8271 discussion of cloud computing security
(combined)
Stephen McCamant

University of Minnesota

Outline

Get Off of My Cloud

Old and new topics in security

) Paper type 1. new idea, never been
done before
® Main contribution is novelty
® Incentive to be first, maybe even a race
) Paper type 2: improvement in an
already-busy area

® Contributions judged differentially
® Incentive to optimize

Cloud threats, old and new

) Old: your system's reqular vulnerabilities

©) New but understood: need to trust
cloud provider

) Focus here: attacks from cloud
neighbors

Case study: Amazon EC2

©) Largest, highest-profile infrastructure
cloud provider

) World-spanning data centers, instance
sizes $0.02-$6.82 per hour

©) Many instance types use Xen to
multiplex one physical machine

Ethical/legal sidebar

©) Important for academic researchers to
do things “by the book”

) Ethical obligations may be greater or
less than legal ones

£) Here: CFAA, EC2 user agreement

Placement and extraction

) Placement. get an instance on the
same physical machine as the victim

©) Extraction: given placement, get
confidential info

Network probing

) TCP traceroutes, port 80 and 443
scans, DNS resolution

) Instances have one name, but separate
public and internal IP addresses

Network mapping

) Internal addresses reflect topology

©) Disjoint by availability region, clustered
by instance type

©) DomOs in an adjacent block

Network-based co-residence checks

) DomO in traceroute (easiest)
) Close IP addresses
©) Smallest packet round-trip times

©) All found to have “effectively zero” false
positives

Hard disk usage channel

) Measure contention for hard disk (e.q.,
seek times) between VMs

©) "No attempt to optimize” bandwidth:
0.0005 bits/sec (33 mins per bit)

©) Why so slow?

Covert channels and side channels

) "Covert channel”: generally send and
receiver cooperate

® One classification: storage channels,
timing channels

£) "Side channel”: “sender” is passive
victim
® Can again include timing, also error
messages, power usage, etc.

Observed placement locality

) Sequential locality: new instance likely
to use same machine as old dead one

) Parallel locality: instances started close
in time more likely to share

) Non-locality: one account never given
two instances on same machine

Evaluating brute-force placement

) Chose 1686 victims
® Small instances in zone 3 with public web
servers
©) Launched probe instances and checked
co-residence

® 510 probes: hit 127 victims
m 1785 probes: hit 141 victims, 8.4%

Using locality

©) Idea: use parallel locality, try to start
probes soon after victim

m Perhaps can trigger victim start, such as if
it's based on demand

) About 40% coverage for 20 victims
and 20 probes

) Also demonstrated against demos of
commercial services

Cache: Prime+Trigger+Probe

1. (Prime) Fill cache with my data

2. Busy loop until preempted (recognize
with TSC)

3. Measure time to re-read my data

£) Must play tricks to defeat CPU
pre-fetch

) Differential coding to resist noise

Load and traffic estimation

) Check for co-residence using system
load as a covert channel

) Estimate traffic load on co-resident web
server

Keystroke timing attack (classic)

) Fine-grained keystroke timing can
reveal information about text typed

) Especially given per-user training

) Demonstrated in lab against passwords
typed over SSH, without breaking
crypto

® 50 speedup over exhaustive search

Keystrokes in Xen

) Lab installation with CPU pinning,
otherwise idle; not real EC2
) Threshold cache activity level
® More than idle, less than otherwise busy
) 5% false negatives, 0.3 false positives
per second

©) Timing resolution 13ms, enough for prior
attacks

Countermeasures: limited

) Randomize and isolate network
structure
® Timing measurements still possible
) Block or add noise to covert channels
® Hard, and how to know you have them all?
) Avoid locality in placement algorithm
® Reduces but does not eliminate attacks

Countermeasure: pay for isolation

) Pay extra to have machines all to
yourself

©) Argument: fair cost upper-bounded by
cost of one physical machine
) Not implemented
® Though compare: GovCloud

Outline

Administrative discussions

Next week: Bitcoin

©) For Monday: double-spending attacks

) For Wednesday: real anonymity with
Zerocoin

Choosing presentation topics

) | still need to post more papers
) Is volunteering viable?
) Possible alternative: lottery plus trading

Choosing project topics

) Start looking for groups and topics now
) Meet with me next week or week after

) Proposals due February 28th (less than
one month)

Outline

Multi-Cloud Oblivious Storage

Motivation: hide access patterns

©) Information is leaked by what you
access when

) Consider encrypted email, medical info,
etc.

