
CSci 5271

Navid Emamdoost
navid@cs.umn.edu

Oct-16-2014

Software-based Fault Isolation

Need for extensibility
● UNIX vnode interface

o Add new file system
● Postgres database

o User-defined data type
● Browser plugins

o Incorporate plugins (possibly from untrusted sources)

Problem with extensions
● Security!
● Extensions may be

o Malicious
o Vulnerable
o Faulty

● Solution:
o Isolate from other codes

Isolation options
● Hardware-based isolation

o Different virtual address space
o Communicate via RPC

RPC

Module A Module B Module C

Isolation options (cont’d)
● Software-based isolation

All modules in same virtual address
Protect them from each other
Provide an efficient communication

Efficient Software-based Fault
Isolation

Robert Wahbe, Steven Lucco, Thomas E. Anderson, Susan L. Graham
SOSP 1993

Goal
● Protect the rest of an application from a

buggy/malicious module on RISC architecture
● Separate distrusted code

o Define a fault domain
o Prevent the module from jumping or writing outside of it
o While letting efficient communications

● Security Policy:
o No code is executed outside of fault domain
o No data changed outside of fault domain

Fault Domain
● Load untrusted extension into its own fault domain

o Code Segment
o Data Segment

Code Segment

Data Segment

Segment ID
● Within a segment

o Addresses share unique pattern of upper bits

Code Segment

Data Segment

0x148a0000

0x148affff

0x148d0000

0x148dffff

Target Address

Segment ID

Unsafe Instruction
● Jump or store instructions
● Addressing issue

o jmp 10001e0
● or

o mov %eax,0x11020028

Unsafe Instruction
● Jump or store instructions
● Addressing issue

o jmp 10001e0
o jmp *%ecx

● or
o mov %eax,0x11020028
o mov $0x11018b80,%ecx

● Insert checking code before unsafe insn
o check segment ID of target address

● Use dedicated registers

dedicated-reg ⇐ target-address
scratch-reg ⇐ (dedicated-reg >> shift-reg)
if scratch-reg == segment-reg:

jmp/mov using dedicated-reg

Segment Matching Segment Matching
● Needs 4 dedicated registers
● Checking code must be atomic
● Exact location of fault can be detected
● Runtime overhead

o 4 extra instructions

Address Sandboxing
● Ensure, do not check!
● Before each unsafe instruction

o Set upper bit of target address to correct segment ID

dedicated-reg ⇐ target-address & and-mask
dedicated-reg ⇐ dedicated-reg | segment-reg
jmp/mov using dedicated-reg

Address Sandboxing
● Prevents faults
● Needs 5 dedicated registers
● 2 extra instructions

o less overhead compared to segment matching

Process Resources
● No direct syscall
● A trusted fault domain receives the syscall
● Determine if it is safe
● If so, make the syscall and return the result to distrusted

code

Optimizations
● register-plus-offset mode

o store value, offset(reg)
 offset is in the range of -64K to +64K

o mov %esi,0x8(%edx)

Segment

Guard Zone

Guard Zone

reg

reg+ offset

Optimizations
● Stack pointer

o just sandbox it when it is set
o ignore sandboxing for small changes

 push, pop
o Works because of guard zones

Cross Fault Domain Call
● How to call from another fault domain

Cross Fault Domain Call
● Trusted call/return stub

o copy parameters
o switch execution stack
o maintain values of CPU registers
o no traps or address space switching

 faster
o returns via jump table

 jump targets are immediates
 a legal address in target fault domain

Implementation
● Change the compiler

o emit encapsulation code into distrusted code
● At the load time

o check the integrity of encapsulation code
o Verifier

Verifier
● Responsible for checking encapsulation instructions just

before execution start
● Challenge:

o indirect jump
● Hint:

o every store/jump uses dedicated registers
● Look for changes in dedicated registers

o any change means beginning of a check region
o verify the integrity of check region

