CSci 5271
Introduction to Computer Security
Day 22: Malware and Denial of Service

Stephen McCamant
University of Minnesota, Computer Science & Engineering

Outline

Intrusion detection systems

Signature matching

©) Signature is a pattern that matches
known bad behavior

) Typically human-curated to ensure
specificity

) See also: anti-virus scanners

Anomaly detection

£) Learn pattern of normal behavior

£) "Not normal” is a sign of a potential
attack

£) Has possibility of finding novel attacks

£) Performance depends on normal
behavior too

Recall: FPs and FNs

©) False positive: detector goes off
without real attack

) False negative: attack happens without
detection

©) Any detector design is a tradeoff
between these (ROC curve)

Signature and anomaly weaknesses

) Signatures
®m Won't exist for novel attacks
m Often easy to attack around
©) Anomaly detection

® Hard to avoid false positives
® Adversary can train over time

Base rate problems

) If the true incidence is small (low base
rate), most positives will be false
®m Example: screening test for rare disease
) Easy for false positives to overwhelm
admins
©) Eg, 100 attacks out of 10 million

packets, 0.01% FP rate
® How many false alarms?

Adversarial challenges

) FP/FN statistics based on a fixed set of
attacks

©) But attackers won't keep using
technigues that are detected
©) Instead, will look for:

® Existing attacks that are not detected
® Minimal changes to attacks
® Truly novel attacks

Wagner and Soto mimicry attack

) Host-based IDS based on sequence of
syscalls
©) Compute A 1M, where:

® A models allowed sequences
® M models sequences achieving
attacker's goals

) Further techniques required:
® Many syscalls made into NOPs

® Replacement subsequences with similar
effect

Outline

Malware and the network

Malicious software

) Shortened to Mal...ware

) Software whose inherent goal is
malicious
® Not just used for bad purposes

) Strong adversary
) High visibility
©) Many types

Trojan (horse)

©) Looks benign, has secret malicious
functionality

©) Key technique: fool users into
installing/running

) Concern dates back to 1970s, MLS

(Computer) viruses

) Attaches itself to other software

) Propagates when that program runs
) Once upon a time: floppy disks

£) More modern: macro viruses

) Have declined in relative importance

Worms

) Completely automatic self-propagation
©) Requires remote security holes

) Classic example: 1988 Morris worm

£) "Golden age” in early 2000s

) Internet-level threat seems to have
declined

Fast worm propagation

0 Initial hit-list
m Pre-scan list of likely targets
® Accelerate cold-start phase

) Permutation-based sampling

® Systematic but not obviously patterned
® Pseudorandom permutation

) Approximate time: 15 minutes

® “Warhol worm”
® Too fast for human-in-the-loop response

Getting underneath

) Lower-level/higher-privilege code can
deceive normal code

©) Rootkit: hide malware by changing
kernel behavior

£) MBR virus: take control early in boot

) Blue-pill attack: malware is a VMM
running your system

Malware motivation

©) Once upon a time: curiosity, fame

) Now predominates: money

® Modest-size industry
® Competition and specialization

) Also significant: nation-states

® Industrial espionage
® Stuxnet (not officially acknowledged)

User-based monetization

) Adware, mild spyware

) Keyloggers, stealing financial
credentials
£) Ransomware
® Application of public-key encryption
® Malware encrypts user files
® Only $300 for decryption key

Bots and botnets

) Bot: program under control of remote
attacker

) Botnet: large group of bot-infected
computers with common “master”
) Command & control network protocol
® Once upon a time: IRC
® Now more likely custom and obfuscated
® Centralized — peer-to-peer

® Gradually learning crypto and protocol
lessons

Bot monetization

£ Click (ad) fraud

) Distributed DoS (next section)
©) Bitcoin mining

) Pay-per-install (subcontracting)
£) Spam sending

Malware/anti-virus arms race

) "Anti-virus” (AV) systems are really
general anti-malware

) Clear need, but hard to do well

) No clear distinction between benign
and malicious

) Endless possibilities for deception

Signature-based AV

©) Similar idea to signature-based IDS
) Would work well if malware were static

o) In reality:
® Large, changing database
® Frequent updated from analysts
® Not just software, a subscription
® Malware stays enough ahead to survive

Emulation and AV

©) Simple idea: run sample, see if it does
something evil

) Obvious limitation: how long do you
wait?

) Simple version can be applied online

) More sophisticated emulators/VMs
used in backend analysis

Polymorphism

) Attacker makes many variants of
starting malware

) Different code sequences, same
behavior

£) One estimate: 30 million samples
observed in 2012

) But could create more if needed

Packing

) Sounds like compression, but real goal
is obfuscation

) Static code creates real code on the fly

) Or, obfuscated bytecode interpreter

) Outsourced to independent “protection”
tools

Fake anti-virus

£) Major monentization strategy recently

©) Your system is infected, pay $19.95 for
cleanup tool

©) For user, not fundamentally
distinguishable from real AV

Outline

Announcements intermission

Note to early readers

©) This is the section of the slides most
likely to change in the final version

©) If class has already happened, make
sure you have the latest slides for
announcements

Outline

Denial of service and the network

DoS versus other vulnerabilities

) Effect: normal operations merely
become impossible

) Software example: crash as opposed
to code injection

) Less power that complete compromise,

but practical severity can vary widely
® Airplane control DoS, etc.

