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Need for extensibility

e UNIX vnode interface

o Add new file system
e Postgres database

o User-defined data type
e Browser plugins

o Incorporate plugins (possibly from untrusted sources)
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Problem with extensions

e Security!
e Extensions may be
o Malicious
o Vulnerable
o Faulty
e Solution:
o Isolate from other codes
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Isolation options

e Hardware-based isolation
o Different virtual address space
o Communicate via RPC

RPC

Module A Module B

Module C
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e Software-based isolation

All modules in same virtual address

Protect them from each other

Provide an efficient communication

Efficient Software-based Fault
Isolation

Robert Wahbe, Steven Lucco, Thomas E. Anderson, Susan L. Graham
SOSP 1993
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e Protect the rest of an application from a
buggy/malicious module on RISC architecture

e Separate distrusted code
o Define a fault domain
o Prevent the module from jumping or writing outside of it
o While letting efficient communications

e Security Policy:
o No code is executed outside of fault domain
o No data changed outside of fault domain
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e Load untrusted extension into its own fault domain

o Code Segment
o Data Segment

Segment ID
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e Within a segment

o Addresses share unique pattern of upper bits

0x148a0000
Code Segment

0x148affff

0x148d0000

Data Segment

0x148dffff

Target Address

OTTTTTT1]
\ﬁ_l

Segment ID
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e Jump or store instructions
e Addressing issue

o jmp  10001e0
e or

o mov %eax,0x11020028

Unsafe Instruction
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e Jump or store instructions
e Addressing issue
o jmp  10001e0
o jmp  *%ecx
e or
o mov %eax,0x11020028
o mov $0x11018b80,%ecx
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e Insert checking code before unsafe insn
o check segment ID of target address
e Use dedicated registers

dedicated-reg « target-address
scratch-reg < (dedicated-reg >> shift-reg)
if scratch-reg == segment-reg:

jmp/mov using dedicated-reg

Segment Matching
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Needs 4 dedicated registers
Checking code must be atomic

Runtime overhead
o 4 extra instructions

Exact location of fault can be detected
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e Ensure, do not check!
e Before each unsafe instruction
o Set upper bit of target address to correct segment ID

dedicated-reg < target-address & and-mask
dedicated-reg < dedicated-reg | segment-reg
jmp/mov using dedicated-reg

Address Sandboxing
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e Prevents faults
o Needs 5 dedicated registers
e 2 extra instructions

o less overhead compared to segment matching
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No direct syscall

A trusted fault domain receives the syscall

Determine if it is safe

If so, make the syscall and return the result to distrusted
code
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e register-plus-offset mode
o store value, offset(reg)

= offsetis in the range of -64K to +64K
o mov  %esi,0x8(%edx)

reg+ offset —>

reg —>
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e Stack pointer
o just sandbox it when it is set
o ignore sandboxing for small changes
= push, pop
o Works because of guard zones
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e How to call from another fault domain

Trusted Untrusted
Caller Domain Callee Domain

ll Add ‘ Gl 3
- -
return.
|

[ Retum
Stub

Jump Table
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e Trusted call/return stub

copy parameters

switch execution stack

maintain values of CPU registers

no traps or address space switching
= faster

returns via jump table

= jump targets are immediates
= alegal address in target fault domain

O o0 oo

o
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e Change the compiler

o emit encapsulation code into distrusted code
e At the load time

o check the integrity of encapsulation code

o Verifier
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e Responsible for checking encapsulation instructions just
before execution start
e Challenge:
o indirect jump
e Hint:
o every store/jump uses dedicated registers
e Look for changes in dedicated registers
o any change means beginning of a check region
o Vverify the integrity of check region
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e Divide program into unsafe regions

o any modification to store dedicated register
= start of store unsafe region

o the store unsafe region ends when:
= next instruction be a store (uses dedicated register)
= next instruction be control flow change
= nextinstruction is not guaranteed to be executed
= no more instructions be in the code

o atthe end if dedicated register is not sandboxed
correctly, reject the code
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o 4.3% on average
e 21.8% when sandboxing read instructions as well

100%
2 50%
202
fym
ﬁi 0%
50%
Eg 408
_95 30%
i
o 10%
o |
20 8 £ B %
Percentage of Execution Time Spent Crossing

