
CSci 5271
Introduction to Computer Security

Day 19: Web security, part 1
Stephen McCamant

University of Minnesota, Computer Science & Engineering

Outline

SSL/TLS

DNSSEC

Announcements intermission

The web from a security perspective

SQL injection

Web authentication failures

But wait, there’s more!

Two recent problems, with cute names:

Heartbleed
Information-disclosure implementation bug
in OpenSSL
Buffer over-read

POODLE: “Padding Oracle On
Downgraded Legacy Encryption”

Padding oracle in SSL 3.0 returns when a
MITM forces downgrade

CA vs. leaf checking bug

Certs have a bit that says if they’re a
CA

All but last entry in chain should have it
set

Browser authors repeatedly fail to
check this bit

Allows any cert to sign any other cert

MD5 certificate collisions

MD5 collisions allow forging CA certs

Create innocuous cert and CA cert with
same hash

Requires some guessing what CA will do,
like sequential serial numbers
Also 200 PS3s

Oh, should we stop using that hash
function?

CA validation standards

CA’s job to check if the buyer really is
foo.com
Race to the bottom problem:

CA has minimal liability for bad certs
Many people want cheap certs
Cost of validation cuts out of profit

“Extended validation” (green bar) certs
attempt to fix

HTTPS and usability

Many HTTPS security challenges tied
with user decisions

Is this really my bank?

Seems to be a quite tricky problem
Security warnings often ignored, etc.
We’ll return to this as a major example
later

Outline

SSL/TLS

DNSSEC

Announcements intermission

The web from a security perspective

SQL injection

Web authentication failures

DNS: trusted but vulnerable

Almost every higher-level service
interacts with DNS
UDP protocol with no authentication or
crypto

Lots of attacks possible

Problems known for a long time, but
challenge to fix compatibly

DNSSEC goals and non-goals

+ Authenticity of positive replies

+ Authenticity of negative replies

+ Integrity

- Confidentiality

- Availability

First cut: signatures and certificates

Each resource record gets an RRSIG

signature
E.g., A record for one name!address
mapping
Observe: signature often larger than data

Signature validation keys in DNSKEY

RRs

Recursive chain up to the root (or other
“anchor”)

Add more indirection

DNS needs to scale to very large flat
domains like .com

Facilitated by having single DS RR in
parent indicating delegation

Chain to root now includes DSes as well

Negative answers

Also don’t want attackers to spoof
non-existence

Gratuitous denial of service, force fallback,
etc.

But don’t want to sign “x does not
exist” for all x

Solution 1, NSEC: “there is no name
between acacia and baobab”

Preventing zone enumeration

Many domains would not like people
enumerating all their entries

DNS is public, but “not that public”

Unfortunately NSEC makes this trivial

Compromise: NSEC3 uses
password-like salt and repeated hash,
allows opt-out

DANE: linking TLS to DNSSEC

“DNS-based Authentication of Named
Entities”

DNS contains hash of TLS cert, don’t
need CAs

How is DNSSEC’s tree of certs better
than TLS’s?

Signing the root

Political problem: many already distrust
US-centered nature of DNS
infrastructure

Practical problem: must be very secure
with no single point of failure
Finally accomplished in 2010

Solution involves ‘key ceremonies’,
international committees, smart cards,
safe deposit boxes, etc.

Deployment

Standard deployment problem: all cost
and no benefit to being first mover

Servers working on it, mostly top-down

Clients: still less than 10%

Will be probably common: insecure
connection to secure resolver

Outline

SSL/TLS

DNSSEC

Announcements intermission

The web from a security perspective

SQL injection

Web authentication failures

Upcoming assignments

Exercise set 3 due tonight

HA2 Q1-2 readable now

HA2 materials coming probably Friday
or over weekend

Exercise set 4 posted soon, due 11/20

Outline

SSL/TLS

DNSSEC

Announcements intermission

The web from a security perspective

SQL injection

Web authentication failures

Once upon a time: the static web

HTTP: stateless file download protocol
TCP, usually using port 80

HTML: markup language for text with
formatting and links

All pages public, so no need for
authentication or encryption

Web applications

The modern web depends heavily on
active software

Static pages have ads, paywalls, or
“Edit” buttons

Many web sites are primarily forms or
storefronts

Web hosted versions of desktop apps
like word processing

Server programs

Could be anything that outputs HTML

In practice, heavy use of databases and
frameworks

Wide variety of commercial,
open-source, and custom-written
Flexible scripting languages for ease of
development

PHP, Perl, Ruby, etc.

