CSci 5271

Navid Emamdoost
navid@cs.umn.edu

Oct-16-2014

A%

UNIVERSITY OF MINNESOTA
Driven to Discover

Software-based Fault Isolation

A8

UNIVERSITY OF MINNESOTA
Driven to Discover

A8

UNIVERSITY
OF MINNESOTA

Need for extensibility

e UNIX vnode interface

o Add new file system
e Postgres database

o User-defined data type
e Browser plugins

o Incorporate plugins (possibly from untrusted sources)

A5

UNIVERSITY
OF MINNESOTA

Problem with extensions

e Security!
e Extensions may be
o Malicious
o Vulnerable
o Faulty
e Solution:
o Isolate from other codes

A5

UNIVERSITY
OF MINNESOTA

Isolation options

e Hardware-based isolation
o Different virtual address space
o Communicate via RPC

RPC

Module A Module B

Module C

A5

UNIVERSITY

Isolation options (cont’d)

OF MINNESOTA
e Software-based isolation

All modules in same virtual address

Protect them from each other

Provide an efficient communication

Efficient Software-based Fault
Isolation

Robert Wahbe, Steven Lucco, Thomas E. Anderson, Susan L. Graham
SOSP 1993

A%

UNIVERSITY OF MINNESOTA
Driven to Discover

A8
Goal

UNIVERSITY
OF MINNESOTA

e Protect the rest of an application from a
buggy/malicious module on RISC architecture

e Separate distrusted code
o Define a fault domain
o Prevent the module from jumping or writing outside of it
o While letting efficient communications

e Security Policy:
o No code is executed outside of fault domain
o No data changed outside of fault domain

. y .Y
Fault Domain UNIVERSITY

OF MINNESOTA

e Load untrusted extension into its own fault domain

o Code Segment
o Data Segment

Segment ID

A5

UNIVERSITY
OF MINNESOTA

e Within a segment

o Addresses share unique pattern of upper bits

0x148a0000
Code Segment

0x148affff

0x148d0000

Data Segment

0x148dffff

Target Address

OTTTTTT1]
\ﬁ_l

Segment ID

) AR
Unsafe Instruction UNIVERSITY

OF MINNESOTA

e Jump or store instructions
e Addressing issue

o jmp 10001e0
e or

o mov %eax,0x11020028

Unsafe Instruction

A5

UNIVERSITY
OF MINNESOTA

e Jump or store instructions
e Addressing issue
o jmp 10001e0
o jmp *%ecx
e or
o mov %eax,0x11020028
o mov $0x11018b80,%ecx

. A8
Segment MatChlng UNIVERSITY

OF MINNESOTA

e Insert checking code before unsafe insn
o check segment ID of target address
e Use dedicated registers

dedicated-reg « target-address
scratch-reg < (dedicated-reg >> shift-reg)
if scratch-reg == segment-reg:

jmp/mov using dedicated-reg

Segment Matching

A5

UNIVERSITY
OF MINNESOTA

Needs 4 dedicated registers
Checking code must be atomic

Runtime overhead
o 4 extra instructions

Exact location of fault can be detected

_ A8
Address Sandboxing UNIVERSITY

OF MINNESOTA

e Ensure, do not check!
e Before each unsafe instruction
o Set upper bit of target address to correct segment ID

dedicated-reg < target-address & and-mask
dedicated-reg < dedicated-reg | segment-reg
jmp/mov using dedicated-reg

Address Sandboxing

A8

UNIVERSITY
OF MINNESOTA

e Prevents faults
o Needs 5 dedicated registers
e 2 extra instructions

o less overhead compared to segment matching

.
Process Resources UNIVERSITY

OF MINNESOTA

No direct syscall

A trusted fault domain receives the syscall

Determine if it is safe

If so, make the syscall and return the result to distrusted
code

Opt|m|zat|0ns UNIVERSITY

OF MINNESOTA

e register-plus-offset mode
o store value, offset(reg)

