
CSci 5271
Introduction to Computer Security
Day 21: Firewalls, NATs, and IDSes

Stephen McCamant

University of Minnesota, Computer Science & Engineering

Outline

Web confidentiality and privacy

Even web more risks

Announcements intermission

Firewalls and NAT boxes

Intrusion detection systems

Site perspective (A6)

Protect confidentiality of authenticators
Passwords, session cookies, CSRF tokens

Duty to protect some customer info
Personally identifying info (“identity theft”)
Credit-card info (Payment Card Industry
Data Security Standards)
Health care (HIPAA), education (FERPA)
Whatever customers reasonably expect

You need to use SSL

Finally coming around to view that
more sites need to support HTTPS

Special thanks to WiFi, NSA

If you take credit cards (of course)

If you ask users to log in
Must be protecting something, right?
Also important for users of Tor et al.

Server-side encryption

Also consider encrypting data “at rest”

(Or, avoid storing it at all)

Provides defense in depth
Reduce damage after another attack

May be hard to truly separate keys
OWASP example: public key for website
! backend credit card info

Adjusting client behavior

HTTPS and password fields are basic
hints
Consider disabling autocomplete

Usability tradeoff, save users from
themselves
Finally standardized in HTML5

Consider disabling caching
Performance tradeoff
Better not to have this on user’s disk
Or proxy? You need SSL



User vs. site perspective

User privacy goals can be opposed to
site goals

Such as in tracking for advertisements

Browser makers can find themselves in
the middle

Of course, differ in institutional pressures

Third party content / web bugs

Much tracking involves sites other than
the one in the URL bar

For fun, check where your cookies are
coming from

Various levels of cooperation

Web bugs are typically 1x1 images used
only for tracking

Cookies arms race

Privacy-sensitive users like to block
and/or delete cookies

Sites have various reasons to retain
identification
Various workarounds:

Similar features in Flash and HTML5
Various channels related to the cache
Evercookie: store in n places, regenerate
if subset are deleted

Browser fingerprinting

Combine various server or JS-visible
attributes passively

User agent string (10 bits)
Window/screen size (4.83 bits)
Available fonts (13.9 bits)
Plugin verions (15.4 bits)

(Data from panopticlick.eff.org, far from

exhaustive)

History stealing

History of what sites you’ve visited is
not supposed to be JS-visible
But, many side-channel attacks have
been possible

Query link color
CSS style with external image for visited
links
Slow-rendering timing channel
Harvesting bitmaps
User perception (e.g. fake CAPTCHA)

Browser and extension choices

More aggressive privacy behavior lives
in extensions

Disabling most JavaScript (NoScript)
HTTPS Everywhere (whitelist)
Tor Browser Bundle

Default behavior is much more
controversial

Concern not to kill advertising support as
an economic model



Outline

Web confidentiality and privacy

Even web more risks

Announcements intermission

Firewalls and NAT boxes

Intrusion detection systems

Misconfiguration problems (A5)

Default accounts

Unneeded features

Framework behaviors
Don’t automatically create variables from
query fields

Openness tradeoffs

Error reporting
Few benign users want to see a stack
backtrace

Directory listings
Hallmark of the old days

Readable source code of scripts
Doesn’t have your DB password in it, does
it?

Using vulnerable components (A9)

Large web apps can use a lot of
third-part code
Convenient for attackers too

OWASP: two popular vulnerable
components downloaded 22m times

Hiding doesn’t work if it’s popular

Stay up to date on security
announcements

Clickjacking

Fool users about what they’re clicking
on

Circumvent security confirmations
Fabricate ad interest

Example techniques:
Frame embedding
Transparency
Spoof cursor
Temporal “bait and switch”

Crawling and scraping

A lot of web content is free-of-charge,
but proprietary

Yours in a certain context, if you view
ads, etc.

Sites don’t want it downloaded
automatically (web crawling)

Or parsed and user for another
purpose (screen scraping)

High-rate or honest access detectable



Outline

Web confidentiality and privacy

Even web more risks

Announcements intermission

Firewalls and NAT boxes

Intrusion detection systems

Accidental reflected XSS in HA2 Q6

(Perhaps with live demo)

Not useful for you in the assignment

Will fix for next year

Note: more readings this week

More details on how to set up firewalls

Burglar alarms and “mimicry” attack on
IDSes

Containing high-speed worms

Virus evolution in 2012

Use bookmarklet for on-campus
download links

Research project status

Meetings next week at usual times
Will send out emails to confirm, prob.
tomorrow

