CSci 5271 Introduction to Computer Security Day 21: Firewalls, NATs, and IDSes

Stephen McCamant

University of Minnesota, Computer Science & Engineering

Outline

Web confidentiality and privacy

Even web more risks

Announcements intermission

Firewalls and NAT boxes

Intrusion detection systems

Site perspective (A6)

- Protect confidentiality of authenticators
 - Passwords, session cookies, CSRF tokens
- Duty to protect some customer info
 - Personally identifying info ("identity theft")
 - Credit-card info (Payment Card Industry Data Security Standards)
 - Health care (HIPAA), education (FERPA)
 - Whatever customers reasonably expect

You need to use SSL

- Finally coming around to view that more sites need to support HTTPS
 - Special thanks to WiFi, NSA
- If you take credit cards (of course)
- If you ask users to log in
 - Must be protecting something, right?
 - Also important for users of Tor et al.

Server-side encryption

- Also consider encrypting data "at rest"
- (Or, avoid storing it at all)
- Provides defense in depth
 - Reduce damage after another attack
- May be hard to truly separate keys
 - OWASP example: public key for website
 - ightarrow backend credit card info

Adjusting client behavior

- HTTPS and password fields are basic hints
- Consider disabling autocomplete
 - Usability tradeoff, save users from themselves
 - Finally standardized in HTML5
- Consider disabling caching
 - Performance tradeoff
 - Better not to have this on user's disk
 - Or proxy? You need SSL

User vs. site perspective

- User privacy goals can be opposed to site goals
- Such as in tracking for advertisements
- Browser makers can find themselves in the middle
 - Of course, differ in institutional pressures

Third party content / web bugs

- Much tracking involves sites other than the one in the URL bar
 - For fun, check where your cookies are coming from
- Various levels of cooperation
- Web bugs are typically 1x1 images used only for tracking

Cookies arms race

- Privacy-sensitive users like to block and/or delete cookies
- Sites have various reasons to retain identification
- Various workarounds:
 - Similar features in Flash and HTML5
 - Various channels related to the cache
 - Evercookie: store in n places, regenerate if subset are deleted

Browser fingerprinting

- Combine various server or JS-visible attributes passively
 - User agent string (10 bits)
 - Window/screen size (4.83 bits)
 - Available fonts (13.9 bits)
 - Plugin verions (15.4 bits)

History stealing

- History of what sites you've visited is not supposed to be JS-visible
- But, many side-channel attacks have been possible
 - Query link color
 - CSS style with external image for visited links
 - Slow-rendering timing channel
 - Harvesting bitmaps
 - User perception (e.g. fake CAPTCHA)

Browser and extension choices

- More aggressive privacy behavior lives in extensions
 - Disabling most JavaScript (NoScript)
 - HTTPS Everywhere (whitelist)
 - Tor Browser Bundle
- Default behavior is much more controversial
 - Concern not to kill advertising support as an economic model

Outline

Web confidentiality and privacy

Even web more risks

Announcements intermission

Firewalls and NAT boxes

Intrusion detection systems

Misconfiguration problems (A5)

- Default accounts
- Unneeded features
- Framework behaviors
 - Don't automatically create variables from query fields

Openness tradeoffs

- Error reporting
 - Few benign users want to see a stack backtrace
- Directory listings
 - Hallmark of the old days
- Readable source code of scripts
 - Doesn't have your DB password in it, does it?

Using vulnerable components (A9)

- Large web apps can use a lot of third-part code
- Convenient for attackers too
 - OWASP: two popular vulnerable components downloaded 22m times
- Hiding doesn't work if it's popular
- Stay up to date on security announcements

Clickjacking

- Fool users about what they're clicking on
 - Circumvent security confirmations
 - Fabricate ad interest
- Example techniques:
 - Frame embedding
 - Transparency
 - Spoof cursor
 - Temporal "bait and switch"

Crawling and scraping

- A lot of web content is free-of-charge, but proprietary
 - Yours in a certain context, if you view ads, etc.
- Sites don't want it downloaded automatically (web crawling)
- Or parsed and user for another purpose (screen scraping)
- High-rate or honest access detectable

Outline

Web confidentiality and privacy

Even web more risks

Announcements intermission

Firewalls and NAT boxes

Intrusion detection systems

Accidental reflected XSS in HA2 Q6

- (Perhaps with live demo)
- Not useful for you in the assignment
- Will fix for next year

Note: more readings this week

- More details on how to set up firewalls
- Burglar alarms and "mimicry" attack on IDSes
- Containing high-speed worms
- Virus evolution in 2012
- Use bookmarklet for on-campus download links

Research project status

- Meetings next week at usual times
 - Will send out emails to confirm, prob. tomorrow
- Presentations begin after Thanksgiving, schedule soon

Outline

Web confidentiality and privacy

Even web more risks

Announcements intermission

Firewalls and NAT boxes

Intrusion detection systems

Internet addition: middleboxes

- Original design: middle of net is only routers
 - End-to-end principle
- Modern reality: more functionality in the network
- Security is one major driver

