Outline

Public key encryption and signatures
CSci 5271
Introduction to Computer Security
Day 17: Cryptographic protocols and failures

Stephen McCamant
University of Minnesota, Computer Science & Engineering

General description Protocol with clip art

Alice Bob

) Public-key encryption (generalizes
block cipher)

® Separate encryption key EK (public) and
decryption key DK (secret)

©) Signature scheme (generalizes MAC)

® Separate signing key SK (secret) and
verification key VK (public)

Alice Bob
Protocol with clip art Protocol with clip art
Alice Bob Alice Bob

t\';L tFﬁL

Alice Bob Alice Bob




Protocol with clip art

Alice Bob

R
Bob

Alice

RSA setup

) Choose n = pq, product of two large
primes, as modulus

£ n is public, but p and g are secret

) Compute encryption and decryption
exponents e and d such that

M =M (mod n)

RSA encryption

) Public key is (n, e)

) Encryption of M is C = M¢ (mod n)

) Secret key is (n, d)

o) Decryption of C is C4 = M =M
(mod n)

RSA signature

©) Signing key is (n, d)

) Signature of M is S = M? (mod n)

) Verification key is (n, e)

) Check signature by S¢ = M =M
(mod n)

) Note: symmetry is a nice feature of
RSA, not shared by other systems

RSA and factoring

©) We're not sure factoring is hard (likely
not even NP-complete), but it's been
unsolved for a long time

0 If factoring is easy (e, in P), RSA is
insecure

) Converse might not be true: RSA might
have other problems

Aside: stronger reduction

) Public-key algorithms actually
equivalent to factoring and discrete log
exist

® But not widely used because of speed or
other efficiency issues

£) Even symmetric-key algorithms with
such security

® But they're much less efficient than AES
et al




Homomorphism

) Multiply RSA ciphertexts = multiply
plaintexts

) This homomorphism is useful for some
interesting applications

) Even more powerful: fully homomorphic
encryption (e.g., both + and x)

® First demonstrated in 2009; still very
inefficient

Problems with vanilla RSA

£) Homomorphism leads to
chosen-ciphertext attacks

©) If message and e are both small
compared to n, can compute M'/¢
over the integers

£) Many more complex attacks too

Hybrid encryption

) Public-key operations are slow

©) In practice, use them just to set up
symmetric session keys

-+ Only pay RSA costs at setup time
— Breaks at either level are fatal

Padding, try #1

©) Need to expand message (e.q., AES
key) size to match modulus

) PKCS#1 v. 15 scheme: prepend 00 01
FF FF .. FF

) Surprising discovery
(Bleichenbacher'98). allows adaptive
chosen ciphertext attacks on SSL

Modern “padding”

) Much more complicated encoding
schemes using hashing, random salts,
Feistel-like structures, etc.

) Common examples: OAEP for
encryption, PSS for signing

) Progress driven largely by improvement
in random oracle proofs

Simpler padding alternative

) "Key encapsulation mechanism” (KEM)

) For common case of public-key crypto
used for symmetric-key setup
® Also applies to DH
) Choose RSA message r at random
mod n, symmetric key is H(r)
— Hard to retrofit, RSA-KEM insecure if e
and r reused with different n




Box and locks revisited

) Alice and Bob's box scheme fails if an
intermediary can set up two sets of
boxes

) Real world analogue: challenges of
protocol design and public key
distribution

Outline

Announcements

Upcoming assignments

©) HA2: can start registering groups

® Send email to TA
® Tell us even if same group as HAI

) Project progress report: due
Wednesday 11/5

) Exercise set 3: due Thursday 11/6

Outline

Cryptographic protocols

A couple more security goals

) Non-repudiation: principal cannot later
deny having made a commitment

® le, consider proving fact to a third party
) Forward secrecy: recovering later

information does not reveal past
information
® Motivates using Diffie-Hellman to generate
fresh keys for each session

Abstract protocols

) Outline of what information is
communicated in messages

® Omit most details of encoding, naming,
sizes, choice of ciphers, etc.

) Describes honest operation
® But must be secure against adversarial
participants
) Seemingly simple, but many subtle
problems




Protocol notation

A—B: NB){TO>B>NB}KB

©) A — B: message sent from Alice
intended for Bob

©) B (after ;). Bob's name

o {- - -Jx: encryption with key K

Example: simple authentication

A — B:A,{A, Nk,

©) E.g, Alice is key fob, Bob is garage door

) Alice proves she possesses the
pre-shared key K
® Without revealing it directly
©) Using encryption for authenticity and
binding, not secrecy

Nonce

A — B:A{A, Nk,

©) N is a nonce: a value chosen to make
a message unigue

) Best practice: pseudorandom

©) In constrained systems, might be a
counter or device-unique serial number

Replay attacks

©) A nonce is needed to prevent a
verbatim replay of a previous message
) Garage door difficulty: remembering

previous nonces
® Particularly: lunchtime/roommate/valet
scenario

©) Or, door chooses the nonce:
challenge-response authentication

Man-in-the-middle attacks

) Gender neutral: middleperson attack

) Adversary impersonates Alice to Bob
and vice-versa, relays messages

) Powerful position for both
eavesdropping and modification

) No easy fix if Alice and Bob aren't
already related

Chess grandmaster problem

) Variant or dual of MITM

£) Adversary forwards messages to
simulate capabilities with his own
identity

©) How to win at correspondence chess

£) Anderson’s MiG-in-the-middle




Needham-Schroeder

Authenticated key exchange assuming
public keys (core):