= offsetis in the range of -64K to +64K
o mov %esi,0x8(%edx)

reg+ offset —>

reg —>

Opt|m|Zat|OnS UNIVERSITY

OF MINNESOTA

e Stack pointer
o just sandbox it when it is set
o ignore sandboxing for small changes
= push, pop
o Works because of guard zones

AR
Cross Fault Domain Call UNIVERSITY

OF MINNESOTA

e How to call from another fault domain

Trusted Untrusted
Caller Domain Callee Domain

ll Add ‘ Gl 3
- -
return.
|

[Retum
Stub

Jump Table

M
Cross Fault Domain Call UNIVERSITY

OF MINNESOTA

e Trusted call/return stub

copy parameters

switch execution stack

maintain values of CPU registers

no traps or address space switching
= faster

returns via jump table

= jump targets are immediates
= alegal address in target fault domain

O o0 oo

o

: AR
Implementation UNIVERSITY

OF MINNESOTA

e Change the compiler

o emit encapsulation code into distrusted code
e At the load time

o check the integrity of encapsulation code

o Verifier

Ver|f| er UNIVERSITY

OF MINNESOTA

e Responsible for checking encapsulation instructions just
before execution start
e Challenge:
o indirect jump
e Hint:
o every store/jump uses dedicated registers
e Look for changes in dedicated registers
o any change means beginning of a check region
o Vverify the integrity of check region

Ver|f| er UNIVERSITY

OF MINNESOTA

e Divide program into unsafe regions

o any modification to store dedicated register
= start of store unsafe region

o the store unsafe region ends when:
= next instruction be a store (uses dedicated register)
= next instruction be control flow change
= nextinstruction is not guaranteed to be executed
= no more instructions be in the code

o atthe end if dedicated register is not sandboxed
correctly, reject the code

y.
Performance Overhead UNIVERSITY

OF MINNESOTA

o 4.3% on average
e 21.8% when sandboxing read instructions as well

100%
2 50%
202
fym
ﬁi 0%
50%
Eg 408
_95 30%
i
o 10%
o |
20 8 £ B %
Percentage of Execution Time Spent Crossing

A5

UNIVERSITY
OF MINNESOTA

What about CISC architectures?!
x86

Evaluating SFI for a CISC Architecture
(PittSFleld)

Stephen McCamant, Greg Morrisett
USENIX 2005

A%

UNIVERSITY OF MINNESOTA
Driven to Discover

) .
CISC Architectures UNIVERSITY

OF MINNESOTA

e RISC Architecture
o Fixed length instructions
o More CPU registers
e Intel IA-32 (aka x86-32)
o Variable length instructions
o Less CPU registers
e Classical SFl is not applicable here

) y.
CISC Architectures UNIVERSITY

OF MINNESOTA

e Processor can jump to any byte
e Hard to make hidden instructions safe

[mov 50x56, 3dh|[sbb $0x£f, 3al|linc %eax|or %al,%dn]
|movzbl 0xlc (%esi), $edx || incl 0x8 (%eax) |
0f b6 56 lc £f 40 08 cé6

. M
Solution UNIVERSITY

OF MINNESOTA

e Alignment

o Divide memory into 16-byte chunks
No instruction is allowed to cross chunk boundary
Target of jumps placed at the beginning of chunks
Call instructions placed at the end of chunk

o o0 o

. A8
AI | g n ment UNIVERSITY

OF MINNESOTA

01234567809abcdef

e Use NOP cocfe
o for padding f°°=_

o No separation of £

an unsafe instruction
and its check

[y

(<]
~
o

<
-+
o
=
=)

°

f20:
f30:
40:
f50:
60: |s

A8
J um p S UNIVERSITY

OF MINNESOTA

. 0123456780abcderf
e Chunks are atomic
e Jump destinations ~ 9°: __
are checked to be £10: [7-byte nop || nop nop | RN