A5

UNIVERSITY
OF MINNESOTA

What about CISC architectures?!
x86

Evaluating SFI for a CISC Architecture
(PittSFleld)

Stephen McCamant, Greg Morrisett
USENIX 2005
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e RISC Architecture
o Fixed length instructions
o More CPU registers
e Intel IA-32 (aka x86-32)
o Variable length instructions
o Less CPU registers
e Classical SFl is not applicable here
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e Processor can jump to any byte
e Hard to make hidden instructions safe

[mov 50x56, 3dh|[sbb $0x£f, 3al|linc %eax|or %al,%dn]
|movzbl 0xlc (%esi), $edx || incl 0x8 (%eax) |
0f b6 56 lc £f 40 08  cé6
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e Alignment

o Divide memory into 16-byte chunks
No instruction is allowed to cross chunk boundary
Target of jumps placed at the beginning of chunks
Call instructions placed at the end of chunk

o o0 o
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01234567809abcdef

e Use NOP cocfe
o for padding f°°=_

o No separation of £

an unsafe instruction
and its check

[y
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~
o

<
-+
o
=
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f20:
f30:
40:
f50:
60: |s
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. 0123456780abcderf
e Chunks are atomic
e Jump destinations ~ 9°: __
are checked to be £10: [7-byte nop || nop nop | RN

16-byte aligned
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e Reduces sandboxing sequence to just one instruction
o choose code and data region addresses carefully
o Their ID just has one bit set

SFI
Code

SFI

Data Data

| Trusted Code and

000000000
HHH00X0
0000000TX0
HHHOTX0
00000002X0
HHH0ZX0

HHHUX0
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Example

0123456789abcdef

o

: | neg %edi” add $0x20,%esp Hs-byte nop

f10: | 7-byte nop nop nop ‘-
20: | and $0{10FFffo, %ebx -

30: |mnv $0x400, %eax H sub %ecx,%eax‘ nop

(=}

f40: | lea (%esi),%ebx || 9-byte nop |

60:

shl %cl,%eax || test $0x7,%al

inc %cl |
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Verification

e Statically check
o No jump to outside of code region
o No store to outside of data region

e Before each unsafe jump or store there should be a
sandboxing AND

e The sandboxing AND should not be the last instruction
in a chunk
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Performance overhead

e Implemented prototype
o named PittSFleld

e Average module overhead: 21%

e But the overall execution can be improved because of
faster communications
o no trap, RPC, etc

Native-client: A Sandbox for Portable,
Untrusted x86 Native Code

Bennet Yee, et al.
|EEE S&P, 2009
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Google Native Client

e Browser Plugin (Google Chrome)

o Allows execution of untrusted native code in browser
e Browser?! Native Code?!

o Yes! browsers are new platform for applications
e Gives Browser plugins performance of native code
e Ships by default with Chrome 14
e Very complex architecture

o Focus on sandboxing technique
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Sandboxing

e Inner Sandbox
o Like PittSFleld
o Alignment and address sandboxing
= No cross boundary instructions
= jump target must be aligned
e OQOuter Sandbox
o Controls system calls issued by native code
o Whitelist
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Inner Sandbox

e On x86-32 bit architecture
e Use segmented memory to guaranty data sandboxing
e Use 32-byte alignment to sandbox jumps

o jump

o call

o retturn

and  $0xffffffe0,%ecx
jmp  *%ecx
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Second layer of defense for native code

Filters system calls

On linux uses ptrace

Block any sys call not in whitelist

For some, perform special argument checking

o SYS_OPEN: can access to a whitelisted set of files
Any violation from outer sandbox policy will terminate
native code execution

Native Client Toolchain
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e Modified GCC and GAS

o To emit sandboxing instructions
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Imposes in average %5 overhead

e Sources of overhead

o Inner sandbox
= alignment and padding
o Outer sandbox
= syscall capturing and whitelisting

e Final executable has .nexe extension
o compiled and linked as ELF file
e Can be disassembled using standard tools
o objdump -d
and $0xffffffe0,%ebx
naclcall %ebx —_— call “0hebx
naclimi % and $0xffffffe0,%ecx
Jmp - Yhecx jmp *%ecx
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e Sandboxing

o Execute untrusted code in a fault domain
RISC

o Simple instructions

o Address Sandboxing

CISC

o Complex instructions

o Address alignment

Browser plugin

o Benefit native performance in browser
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Thank you

Questions?




