CSci 5271
Introduction to Computer Security
Day 14: Network, etc., security overview

Stephen McCamant
University of Minnesota, Computer Science & Engineering

Outline

Brief introduction to networking

The Internet

©) A bunch of computer networks
voluntarily interconnected

) Capitalized because there’s really only
one
©) No centralized network-level

management
m But technical collaboration, DNS, etc.

Layered model (OSl)

Application (HTTP)
Presentation (MIME?)
Session (SSL?)

. Transport (TCP)

. Network (IP)

. Data-link (PPP)

. Physical (IOBASE-T)

— N W b OO g

Layered model: TCP/IP

Application protocol (e.g. HTTP)

Application PP P E A

TCP or UDP
Transport T
IP IP

Network N N
802.11 (WiFi) Ethernet

Link L L

Packet wrapping

[application data]

segments

[TcP] data | [TCP| data TCP| data

packets [P _[TCP] data]

frames [EthH[IP [TCP] data [EthT

IP(v4) addressing

) Interfaces (hosts or routers) identified

by 32-bit addresses
® Written as four decimal bytes, eq.
19216810.2

) First k bits identify network, 32 — k
host within network
®m Can't (anymore) tell k from the bits

©) We'll run out any year now

IP and ICMP

) Internet Protocol (IP) forwards individual
packets

) Packets have source and destination
addresses, other options

) Automatic fragmentation (usually
avoided)

©) ICMP (I Control Message P) adds
errors, ping packets, etc.

UDP

) User Datagram Protocol: thin wrapper
around IP

) Adds source and destination port
numbers (16-bit)

) Still connectionless, unreliable
©) OK for some small messages

TCP

£) Transmission Control Protocol: provides
reliable bidirectional stream abstraction

) Packets have sequence numbers,
acknowledged in order

©) Missed packets resent later

Flow and congestion control

) Flow control: match speed to slowest
link
® "Window" limits number of packets sent
but not ACKed
) Congestion control: avoid traffic jams
® Lost packets signal congestion

® Additive increase, multiplicative decrease
of rate

Routing

©) Where do | send this packet next?
® Table from address ranges to next hops

) Core Internet routers need big tables

£) Maintained by complex, insecure,

cooperative protocols
® Internet-level algorithm: BGP (Border
Gateway Protocol)

Below IP: ARP

) Address Resolution Protocol maps IP
addresses to lower-level address
m Eg, 48-bit Ethernet MAC address
) Based on local-network broadcast
packets
) Complex Ethernets also need their own
routing (but called switches)

DNS

£) Domain Name System: map more
memorable and stable string names to
IP addresses
) Hierarchically administered namespace
® Like Unix paths, but backwards
£) .edu server delegates to .umn.edu
server, etc.

DNS caching and reverse DNS

) To be practical, DNS requires caching
® Of positive and negative results

) But, cache lifetime limited for freshness

) Also, reverse IP to name mapping

m Based on special top-level domain, IP
address written backwards

Classic application: remote login

) Killer app of early Internet: access
supercomputers at another university
) Telnet: works cross-0S

® Send character stream, run reqular login
program
) rlogin: BSD Unix
® Can authenticate based on trusting
computer connection comes from
® (Also rsh, rep)

Outline

Midterm debrief, etc.

Midterm results schedule

) Graded yesterday, posted on Moodle
last night

) Paper copies here today (available
after)

£) Some discussion now
©) Full solution set posted later this week

Midterm result: high-order bit

©) Failed to make test easier than last
year's

) Results on both easier and harder
guestions disappointing to me

©) Final grade will reflect a +16 point
adjustment

) Final exam similar, but less time
pressure

(Non-) race condition 1

int fd = open("file", O_WRONLY);

int res = fstat(fd, &st_buf);

if ((st_buf.st_mode & 0222) != 0222)
abort () ;

write(fd, data, data_size);

(Non-) race condition 2

int res =

stat("/etc/hostname", &st_buf);
char *buf = malloc(st_buf.st_size);
int fd =

open("/etc/hostname", O_RDONLY);
read(fd, buf, st_buf.st_size);
write(1l, buf, st_buf.st_size);

(Non-) race condition 3

int res = stat("file", &st_buf);

if ((st_buf.st_mode & 0222) != 0222)
abort();

int fd = open("file", O_WRONLY);

write(fd, data, data_size);

(Non-) race condition 4

int fd = open("file",

O_CREAT|0_WRONLY|O_TRUNC, 0666) ;
int res = fchmod(fd, 0600);
write(fd, secret, 1024);

Q5 attack

) Interpret user-controlled point (1) as list
node (D:)

£) 1list _delete provides
attacker-controlled write

£) GOT overwrite replaces puts with
system

) “Print” user-controlled message
/bin/sh (F)

Project meetings schedule

) Mostly this week, invited over the
weekend

) Some will spill into next week
) Third meetings tentatively 11/17-11/21

Optional reading

) Ch. 2-3 of Firewalls and Internet
Security, 2nd Ed.