When is it DoS?

) Very common for users to affect
others’ performance

) Focus is on unexpected and unintended
effects

) Unexpected channel or magnitude

Algorithmic complexity attacks

©) Can an adversary make your algorithm
have worst-case behavior?

£ O(n?) quicksort
) Hash table with all entries in one bucket

) Exponential backtracking in regex
matching

XML entity expansion

©) XML entities (HTML &1t) are like C
macros

#define B (A+A+A+A+A)
#define C (B+B+B+B+B)
#define D (C+C+C+C+C)
#define E (D+D+D+D+D)
#define F (E+E+E+E+E)

Compression DoS

£) Some formats allow very high
compression ratios
® Simple attack: compress very large input

©) More powerful: nested archives
©) Also possible: “zip file quine”
decompresses to itself

DoS against network services

) Common example: keep legitimate
users from viewing a web site

) Easy case: pre-forked server supports
100 simultaneous connections

©) Fill them with very very slow downloads

Tiny bit of queueing theory

£) Mathematical theory of waiting in line

©) Simple case: random arrival, sequential
fixed-time service
8 M/D/
o) If arrival rate > service rate, expected
gueue length grows without bound

SYN flooding

) SYN is first of three packets to set up
new connection

©) Traditional implementation allocates
space for control data

) However much you allow, attacker fills
with unfinished connections

) Early limits were very low (10-100)

SYN cookies

) Change server behavior to stateless
approach

) Embed small amount of needed
information in fields that will be echoed
in third packet

m MAC-like construction

) Other disadvantages, so usual

implementations used only under attack

DoS against network links

) Try to use all available bandwidth,
crowd out real traffic

) Brute force but still potentially effective

) Baseline attacker power measured by
packet sending rate

Traffic multipliers

) Third party networks (not attacker or
victim)

©) One input packet causes n output
packets

) Commonly, victim’'s address is forged
source, multiply replies

©) Misuse of debugging features

“Smurf” broadcast ping

) ICMP echo request with forged source
) Sent to a network broadcast address
) Every recipient sends reply

) Now mostly fixed by disabling this
feature

Distributed DoS

£) Many attacker machines, one victim
©) Easy if you own a botnet
) Impractical to stop bots one-by-one

£) May prefer legitimate-looking traffic
over weird attacks
® Main consideration is difficulty to filter

Outline

Bonus: anonymity overlays

Traffic analysis

) What can you learn from encrypted
data? A lot

) Content size, timing

©) Who's talking to who
— countermeasure: anonymity

Anonymous remailers

©) Anonymizing intermediaries for email
® First cuts had single points of failure

) Mix and forward messages after
receiving a sufficiently-large batch

) Chain together mixes with multiple
layers of encryption

) Fancy systems didn't get critical mass
of users

Tor: an overlay network

©) Tor (originally from “the onion router”)
® https://www.torproject.org/
£) An anonymous network built on top of
the non-anonymous Internet
) Designed to support a wide variety of
anonymity use cases

Low-latency TCP applications

) Tor works by proxying TCP streams
® (And DNS lookups)
) Focuses on achieving interactive
latency

® WWW, but potentially also chat, SSH, etc.

® Anonymity tradeoffs compared to
remailers

Tor Onion routing

) Stream from sender to D forwarded
via A, B, and C
® One Tor circuit made of four TCP hops
©) Encrypt packets (512-byte “cells”) as
EA(B> EB(C> EC(D) P)))
) TLS-like hybrid encryption with
“telescoping” path setup

Client perspective

) Install Tor client running in background

) Configure browser to use Tor as proxy
® Or complete Tor+Proxy+Browser bundle

) Browse web as normal, but a lot slower

® Also, sometimes google.com is in
Swedish

Anonymity loves company

) Diverse user pool needed for

anonymity to be meaningful
® Hypothetical Department of Defense
Anonymity Network

) Tor aims to be helpful to a broad range
of (sympathetic sounding) potential
users

Anti-censorship

©) As a web proxy, Tor is useful for
getting around blocking

) Unless Tor itself is blocked, as it often is

) Bridges are special less-public entry
points

) Also, protocol obfuscation arms race
(currently behind)

Hidden services

) Tor can be used by servers as well as
clients

©) Identified by cryptographic key, use
special rendezvous protocol

) Servers often present easier attack
surface

Intersection attacks

) Suppose you use Tor to update a
pseudonymous blog, reveal you live in
Minneapolis

) Comcast can tell who in the city was

sending to Tor at the moment you post
an entry
® Anonymity set of 1000 — reasonable
protection
©) But if you keep posting, adversary can

keep narrowing down the set

Exit sniffing

£) Easy mistake to make: log in to an
HTTP web site over Tor

©) A malicious exit node could now steal
your password

©) Another reason to always use HTTPS
for logins

Browser bundle JS attack

£) Tor's Browser Bundle disables many

features try to stop tracking
©) But, JavaScript defaults to on
® Usability for non-expert users
® Fingerprinting via NoScript settings

) Was incompatible with Firefox
auto-updating

£) Many Tor users de-anonymized in
Auqust13 by JS vulnerability patched in
June’l3

Next time

) Usability and security