) Goal here: conceal location, read vs.
write

What's revealed by plain encryption?

©) Imagine we encrypt every disk block
with function E

) Adversary can still see patterns of
locations

0 If by = by, E(by) = E(by)

Using probabilistic encryption

) Probabilistic encryption: randomized,
returns different ciphertext each time
® Standard in public key, theory, and with
modes of operation
) To conceal read vs. write, always
replace block with new encryption

Straw man 1. access every block

) For each virtual access (read or write),
access (read and write) every physical
block

£) Secure, but impractical

Straw man 2: shuffle all blocks

) Use pseudo-random permutation to
shuffle all block locations

) Secure if you never access a block
more than once

® But leaks on any repeated operations
®m Can't have, eq, read after write

Goldreich square-root construction

) First semi-practical idea (STOC 1987)

) Cache of \/m locations accessed each
time, plus shuffled copy

£) Dummy accesses for consistency
©) Reshuffle after /m operations

G&O hierarchical idea

) Split into levels of exponentially
increasing size

) Write back in smallest level, then
reshuffle into larger

) Various kinds of hashing can be used

) Polylog amortized cost for O(1) client

storage
® But still pretty impractical

The client bandwidth constraint

©) In many storage outsourcing
applications, major constraint is client’s
network bandwidth

) Client has significant local storage

® Not enough for all data
® But enough for an index (order of one
word per block)

Multi-cloud approach

) Cloud-to-cloud bandwidth more than
client-to-cloud

©) Use multiple (e.9. 2) clouds

) Require: not all clouds are malicious

©) Major savings, especially on client
bandwidth

Threat models in protocols

£) (Fully) honest: follows the protocol
exactly

) Malicious: can do anything (worst case)

) Semi-honest, AKA honest-but-curious:
follows protocol, but may try to learn
secrets from seen data

SSS partitioning

©) Divide data into \/m partitions of size
Vym

) Client keeps location index and /m
blocks of cache

) Improves worst-case and constant
factors, but still needs log /m (eg,
10x) accesses to read

Splitting between clouds

) Make expensive operations
cloud-to-cloud
) Do operation in one cloud to hide from

the other
® "Non-colluding” confidentiality assumption

Write: oblivious shuffling

hufl Write shuffled
3 lgcke blocks B’ into
level £ + 1, {
5

Denotes that an
1) WritePartition onion encryption

layer is added.

Figure source: taken from the paper

Read: oblivious selection

Read & send
blocks, B
2)

shuffle
S lock

Send'shuffled

. Sblocks, B’

7}
Send single requested block
to the client, B'[i]; “Done”

1 ReadPartition;
offsets

ReadPartition; offsets;
=~ Request block i

Figure source: taken from the paper

Homomorphic checksum

©) Linear checksum allows computation on

encrypted blocks
® Note: not secure after an adversary has
seen examples!

) Combined with PRF (imagine: MAC) and
authenticated encryption

Experimental deployment

) Amazon EC2 (AWS) with SSDs

©) Microsoft Azure, lacking SSDs

) Up to 5 servers (max out client
bandwidth)

£) $3.10 per hour plus $2.50 per GB for
one server

Bottleneck analysis

) Client bandwidth 26 x
m Compare 2x for read and write
) In practice: Azure’'s non-SSD disk
speeds
) Assuming SSDs, double throughput up
to 6MB/s

® Based on cloud-to-cloud bandwidth
bottleneck, 30-60MB/s