Security/connectivity tradeoff

- A lot of security risk comes from a network connection
 - Attacker could be anywhere in the world
- Reducing connectivity makes security easier
- Connectivity demand comes from end users

What a firewall is

- Basically, a router that chooses not to forward some traffic
 - Based on an a-priori policy
- More complex architectures have multiple layers
 - DMZ: area between outer and inner layers, for outward-facing services

Inbound and outbound control

- Most obvious firewall use: prevent attacks from the outside
- Often also some control of insiders
 - Block malware-infected hosts
 - Employees wasting time on Facebook
 - Selling sensitive info to competitors
 - Nation-state Internet management
- May want to log or rate-limit, not block

Default: deny

- Usual whitelist approach: first, block everything
- Then allow certain traffic
- Basic: filter packets based on headers
- More sophisticated: proxy traffic at a higher level

IPv4 address scarcity

- Design limit of 2³² hosts
 - Actually less for many reasons
- Addresses becoming gradually more scarce over a many-year scale
- Some high-profile exhaustions in 2011
- IPv6 adoption still very low, occasional signs of progress

Network address translation (NAT)

- Middlebox that rewrites addresses in packets
- Main use: allow inside network to use non-unique IP addresses
 - RFC 1918: 10.*, 192.168.*, etc.
 - While sharing one outside IP address
- Inside hosts not addressable from outside
 - De-facto firewall

Packet filtering rules

- Match based on:
 - Source IP address
 - Source port
 - Destination IP address
 - Destination port
 - Packet flags: TCP vs. UDP, TCP ACK, etc.
- Action, e.g. allow or block
- Obviously limited in specificity

Client and server ports

- TCP servers listen on well-known port numbers
 - Often < 1024, e.g. 22 for SSH or 80 for HTTP</p>
- Clients use a kernel-assigned random high port
- Plain packet filter would need to allow all high-port incoming traffic

Stateful filtering

- In general: firewall rules depend on previously-seen traffic
- Key instance: allow replies to an outbound connection
- See: port 23746 to port 80
- Allow incoming port 23746
 - To same inside host
- Needed to make a NAT practical

Circuit-level proxying

- Firewall forwards TCP connections for inside client
- Standard protocol: SOCKS
 - Supported by most web browsers
 - Wrapper approaches for non-aware apps
- Not much more powerful than packet-level filtering

Application-level proxying

- Knows about higher-level semantics
- Long history for, e.g., email, now HTTP most important
- More knowledge allows better filtering decisions
 - But, more effort to set up
- Newer: "transparent proxy"
 - Pretty much a man-in-the-middle

Tunneling

- Any data can be transmitted on any channel, if both sides agree
- E.g., encapsulate IP packets over SSH connection
 - Compare covert channels, steganography
- Powerful way to subvert firewall
 - Some legitimate uses

Outline

Web confidentiality and privacy

Even web more risks

Announcements intermission

Firewalls and NAT boxes

Intrusion detection systems

Basic idea: detect attacks

- The worst attacks are the ones you don't even know about
- Best case: stop before damage occurs
 Marketed as "prevention"
 - ividirected as prevention
- Still good: prompt response
- Challenge: what is an attack?

Network and host-based IDSes

- Network IDS: watch packets similar to firewall
 - But don't know what's bad until you see it
 - More often implemented offline
- Host-based IDS: look for compromised process or user from within machine

Signature matching

- Signature is a pattern that matches known bad behavior
- Typically human-curated to ensure specificity
- See also: anti-virus scanners

Anomaly detection

- Learn pattern of normal behavior
- "Not normal" is a sign of a potential attack
- Has possibility of finding novel attacks
- Performance depends on normal behavior too

Recall: FPs and FNs

- False positive: detector goes off without real attack
- False negative: attack happens without detection
- Any detector design is a tradeoff between these (ROC curve)

Signature and anomaly weaknesses

- Signatures
 - Won't exist for novel attacks
 - Often easy to attack around
- Anomaly detection
 - Hard to avoid false positives
 - Adversary can train over time

Base rate problems

- If the true incidence is small (low base rate), most positives will be false
 - Example: screening test for rare disease
- Easy for false positives to overwhelm admins
- E.g., 100 attacks out of 10 million packets, 0.01% FP rate
 - How many false alarms?

Adversarial challenges

- FP/FN statistics based on a fixed set of attacks
- But attackers won't keep using techniques that are detected
- Instead, will look for:
 - Existing attacks that are not detected
 - Minimal changes to attacks
 - Truly novel attacks

Wagner and Soto mimicry attack

- Host-based IDS based on sequence of syscalls
- **Output** $A \cap M$, where:
 - A models allowed sequences
 - M models sequences achieving attacker's goals
- Further techniques required:
 - Many syscalls made into NOPs
 - Replacement subsequences with similar effect

Next time

Malware and network denial of service