16-byte aligned

AR

UNIVERSITY

Optimization: AND-only Sandboxing

OF MINNESOTA

e Reduces sandboxing sequence to just one instruction
o choose code and data region addresses carefully
o Their ID just has one bit set

SFI
Code

SFI

Data Data

| Trusted Code and

000000000
HHH00X0
0000000TX0
HHHOTX0
00000002X0
HHH0ZX0

HHHUX0

A5

UNIVERSITY
OF MINNESOTA

Example

0123456789abcdef

o

: | neg %edi” add $0x20,%esp Hs-byte nop

f10: | 7-byte nop nop nop ‘-
20: | and $0{10FFffo, %ebx -

30: |mnv $0x400, %eax H sub %ecx,%eax‘ nop

(=}

f40: | lea (%esi),%ebx || 9-byte nop |

60:

shl %cl,%eax || test $0x7,%al

inc %cl |

A8

UNIVERSITY
OF MINNESOTA

Verification

e Statically check
o No jump to outside of code region
o No store to outside of data region

e Before each unsafe jump or store there should be a
sandboxing AND

e The sandboxing AND should not be the last instruction
in a chunk

A5

UNIVERSITY
OF MINNESOTA

Performance overhead

e Implemented prototype
o named PittSFleld

e Average module overhead: 21%

e But the overall execution can be improved because of
faster communications
o no trap, RPC, etc

Native-client: A Sandbox for Portable,
Untrusted x86 Native Code

Bennet Yee, et al.
|EEE S&P, 2009

A8

UNIVERSITY OF MINNESOTA
Driven to Discover

A5

UNIVERSITY
OF MINNESOTA

Google Native Client

e Browser Plugin (Google Chrome)

o Allows execution of untrusted native code in browser
e Browser?! Native Code?!

o Yes! browsers are new platform for applications
e Gives Browser plugins performance of native code
e Ships by default with Chrome 14
e Very complex architecture

o Focus on sandboxing technique

A5

UNIVERSITY
OF MINNESOTA

Sandboxing

e Inner Sandbox
o Like PittSFleld
o Alignment and address sandboxing
= No cross boundary instructions
= jump target must be aligned
e OQOuter Sandbox
o Controls system calls issued by native code
o Whitelist

A8

UNIVERSITY
OF MINNESOTA

Inner Sandbox

e On x86-32 bit architecture
e Use segmented memory to guaranty data sandboxing
e Use 32-byte alignment to sandbox jumps

o jump

o call

o retturn

and $0xffffffe0,%ecx
jmp *%ecx

AR

Outer Sandbox UNIVERSITY

OF MINNESOTA

Second layer of defense for native code

Filters system calls

On linux uses ptrace

Block any sys call not in whitelist

For some, perform special argument checking

o SYS_OPEN: can access to a whitelisted set of files
Any violation from outer sandbox policy will terminate
native code execution

Native Client Toolchain

AR

UNIVERSITY
OF MINNESOTA

e Modified GCC and GAS

o To emit sandboxing instructions

A8

Performance Evaluation UNIVERSITY

OF MINNESOTA

Imposes in average %5 overhead

e Sources of overhead

o Inner sandbox
= alignment and padding
o Outer sandbox
= syscall capturing and whitelisting

e Final executable has .nexe extension
o compiled and linked as ELF file
e Can be disassembled using standard tools
o objdump -d
and $0xffffffe0,%ebx
naclcall %ebx —_— call “0hebx
naclimi % and $0xffffffe0,%ecx
Jmp - Yhecx jmp *%ecx
ReC ap UNIVERSITY
OF MINNESOTA
e Sandboxing

o Execute untrusted code in a fault domain
RISC

o Simple instructions

o Address Sandboxing

CISC

o Complex instructions

o Address alignment

Browser plugin

o Benefit native performance in browser

A5

UNIVERSITY
OF MINNESOTA

Thank you

Questions?