) Security-oriented overview of network
protocols

) Not posted until last night (sorry),
optional
) Crypto readings start for Thursday

Outline

Some classic network attacks

Packet sniffing

£) Watch other people’s traffic as it goes
by on network
) Easiest on:

® Old-style broadcast (thin, “*hub”) Ethernet
® Wireless

©) Or if you own the router

Forging packet sources

) Source IP address not involved in
routing, often not checked

) Change it to something else!

) Might already be enough to fool a naive
UDP protocol

TCP spoofing

©) Forging source address only lets you
talk, not listen

©) Old attack: wait until connection
established, then DoS one participant
and send packets in their place

) Frustrated by making TCP initial
sequence numbers unpredictable

® But see Oakland'1i2, WOOT'12 for fancier
attacks, keyword “off-path”

ARP spoofing

) Impersonate other hosts on local
network level

) Typical ARP implementations stateless,
don't mind changes

) Now you get victim's traffic, can read,
modify, resend

rlogin and reverse DNS

) rlogin uses reverse DNS to see if
originating host is on whitelist

) How can you attack this mechanism
with an honest source IP address?

rlogin and reverse DNS

©) rlogin uses reverse DNS to see if
originating host is on whitelist

©) How can you attack this mechanism
with an honest source IP address?

©) Remember, ownership of reverse-DNS
is by IP address

Outline

Second half of course

Cryptographic primitives

) Core mathematical tools

©) Symmetric: block cipher, hash function,
MAC

) Public-key: encryption, signature

) Some insights on how they work, but
concentrating on how to use them
correctly

Cryptographic protocols

£) Sequence of messages and crypto
privileges for, eg., key exchange
£ A lot can go wrong here, too

) Also other ways security can fail even
with a good crypto primitive

Crypto in Internet protocols

£) How can we use crypto to secure
network protocols

O EQg, rsh — ssh

) Challenges of getting the right public
keys

£) Fitting into existing usage ecosystems

Web security: server side

) Web software is privileged and
processes untrusted data: what could
go wrong?

©) Shell script injection (Ex. 1)

©) SQL injection

©) Cross-site scripting (XSS) and related
problems

Web security: client side

) JavaScript security environment even
more tricky, complex

£) More kinds of cross-site scripting
) Possibilities for sandboxing

Security middleboxes

) Firewall: block traffic according to
security policy

) NAT box: different original purpose, now
de-facto firewall

£) IDS (Intrusion Detection System):
recognize possible attacks

Malware and network DoS

) Attacks made possible by the network

) Viruses, trojans, bot nets
m Detection?
® Mitigation?

) Distributed denial of service (DDoS)

Usability of security

©) Prevent people from being the weakest
link

) Usability of authentication

£ "Secure” web sites, phishing

) Making decisions about mobile apps

Electronic money (Bitcoin)

©) Current payment systems have strong
centralized trust

® US Federal Reserve and mint
® Banks, PayPal

) Could they be replaced by a
peer-to-peer distributed system?

) Maybe

Outline

More Unix access control

"POSIX" “capabilities”

©) Divide root privilege into smaller (~35)
pieces
©) Note: not real capabilities

©) First runtime only, then added to FS
similar to setuid

£) Motivating example: ping
£) Also allows permanent disabling

Privilege escalation dangers

£) Many pieces of the root privilege are
enough to regain the whole thing
m Access to files as UID O
® CAP_DAC_OVERRIDE
® CAP _FOWNER
® CAP_SYS MODULE
® CAP_MKNOD
® CAP PTRACE
® CAP_SYS_ADMIN (mount)

Legacy interaction dangers

©) Former bug: take away capability to
drop privileges

) Use of temporary files by no-longer
setuid programs

) For more details: “"Exploiting
capabilities”, Emeric Nasi

Next time

£) Symmetric crypto primitives

