CSci 5271
Introduction to Computer Security
Day 19: Web security, part 1

Stephen McCamant
University of Minnesota, Computer Science & Engineering

Outline

SSL/TLS

But wait, there’s more!

) Two recent problems, with cute names:

) Heartbleed
® Information-disclosure implementation bug
in OpenSSL
® Buffer over-read
) POODLE: “"Padding Oracle On
Downgraded Legacy Encryption”

® Padding oracle in SSL 3.0 returns when a
MITM forces downgrade

CA vs. leaf checking bug

) Certs have a bit that says if theyre a
CA

©) All but last entry in chain should have it
set

©) Browser authors repeatedly fail to
check this bit

©) Allows any cert to sign any other cert

MDS5 certificate collisions

©) MD5 collisions allow forging CA certs

) Create innocuous cert and CA cert with
same hash

® Requires some guessing what CA will do,
like sequential serial numbers
® Also 200 PS3s

) Oh, should we stop using that hash
function?

CA validation standards

£) CA’s job to check if the buyer really is

foo.com
) Race to the bottom problem:

® CA has minimal liability for bad certs
® Many people want cheap certs
® Cost of validation cuts out of profit

©) "Extended validation” (green bar) certs
attempt to fix

HTTPS and usability

©) Many HTTPS security challenges tied
with user decisions

) Is this really my bank?

) Seems to be a quite tricky problem

® Security warnings often ignored, etc.
m We'll return to this as a major example
later

Outline

DNSSEC

DNS: trusted but vulnerable

©) Almost every higher-level service
interacts with DNS
) UDP protocol with no authentication or
crypto
® Lots of attacks possible
) Problems known for a long time, but
challenge to fix compatibly

DNSSEC goals and non-goals

-+ Authenticity of positive replies
-+ Authenticity of negative replies
+ Integrity

— Confidentiality

— Availability

First cut: signatures and certificates

) Each resource record gets an RRSIG
signature
® E.g, A record for one name—address

mapping
® Observe: signature often larger than data

©) Signature validation keys in DNSKEY
RRs

) Recursive chain up to the root (or other
“anchor”)

Add more indirection

£) DNS needs to scale to very large flat
domains like .com

) Facilitated by having single DS RR in
parent indicating delegation

) Chain to root now includes DSes as well

Negative answers

) Also don't want attackers to spoof
non-existence

® Gratuitous denial of service, force fallback,
etc.

©) But don't want to sign “x does not
exist” for all x

) Solution 1, NSEC: “there is no nhame
between acacia and baobab”

Preventing zone enumeration

£) Many domains would not like people
enumerating all their entries

) DNS is public, but "not that public”

) Unfortunately NSEC makes this trivial

) Compromise: NSEC3 uses
password-like salt and repeated hash,
allows opt-out

DANE: linking TLS to DNSSEC

) "DNS-based Authentication of Named
Entities”

©) DNS contains hash of TLS cert, don't
need CAs

©) How is DNSSEC's tree of certs better
than TLS's?

Signing the root

) Political problem: many already distrust
US-centered nature of DNS
infrastructure

) Practical problem: must be very secure
with no single point of failure
) Finally accomplished in 2010

® Solution involves ‘key ceremonies’,
international committees, smart cards,
safe deposit boxes, etc.

Deployment

) Standard deployment problem: all cost
and no benefit to being first mover

) Servers working on it, mostly top-down
©) Clients: still less than 10%

) Will be probably common: insecure
connection to secure resolver

Outline

Announcements intermission

Upcoming assignments

) Exercise set 3 due tonight
) HA2 QI-2 readable now

) HA2 materials coming probably Friday
or over weekend

) Exercise set 4 posted soon, due 11/20

Outline

The web from a security perspective

Once upon a time: the static web

) HTTP: stateless file download protocol
® TCP usually using port 80
©) HTML: markup language for text with
formatting and links
) All pages public, so no need for
authentication or encryption

Web applications

) The modern web depends heavily on
active software

) Static pages have ads, paywalls, or
“Edit” buttons

£) Many web sites are primarily forms or
storefronts

) Web hosted versions of desktop apps
like word processing

Server programs

©) Could be anything that outputs HTML

©) In practice, heavy use of databases and
frameworks

) Wide variety of commercial,
open-source, and custom-written
) Flexible scripting languages for ease of

development
® PHP Perl, Ruby, etc.