Presentations begin after Thanksgiving,
schedule soon

Outline

Web confidentiality and privacy

Even web more risks

Announcements intermission

Firewalls and NAT boxes

Intrusion detection systems

Internet addition: middleboxes

Original design: middle of net is only
routers

End-to-end principle

Modern reality: more functionality in the
network

Security is one major driver



Security/connectivity tradeoff

A lot of security risk comes from a
network connection

Attacker could be anywhere in the world

Reducing connectivity makes security
easier

Connectivity demand comes from end
users

What a firewall is

Basically, a router that chooses not to
forward some traffic

Based on an a-priori policy

More complex architectures have
multiple layers

DMZ: area between outer and inner
layers, for outward-facing services

Inbound and outbound control

Most obvious firewall use: prevent
attacks from the outside
Often also some control of insiders

Block malware-infected hosts
Employees wasting time on Facebook
Selling sensitive info to competitors
Nation-state Internet management

May want to log or rate-limit, not block

Default: deny

Usual whitelist approach: first, block
everything

Then allow certain traffic

Basic: filter packets based on headers

More sophisticated: proxy traffic at a
higher level

IPv4 address scarcity

Design limit of 232 hosts
Actually less for many reasons

Addresses becoming gradually more
scarce over a many-year scale

Some high-profile exhaustions in 2011

IPv6 adoption still very low, occasional
signs of progress

Network address translation (NAT)

Middlebox that rewrites addresses in
packets
Main use: allow inside network to use
non-unique IP addresses

RFC 1918: 10.*, 192.168.*, etc.
While sharing one outside IP address

Inside hosts not addressable from
outside

De-facto firewall



Packet filtering rules

Match based on:
Source IP address
Source port
Destination IP address
Destination port
Packet flags: TCP vs. UDP, TCP ACK, etc.

Action, e.g. allow or block

Obviously limited in specificity

Client and server ports

TCP servers listen on well-known port
numbers

Often < 1024, e.g. 22 for SSH or 80 for
HTTP

Clients use a kernel-assigned random
high port

Plain packet filter would need to allow
all high-port incoming traffic

Stateful filtering

In general: firewall rules depend on
previously-seen traffic

Key instance: allow replies to an
outbound connection

See: port 23746 to port 80

Allow incoming port 23746
To same inside host

Needed to make a NAT practical

Circuit-level proxying

Firewall forwards TCP connections for
inside client
Standard protocol: SOCKS

Supported by most web browsers
Wrapper approaches for non-aware apps

Not much more powerful than
packet-level filtering

Application-level proxying

Knows about higher-level semantics

Long history for, e.g., email, now HTTP
most important
More knowledge allows better filtering
decisions

But, more effort to set up

Newer: “transparent proxy”
Pretty much a man-in-the-middle

Tunneling

Any data can be transmitted on any
channel, if both sides agree
E.g., encapsulate IP packets over SSH
connection

Compare covert channels, steganography

Powerful way to subvert firewall
Some legitimate uses



Outline

Web confidentiality and privacy

Even web more risks

Announcements intermission

Firewalls and NAT boxes

Intrusion detection systems

Basic idea: detect attacks

The worst attacks are the ones you
don’t even know about
Best case: stop before damage occurs

Marketed as “prevention”

Still good: prompt response

Challenge: what is an attack?

Network and host-based IDSes

Network IDS: watch packets similar to
firewall

But don’t know what’s bad until you see it
More often implemented offline

Host-based IDS: look for compromised
process or user from within machine

Signature matching

Signature is a pattern that matches
known bad behavior

Typically human-curated to ensure
specificity

See also: anti-virus scanners

Anomaly detection

Learn pattern of normal behavior

“Not normal” is a sign of a potential
attack

Has possibility of finding novel attacks

Performance depends on normal
behavior too

Recall: FPs and FNs

False positive: detector goes off
without real attack

False negative: attack happens without
detection

Any detector design is a tradeoff
between these (ROC curve)



Signature and anomaly weaknesses

Signatures
Won’t exist for novel attacks
Often easy to attack around

Anomaly detection
Hard to avoid false positives
Adversary can train over time

Base rate problems

If the true incidence is small (low base
rate), most positives will be false

Example: screening test for rare disease

Easy for false positives to overwhelm
admins
E.g., 100 attacks out of 10 million
packets, 0.01% FP rate

How many false alarms?

Adversarial challenges

FP/FN statistics based on a fixed set of
attacks

But attackers won’t keep using
techniques that are detected
Instead, will look for:

Existing attacks that are not detected
Minimal changes to attacks
Truly novel attacks

Wagner and Soto mimicry attack

Host-based IDS based on sequence of
syscalls
Compute A \M, where:

A models allowed sequences
M models sequences achieving
attacker’s goals

Further techniques required:
Many syscalls made into NOPs
Replacement subsequences with similar
effect

Next time

Malware and network denial of service


