters

©) Only alphanumeric characters
©) "English Shellcode” (CCS'09)

Transformations

) Fold case, escapes, Latinl to Unicode,
etc.

©) Invariant. unchanged by transformation

) Pre-image: becomes shellcode only
after transformation

Multi-stage approach

) Initially executable portion unpacks rest
from another format

©) Improves efficiency in restricted
environments

©) But self-modifying code has pitfalls

NOP sleds

) Goal: make the shellcode an easier
target to hit

©) Long sequence of no-op instructions,
real shellcode at the end

® X86: 0x90 0x90 0x90 0x90 0x90
... Shellcode

Where to put shellcode?

o) In overflowed buffer, if big enough

£) Anywhere else you can get it
® Nice to have: predictable location
) Convenient choice of Unix local
exploits:

Where to put shellcode?

Environment variables
Oxbfffffff

\USER=smcc\gPATH=/bin:/usr/bin[\0] Environment/

RRISPLAY= :? LANG=en_US [w])i68600] | |AUXV strings

cploy/etg/ iAsuelol/ tmp[io] pafito e bytes] | | argv strings
4096 / 11271792 15:[] 0: 0] |auxv

] UL environment

argv
envp

future|growth

Code reuse

£ If can't get your own shellcode, use
existing code
) Classic example: system
implementation in C library
® "Return to libc” attack

) More variations on this later

Outline

Exploiting other vulnerabilities

Non-control data overwrite

) Overwrite other security-sensitive data
£) No change to program control flow

) Set user ID to O, set permissions to all,
etc.

Heap meta-data

) Boundary tags similar to doubly-linked
list

) Overwritten on heap overflow

©) Arbitrary write triggered on free

) Simple version stopped by sanity
checks

Heap meta-data

future [growth
the
"break"

Unallocated
area

|

|

|
[Free 11 1 | Medium objects
i [T _Free]| W/ boundary tags
| —

[]| Small objects
[T[T 1| bucketed by size

Use after free

) Write to new object overwrites old, or
vice-versa

) Key issue is what heap object is
reused for

o) Influence by controlling other heap
operations

Integer overflows

r) Easiest to use: overflow in small (8-,
16-bit) value, or only overflowed value
used

£) 2GB write in 100 byte buffer

® Find some other way to make it stop
©) Arbitrary single overwrite
® Use math to figure out overflowing value

Null pointer dereference

©) Add offset to make a predictable
pointer
® On Windows, interesting address start low
©) Allocate data on the zero page

® Most common in user-space to kernel
attacks
® Read more dangerous than a write

Format string attack

) Attacker-controlled format: little
interpreter
) Step one: add extra integer specifiers,

dump stack
® Already useful for information disclosure

Format string attack layout

caller locals,
other frames

]

spec.
arg #2

spec.
arg #1 argument
pointer

format
string
ptr \
T %X %X %X %X %X
address
caller frame

printf frame

Format string attack layout

caller locals,
other frames

]

spec.
arg #2

spec.
arg #1 argument

ol pointer
string
ptr
return \
address
caller frame

printf frame

%X %X %X %X %X

Format string attack: overwrite

) %n specifier: store number of chars
written so far to pointer arg

) Advance format arg pointer to other
attacker-controlled data

) Control number of chars written with
padding

) On x86, use unaligned stores to create
pointer

Next time

r) Defenses and counter-attacks