Client-side programming

£) Java: nice language, mostly moved to
other uses
£) ActiveX: Windows-only binaries, no
sandboxing
® Glad to see it on the way out
©) Flash and Silverlight: most important
use is DRM-ed video

) Core language: JavaScript

JavaScript and the DOM

) JavaScript (JS) is a dynamically-typed
prototype-OO0 language
® No real similarity with Java
©) Document Object Model (DOM): lets JS
interact with pages and the browser

) Extensive security checks for
untrusted-code model

Same-origin policy

©) Origin is a tuple (scheme, host, port)
m Eg, (http, www.umn.edu, 80)
£) Basic JS rule: interaction is allowed
only with the same origin
) Different sites are (mostly) isolated
applications

GET, POST, and cookies

) GET request loads a URL, may have
parameters delimited with 7, &, =
® Standard: should not have side-effects

) POST request originally for forms

® Can be larger, more hidden, have
side-effects

) Cookie: small token chosen by server,
sent back on subsequent requests to
same domain

User and attack models

) "Web attacker” owns their own site
(www.attacker.com)

® And users sometimes visit it
® Realistic reasons: ads, SEO

) "Network attacker” can view and sniff

unencrypted data
® Unprotected coffee shop WiFi

Outline

SQL injection

Relational model and SQL

©) Relational databases have tables with
rows and single-typed columns

) Used in web sites (and elsewhere) to
provide scalable persistent storage

©) Allow complex queries in a declarative
language SQL

Example SQL queries

£) SELECT name, grade FROM
Students WHERE grade < 60
ORDER BY name;

) UPDATE Votes SET count =
count + 1 WHERE candidate =
’John’;

Template: injection attacks

©) Your program interacts with an
interpreted language

) Untrusted data can be passed to the
interpreter

) Attack data can break parsing
assumptions and execute arbitrary
commands

SQL + injection

©) Why is this named most critical web
app. risk?

) Easy mistake to make systematically

) Can be easy to exploit

£) Database often has high-impact
contents

® E.g, logins or credit cards on commerce
site

Strings do not respect syntax

) Key problem: assembling commands as
strings

£) "WHERE name = ’$name’ ;"

£) Looks like $name is a string

0 Try
$name = "me’ OR grade > 80; --"

Using tautologies

) Tautology: formula that's always true

) Often convenient for attacker to see a
whole table

) Classic: OR 1=1

Non-string interfaces

) Best fix: avoid constructing queries as
strings
£) SQL mechanism: prepared statement
® Original motivation was performance
£) Web languages/frameworks often
provide other syntax

Retain functionality: escape

) Sanitizing data is transforming it to
prevent an attack
) Escaped data is encoded to match
language rules for literal
mEg,\"and\ninC
) But many pitfalls for the unwary:

® Differences in escape syntax between
servers

® Must use right escape for context: not
everything’s a string

Lazy sanitization: whitelisting

) Allow only things you know to be
safe/intended

©) Error or delete anything else

©) Short whitelist is easy and relatively
easy to secure

©) E.g, digits only for non-negative integer
£) But, tends to break benign functionality

Poor idea: blacklisting

) Space of possible attacks is endless,
don't try to think of them all

) Want to guess how many more
comment formats SQL has?

) Particularly silly: blacklisting 1=1

Attacking without the program

) Often web attacks don't get to see the
program
® Not even binary, it's on the server
©) Surmountable obstacle:

® Guess natural names for columns
® Harvest information from error messages

Blind SQL injection

) Attacking with almost no feedback

) Common: only “error” or “no error”

) One bit channel you can make yourself:
if (x) delay 10 seconds

) Trick to remember: go one character at
a time

Injection beyond SQL

) XPath/XQuery: queries on XML data

) LDAP: queries used for authentication
) Shell commands: example from EX. 1

£) More web examples to come

Outline

Web authentication failures

Per-website authentication

£) Many web sites implement their own
login systems

+ If users pick unique passwords, little
systemic risk

— Inconvenient, many will reuse passwords

— Lots of functionality each site must
implement correctly

— Without enough framework support, many
possible pitfalls

Building a session

©) HTTP was originally stateless, but many
sites want stateful login sessions

©) Building by tying requests together with
a shared session ID

) Must protect confidentiality and
integrity

Session ID: what

©) Must not be predictable
® Not a sequential counter
£) Should ensure freshness
® E.g, limited validity window
£ If encoding data in ID, must be
unforgeable
® E.g, data with properly used MAC

® Negative example: crypt(username ||
server secret)

Session ID: where

) Session IDs in URLs are prone to
leaking
® Including via user cut-and-paste
) Usual choice: non-persistent cookie
® Against network attacker, must send only
under HTTPS
) Because of CSRF (next time), should
also have a non-cookie unique ID

Session management

) Create new session ID on each login
£ Invalidate session on logout

©) Invalidate after timeout

m Usability / security tradeoff
® Needed to protect users who fail to log
out from public browsers

Account management

) Limitations on account creation
®m CAPTCHA? Outside email address?
) See previous discussion on hashed
password storage
) Automated password recovery

® Usually a weak spot
m But, practically required for large system

Client and server checks

©) For usability, interface should show
what's possible

) But must not rely on client to perform
checks

£) Attackers can read/modify anything on
the client side

) Easy example: item price in hidden field

Direct object references

) Seems convenient: query parameter

names resource directly
m Eg, database key, filename (path
traversal)

) Easy to forget to validate on each use

) Alternative: indirect reference like

per-session table
® Not fundamentally more secure, but
harder to forget check

Function-level access control

©) E.g. pages accessed by URLs or
interface buttons
) Must check each time that user is

authorized
® Attack: find URL when authorized, reuse
when logged off

©) Helped by consistent structure in code

Next time

) Cross-site scripting and related risks
) Confidentiality and privacy risks