A—B: {N Ay A}KB

B—A: {NA)NB}KA

A—B: {N B}KB

Needham-Schroeder MITM

A— C: {NA,A}KC
C—B: {NA,A}KB
B — C: {Na, Nz,
C—oA: {NA,NB}KA
A— C: {NB}KC
C—oB: {NB}KB

Certificates, Denning-Sacco

) A certificate signed by a trusted
third-party S binds an identity to a
public key

8 Chr= Sian(A, Ka)

) Suppose we want to use S in

establishing a session key Kg:
A—S: A,B

S—A: CA, Cg

A — B: Ca, Cg,{Sign, (Kag) Jk,

Attack against Denning-Sacco

A—S: A/B
S—A: CaCg
A — B: Ca,Cg,{Signa(Kag)lk,

B—S: B,C

S—B: CgCc

B — C: Ca, Cc,{Sign, (Kag)}k,

By re-encrypting the signed key, Bob can
pretend to be Alice to Charlie

Envelopes analogy

©) Encrypt then sign, or vice-versa?

) On paper, we usually sign inside an
envelope, not outside. Two reasons:
m Attacker gets letter, puts in his own
envelope (cf attack against X.509)
® Signer claims “didn't know what was in
the envelope” (failure of non-repudiation)

Design robustness principles

) Use timestamps or nonces for
freshness

) Be explicit about the context

©) Don't trust the secrecy of others’
secrets

£) Whenever you sign or decrypt, beware
of being an oracle

) Distinguish runs of a protocol




Implementation principles

©) Ensure unigue message types and
parsing

) Design for ciphers and key sizes to
change

) Limit information in outbound error
messages

) Be careful with out-of-order messages

Outline

More causes of crypto failure

Random numbers and entropy

) Cryptographic RNGs use cipher-like
techniques to provide indistinguishability
) But rely on truly random seeding to

stop brute force
® Extreme case: no entropy — always
same “randomness”

) Modern best practice: seed pool with
256 bits of entropy
®» Suitable for security levels up to 225

Netscape RNG failure

) Early versions of Netscape SSL

(1994-1995) seeded with:

® Time of day
m Process ID
m Parent process ID

) Best case entropy only 64 bits

® (Not out of step with using 40-bit
encryption)

) But worse because many bits
guessable

Debian/OpenSSL RNG failure (1)

) OpenSSL has pretty good scheme
using /dev/urandom
) Also mixed in some uninitialized
variable values
® “Extra variation can't hurt”
©) From modern perspective, this was the
original sin
® Remember undefined behavior discussion?

) But had no immediate ill effects

Debian/OpenSSL RNG failure (2)

) Debian maintainer commented out
some lines to fix a Valgrind warning
® "Potential use of uninitialized value”

) Accidentally disabled most entropy (all
but 16 bits)

) Brief mailing list discussion didn't lead
to understanding

) Broken library used for ~2 years before
discovery




Detected RSA/DSA collisions

©) Up to about 1% of the SSL and SSH

keys on the public net are breakable
®m Some sites share complete keypairs
® RSA keys with one prime in common
(detected by large-scale GCD)
) One likely culprit: insufficient entropy in
key generation
m Embedded devices, Linux /dev/urandom
VS. /dev/random

) DSA signature algorithm also very
vulnerable

Side-channel attacks

£) Timing analysis:
® Number of 1 bits in modular exponentiation
® Unpadding, MAC checking, error handling
® Probe cache state of AES table entries

£) Power analysis
® Especially useful against smartcards
©) Fault injection

r) Data non-erasure
m Hard disks, “cold boot” on RAM

WEP “privacy”

) First WiFi encryption standard: Wired
Equivalent Privacy (WEP)

) F&S: designed by a committee that
contained no cryptographers
) Problem 1. note “privacy”: what about
integrity?
® Nope: stream cipher + CRC = easy bit
flipping

WEP shared key

£) Single key known by all parties on
network

£) Easy to compromise

©) Hard to change

) Also often disabled by default
©) Example: a previous employer

WEP key size and IV size

©) Original sizes: 40-bit shared key
(export restrictions) plus 24-bit IV =

64-bit RC4 key
® Both too small
) 128-bit upgrade kept 24-bit IV
® Vague about how to choose IVs
® Least bad: sequential, collision takes

hours
® Worse: random or everyone starts at zero

WEP RCA4 related key attacks

©) Only true crypto weakness

£) RC4 “key schedule” vulnerable when:
® RC4 keys very similar (e.g.,, same key,
similar 1V)
® First stream bytes used
©) Not a practical problem for other RC4
users like SSL
® Key from a hash, skip first output bytes




Trustworthiness of primitives

) Classic worry: DES S-boxes

) Obviously in trouble if cipher chosen by
your adversary

) In a public spec, most worrying are
unexplained elements

) Best practice: choose constants from
well-known math, like digits of 7

Dual EC DRBG (1)

£) Pseudorandom generator in NIST
standard, based on elliptic curve

) Looks like provable (slow enough!) but
strangely no proof

) Specification includes long unexplained

constants
) Academic researchers find:

® Some EC parts look good
® But outputs are statistically distinguishable

Dual EC DRBG (2)

) Found 2007: special choice of
constants allows prediction attacks
® Big red flag for paranoid academics
) Significant adoption in products sold to
US govt. FIPS-140 standards
® Semi-plausible rationale from RSA (EMC)
) NSA scenario basically confirmed

recently by Snowden leaks
® NIST and RSA immediately recommend
withdrawal

Next time

) Crypto in SSH, TLS, DNSSEC
) Public-key infrastructure