Client-side programming

Java: nice language, mostly moved to
other uses
ActiveX: Windows-only binaries, no
sandboxing

Glad to see it on the way out

Flash and Silverlight: most important
use is DRM-ed video

Core language: JavaScript

JavaScript and the DOM

JavaScript (JS) is a dynamically-typed
prototype-OO language

No real similarity with Java

Document Object Model (DOM): lets JS
interact with pages and the browser

Extensive security checks for
untrusted-code model

Same-origin policy

Origin is a tuple (scheme, host, port)
E.g., (http, www.umn.edu, 80)

Basic JS rule: interaction is allowed
only with the same origin

Different sites are (mostly) isolated
applications

GET, POST, and cookies

GET request loads a URL, may have
parameters delimited with ?, &, =

Standard: should not have side-effects

POST request originally for forms
Can be larger, more hidden, have
side-effects

Cookie: small token chosen by server,
sent back on subsequent requests to
same domain

User and attack models

“Web attacker” owns their own site
(www.attacker.com)

And users sometimes visit it
Realistic reasons: ads, SEO

“Network attacker” can view and sniff
unencrypted data

Unprotected coffee shop WiFi

Outline

SSL/TLS

DNSSEC

Announcements intermission

The web from a security perspective

SQL injection

Web authentication failures

Relational model and SQL

Relational databases have tables with
rows and single-typed columns

Used in web sites (and elsewhere) to
provide scalable persistent storage

Allow complex queries in a declarative
language SQL

Example SQL queries

SELECT name, grade FROM

Students WHERE grade < 60

ORDER BY name;

UPDATE Votes SET count =

count + 1 WHERE candidate =

'John';

Template: injection attacks

Your program interacts with an
interpreted language

Untrusted data can be passed to the
interpreter

Attack data can break parsing
assumptions and execute arbitrary
commands

SQL + injection

Why is this named most critical web
app. risk?

Easy mistake to make systematically

Can be easy to exploit

Database often has high-impact
contents

E.g., logins or credit cards on commerce
site

Strings do not respect syntax

Key problem: assembling commands as
strings

"WHERE name = '$name';"

Looks like $name is a string

Try
$name = "me' OR grade > 80; --"

Using tautologies

Tautology: formula that’s always true

Often convenient for attacker to see a
whole table

Classic: OR 1=1

Non-string interfaces

Best fix: avoid constructing queries as
strings
SQL mechanism: prepared statement

Original motivation was performance

Web languages/frameworks often
provide other syntax

Retain functionality: escape

Sanitizing data is transforming it to
prevent an attack
Escaped data is encoded to match
language rules for literal

E.g., \" and \n in C

But many pitfalls for the unwary:
Differences in escape syntax between
servers
Must use right escape for context: not
everything’s a string

Lazy sanitization: whitelisting

Allow only things you know to be
safe/intended

Error or delete anything else

Short whitelist is easy and relatively
easy to secure

E.g., digits only for non-negative integer

But, tends to break benign functionality

Poor idea: blacklisting

Space of possible attacks is endless,
don’t try to think of them all

Want to guess how many more
comment formats SQL has?

Particularly silly: blacklisting 1=1

Attacking without the program

Often web attacks don’t get to see the
program

Not even binary, it’s on the server

Surmountable obstacle:
Guess natural names for columns
Harvest information from error messages

Blind SQL injection

Attacking with almost no feedback

Common: only “error” or “no error”

One bit channel you can make yourself:
if (x) delay 10 seconds

Trick to remember: go one character at
a time

Injection beyond SQL

XPath/XQuery: queries on XML data

LDAP: queries used for authentication

Shell commands: example from Ex. 1

More web examples to come

Outline

SSL/TLS

DNSSEC

Announcements intermission

The web from a security perspective

SQL injection

Web authentication failures

Per-website authentication

Many web sites implement their own
login systems
+ If users pick unique passwords, little

systemic risk
- Inconvenient, many will reuse passwords
- Lots of functionality each site must

implement correctly
- Without enough framework support, many

possible pitfalls

Building a session

HTTP was originally stateless, but many
sites want stateful login sessions

Building by tying requests together with
a shared session ID

Must protect confidentiality and
integrity

Session ID: what

Must not be predictable
Not a sequential counter

Should ensure freshness
E.g., limited validity window

If encoding data in ID, must be
unforgeable

E.g., data with properly used MAC
Negative example: crypt(username k
server secret)

Session ID: where

Session IDs in URLs are prone to
leaking

Including via user cut-and-paste

Usual choice: non-persistent cookie
Against network attacker, must send only
under HTTPS

Because of CSRF (next time), should
also have a non-cookie unique ID

Session management

Create new session ID on each login

Invalidate session on logout

Invalidate after timeout
Usability / security tradeoff
Needed to protect users who fail to log
out from public browsers

Account management

Limitations on account creation
CAPTCHA? Outside email address?

See previous discussion on hashed
password storage
Automated password recovery

Usually a weak spot
But, practically required for large system

Client and server checks

For usability, interface should show
what’s possible

But must not rely on client to perform
checks

Attackers can read/modify anything on
the client side

Easy example: item price in hidden field

Direct object references

Seems convenient: query parameter
names resource directly

E.g., database key, filename (path
traversal)

Easy to forget to validate on each use

Alternative: indirect reference like
per-session table

Not fundamentally more secure, but
harder to forget check

Function-level access control

E.g. pages accessed by URLs or
interface buttons
Must check each time that user is
authorized

Attack: find URL when authorized, reuse
when logged off

Helped by consistent structure in code

Next time

Cross-site scripting and related risks

Confidentiality and privacy risks

