CSci 5271
Introduction to Computer Security
Day 6: Low-level defenses and
counterattacks, part 2

Stephen McCamant
University of Minnesota, Computer Science & Engineering

Outline

Return-oriented programming (ROP)

Basic new idea

) Treat the stack like a new instruction
set

) "Opcodes” are pointers to existing
code

) Generalizes return-to-libc with more
programmability

ret2pop (Miuiller)

) Take advantage of shellcode pointer
already present on stack

©) Rewrite intervening stack to treat the
shellcode pointer like a return address

® A long sequence of chained returns, one
pop

ret2pop (Miller)

—— shellcode

.
laddress— POP %ecx; ret

Gadgets

) Basic code unit in ROP

©) Any existing instruction sequence that
ends in a return

£) Found by (possibly automated) search

Another partial example

—— int 0x80; ret

———>mov %ecx, %eax; ret
ey 125 (syscall 125 = mprotect)
~—>pop %ecx; ret

uuuuu

sssss

xxxxxxxxxx

Overlapping x86 instructions

‘mov $0x56,%thsbb $Oxff,%alHinc %eaxHor %al,%dh‘
[movzbl Oxlc(%esi),%edx| incl 0x8(%eax)
0f b6 56 lc ff 40 08 c6

©) Variable length instructions can start at
any byte
) Usually only one intended stream

Where gadgets come from

©) Possibilities:

® Entirely intended instructions

® Entirely unaligned bytes

® Fall through from unaligned to intended
) Standard x86 return is only one byte,

Oxc3

Building instructions

) String together gadgets into
manageable units of functionality

©) Examples:
® Loads and stores
® Arithmetic
® Unconditional jumps

) Must work around limitations of
available gadgets

Hardest case: conditional branch

) Existing jCC instructions not useful
) But carry flag CF is

) Three steps:
1. Do operation that sets CF
2. Transfer CF to general-purpose register
3. Add variable amount to %esp

Further advances in ROP

©) Can also use other indirect jumps,
overlapping not required

©) Automation in gadget finding and
compilers

©) In practice: minimal ROP code to allow
transfer to other shellcode

Anti-ROP: lightweight

) Check stack sanity in critical functions

) Check hardware-maintained log of
recent indirect jumps (kBouncer)

) Unfortunately, exploitable gaps

Gaps in lightweight anti-ROP

©) Three papers presented at August’s
USENIX Security

) Hide / flush jump history

) Very long loop — context switch
©) Long "non-gadget” fragment

) (Later: call-preceded gadgets)

Anti-ROP: still research

©) Modify binary to break gadgets

) Fine-grained code randomization

) Beware of adaptive attackers
("JIT-ROP")

©) Next up: control-flow integrity

Outline

Announcements, GDB intermission

HAI attack 2

) Due 1:55pm this Friday, .targz on
Moodle

) Hope you've at least found your
vulnerability already

Short demo: GDB on binaries

) Commands posted separately

Project group formation

©) Currently a few more groups than
would be ideal

©) I'll look to see if there are good merger
opportunities

) Also consider more forum or informal
discussions

) Invitations for in-person meetings
coming soon

Outline

Control-flow integrity (CFI)

Some philosophy

) Remember whitelist vs. blacklist?

©) Rather than specific attacks, tighten
behavior
® Compare: type system; garbage collector
vs. use-after-free

©) CFI: apply to control-flow attacks

Basic CFl principle

©) Each indirect jump should only go to a
programmer-intended (or
compiler-intended) target

©) le, enforce call graph
©) Often: identify disjoint target sets

Approximating the call graph

) One set: all legal indirect targets

) Two sets: indirect calls and return
points

©) n sets: needs possibly-difficult
points-to analysis

Target checking: classic

) Identifier is a unique 32-bit value

£) Can embed in effectively-nop
instruction

©) Check value at target before jump
) Optionally add shadow stack

Target checking: classic

cmp [ecx], 12345678h
jne error_label

lea ecx, [ecx+4]

jmp ecx

Challenge 1. performance

£) In CCS'05 paper: 16% avq., 45% max.
® Widely varying by program
® Probably too much for on-by-default

©) Improved in later research

® Common alternative: use tables of legal
targets

Challenge 2: compatibility

) Compilation information required
) Must transform entire program together

) Can't inter-operate with untransformed
code

Recent advances: COTS

) Commercial off-the-shelf binaries

) CCFIR (Berkeley+PKU, Oakland13):
Windows

) CFl for COTS Binaries (Stony Brook,
USENIX"13): Linux

COTS techniques

) CCFIR: use Windows ASLR information
to find targets

) Linux paper: keep copy of original
binary, build translation table

Approximating the call graph: CCFIR

©) One set: all legal indirect targets

©) Two sets: indirect calls and return
points

£) Three sets: segregate returns into
sensitive functions

©) n sets: needs possibly-difficult
points-to analysis

Coarse-grained counter-attack

) "Out of Control” paper, Oakland'14
©) Limit to gadgets allowed by coarse
policy

® Indirect call to function entry
® Return to point after call site
(“call-preceded”)

) Use existing direct calls to
VirtualProtect
) Also used against kBouncer

More modern

Outline

exploit techniques

Target #1. web browsers

) Widely used on desktop and mobile
platforms

) Easily exposed to malicious code

) JavaScript is useful for constructing
fancy attacks

Heap spraying

) How to take advantage of uncontrolled

jump?

£) Maximize proportion of memory that is

a target

) Generalize NOP sled idea, using benign

allocator

©) Under WX, can't be code directly

JIT spraying

©) Can we use a JIT compiler to make our

sleds?
) Exploit unaligned execution:

® Benign but weird high-level code (bitwise

ops. with constants)

® Benign but predictable JiTted code

®m Becomes sled + exploit when entered
unaligned

JIT spray example

25 90 90 90 3c
25 90 90 90 3c
25 90 90 90 3c
25 90 90 90 3c

and $0x3c909090, %eax
and $0x3c909090, %eax
and $0x3c909090, %eax
and $0x3c909090, jeax

JIT spray example

90 nop
90 nop
90 nop
3c 25 cmp $0x25,%al
90 nop
90 nop
90 nop
3c 25 cmp $0x25,%al

Use-after-free

) Low-level memory error of choice in
web browsers

©) Not as easily audited as buffer
overflows

©) Can lurk in attacker-controlled corner
cases

) JavaScript and Document Object Model
(DOM)

Sandboxes and escape

£) Chrome NaCl: run untrusted native
code with SFI
m Extra instruction-level checks somewhat

like CFI
) Each web page rendered in own,
less-trusted process

) But not easy to make sandboxes
secure

® While allowing functionality

Chained bugs in Pwnium 1

) Google-run contest for complete
Chrome exploits
m First edition in spring 2012

) Winner 1. 6 vulnerabilities

) Winner 2: 14 bugs and "missed
hardening opportunities”

) Each got $60k, bugs promptly fixed

Next time

) Defensive design and programming

) Make your code less vulnerable the
first time