Verifier
● Divide program into unsafe regions

o any modification to store dedicated register
 start of store unsafe region

o the store unsafe region ends when:
 next instruction be a store (uses dedicated register)
 next instruction be control flow change
 next instruction is not guaranteed to be executed
 no more instructions be in the code

o at the end if dedicated register is not sandboxed
correctly, reject the code

Performance Overhead
● 4.3% on average
● 21.8% when sandboxing read instructions as well What about CISC architectures?!

x86

Evaluating SFI for a CISC Architecture
(PittSFIeld)

Stephen McCamant, Greg Morrisett
USENIX 2005

CISC Architectures
● RISC Architecture

o Fixed length instructions
o More CPU registers

● Intel IA-32 (aka x86-32)
o Variable length instructions
o Less CPU registers

● Classical SFI is not applicable here

CISC Architectures
● Processor can jump to any byte
● Hard to make hidden instructions safe

Solution
● Alignment

o Divide memory into 16-byte chunks
o No instruction is allowed to cross chunk boundary
o Target of jumps placed at the beginning of chunks
o Call instructions placed at the end of chunk

Alignment
● Use NOP

o for padding
● No separation of
an unsafe instruction
and its check

Jumps
● Chunks are atomic
● Jump destinations
are checked to be
16-byte aligned

Optimization: AND-only Sandboxing

● Reduces sandboxing sequence to just one instruction
o choose code and data region addresses carefully
o Their ID just has one bit set

Reserved
SFI

Code
SFI
Data

Trusted Code and
Data

0x00000000

0x00ffffff

0x10000000

0x10ffffff

0x20000000

0x20ffffff

0xffffffff

Example

Verification
● Statically check

o No jump to outside of code region
o No store to outside of data region

● Before each unsafe jump or store there should be a
sandboxing AND

● The sandboxing AND should not be the last instruction
in a chunk

Performance overhead
● Implemented prototype

o named PittSFIeld
● Average module overhead: 21%
● But the overall execution can be improved because of

faster communications
o no trap, RPC, etc

Native-client: A Sandbox for Portable,
Untrusted x86 Native Code

Bennet Yee, et al.
IEEE S&P, 2009

Google Native Client
● Browser Plugin (Google Chrome)

o Allows execution of untrusted native code in browser
● Browser?! Native Code?!

o Yes! browsers are new platform for applications
● Gives Browser plugins performance of native code
● Ships by default with Chrome 14
● Very complex architecture

o Focus on sandboxing technique

Sandboxing
● Inner Sandbox

o Like PittSFIeld
o Alignment and address sandboxing

 No cross boundary instructions
 jump target must be aligned

● Outer Sandbox
o Controls system calls issued by native code
o Whitelist

Inner Sandbox
● On x86-32 bit architecture
● Use segmented memory to guaranty data sandboxing
● Use 32-byte alignment to sandbox jumps

o jump
o call
o retturn

and $0xffffffe0,%ecx
jmp *%ecx

Outer Sandbox
● Second layer of defense for native code
● Filters system calls
● On linux uses ptrace
● Block any sys call not in whitelist
● For some, perform special argument checking

o SYS_OPEN: can access to a whitelisted set of files
● Any violation from outer sandbox policy will terminate

native code execution

Native Client Toolchain
● Modified GCC and GAS

o To emit sandboxing instructions
● Final executable has .nexe extension

o compiled and linked as ELF file
● Can be disassembled using standard tools

o objdump -d
naclcall %ebx

and $0xffffffe0,%ebx
call *%ebx

nacljmp %ecx
and $0xffffffe0,%ecx
jmp *%ecx

Performance Evaluation
● Imposes in average %5 overhead
● Sources of overhead

o Inner sandbox
 alignment and padding

o Outer sandbox
 syscall capturing and whitelisting

Recap
● Sandboxing

o Execute untrusted code in a fault domain
● RISC

o Simple instructions
o Address Sandboxing

● CISC
o Complex instructions
o Address alignment

● Browser plugin
o Benefit native performance in browser

Thank you

Questions?

